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Abstract

Autonomous Ground Vehicles (AGVs) are essential tools for a wide range of applications
stemming from their ability to operate in hazardous environments with minimal human op-
erator input. Effective motion planning is paramount for successful operation of AGVs.
Conventional motion planning algorithms are dependent on prior knowledge of environment
characteristics and offer limited utility in information poor, dynamically altering environ-
ments such as areas where emergency hazards like fire and earthquake occur, and unexplored
subterranean environments such as tunnels and lava tubes on Mars. We propose a Deep Rein-
forcement Learning (DRL) framework for intelligent AGV exploration without a-priori maps
utilizing Actor-Critic DRL algorithms to learn policies in continuous and high-dimensional
action spaces directly from raw sensor data. The DRL architecture comprises feedforward
neural networks for the critic and actor representations in which the actor network strategizes
linear and angular velocity control actions given current state inputs, that are evaluated by
the critic network which learns and estimates Q-values to maximize an accumulated reward.
Three off-policy DRL algorithms, DDPG, TD3 and SAC, are trained and compared in two
environments of varying complexity, and further evaluated in a third with no prior training or
knowledge of map characteristics. The agent is shown to learn optimal policies at the end of
each training period to chart quick, collision-free exploration trajectories, and is extensible,
capable of adapting to an unknown environment without changes to network architecture or
hyperparameters. The best algorithm is further evaluated in a realistic 3D environment.

Keywords: Autonomous Ground Vehicles, Cognitive Navigation, Deep Reinforcement
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1. INTRODUCTION

Autonomous Ground Vehicles (AGVs) are indispensable tools for mapping uncharted terrain, Search
and Rescue (SAR) missions, disaster response, military operations, mining, and extraterrestrial
planetary exploration owing to their ability to operate in hazardous, unstructured environments
reliably with minimal input from a human operator [1, 2]. Perceiving the environment, and planning
trajectories are key components of AGV navigation.

Mobile robot trajectories require optimization for shortest path, minimum energy consumption and
training time [2]. Conventional AGV navigation algorithms are dependent on specific environmen-
tal configurations [3] which limits their effectiveness in adapting to information poor, dynamically
changing environments such as areas where emergency hazards like fire and earthquake occur, and
unexplored subterranean environments such as tunnels, caves and lava tubes on Mars.

Conventional navigation algorithms comprise graph search algorithms such as Dijkstra, A* and D*
[4] that are well-defined and simple to use but are inefficient in complex, dynamic environments and
have poor robustness to noise interference and errors in the environment model, random sampling
algorithms such as Probability Graph Method (PGM) and Rapid exploration Random Tree (RRT)
[5] that select random scatter points in the entire environment space to search for the optimal path
between the starting and end points making them susceptible to poor real-time performance, sub-
optimal solutions and high computation cost, Artificial Potential Field (APF) [6] that is efficient
but prone to local minima traps, and nature inspired algorithms such as fuzzy logic that is robust,
but requires prior knowledge in the form of user defined knowledge based logic and rules, and
Genetic Algorithm (GA) [7] which is ideal for the global optimal solution and suitable for complex
problems, but has poor local search ability and slow convergence rate.

Recent advancements in Artificial Intelligence (Al), sensors, communication and computer technol-
ogy facilitate intelligent AGV's capable of high autonomy. Motion planning models that incorporate
Artificial Neural Networks (ANNs) and Actor-Critic Reinforcement Learning (RL) enable robotic
systems to learn optimal, end-to-end policies in continuous and high-dimensional action spaces di-
rectly from characteristics of high-dimensional sensory input data to intelligently select goal driven
actions in obstacle filled unstructured terrain in the absence of prior knowledge and detailed maps
[8—11].

Numerous works have focused on utilizing Deep Reinforcement Learning (DRL) for task-driven
navigation aided by GPS observations to specific goal positions generated by a high-level planner.
In [12], the authors train an indoor robot equipped with camera, GPS and compass sensors in
simulation, to navigate to a target location from a random initial position in an unseen map, for
over 180 days of GPU-time parallelly with 64 GPUs, in 3 days using Decentralized Distributed
Proximal Policy Optimization (DD-PPO) to achieve exceptional post-training performance.

However, task-independent exploration of a new environment to facilitate various down-stream
applications has received significantly less attention [13]. Effective exploration in GPS-denied
environments such as indoor and subterranean environments encountered in SAR, military and
extraterrestrial planetary exploration require even greater training times, and different DRL ap-
proaches.
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Simultaneous Localization And Mapping (SLAM) enables AGVs to simultaneously estimate vehi-
cle state utilizing on-board sensors and construct a model of the environment the sensors perceive
[14]. The inclusion of LIDAR and visual SLAM in the perception pipeline is a key enabler for
contemporary AGV navigation in environments that are GPS-denied with no access to a-priori maps
[15]. In [16], the authors propose Active Neural SLAM (ANS), a modular navigation model that
integrates SLAM with DRL to effectively explore an unknown environment. ANS comprises a
neural SLAM module to predict the map of the surrounding environment and the agent pose, a
global policy that uses a convolutional neural network to output a long-term goal using the spatial
map, agent pose and visited locations as inputs trained using Proximal Policy Optimization (PPO)
[17] to maximize coverage, and a local policy that utilizes RGB observations and a short-term goal
derived from the long-term goal as inputs to a recurrent neural network to obtain the navigational
action.

SLAM is subject to mapping and pose estimate errors as a consequence of estimating sequential
motion, and a modular navigation model is computationally demanding as it comprises multiple
ANN s for each subtask. End-to-end navigation utilizing a single DRL network achieved with reward
shaping without a dependence on mapping and long-term goal generation is of benefit to early stage
task-independent exploration of unknown environments in adverse environmental conditions for
data collection to build more accurate maps, and facilitate down-stream applications.

Moreover, on-policy Actor-Critic Deep Reinforcement Learning (DRL) algorithms such as PPO,
that are most commonly used in prior work, are robust to hyperparameter tuning and straightforward
to implement, but are sample inefficient as these require new training samples for every policy
update, which makes learning an effective policy for complex tasks computationally exorbitant.
Off-policy Actor-Critic DRL algorithms such as Deep Deterministic Policy Gradient (DDPG) [18],
Twin Delayed Deep Deterministic Policy Gradient (TD3) [19] and Soft Actor-Critic (SAC) [20]
reuse past experience stored in a replay buffer for learning, thus have higher sample efficiency.

Given the potential of DRL for AGV navigation in information poor environments, this paper
presents and evaluates a DRL framework with shaped rewards for cognitive AGV navigation solely
utilizing distance measurement observations obtained using LiDAR or camera RGB-D point cloud,
and compares state-of-the-art off-policy DRL algorithms’ ability to safely navigate and explore
obstacle filled terrain without prior knowledge of environment characteristics. Range measurements
were chosen as observations over RGB images as they are more efficient, since they provide a
complete understanding of the surrounding environment at a fraction of the data size. Animals
such as bats use echolocation for navigation [21] solely utilizing an understanding of distances to
objects, hence it is reasonable to expect a DRL agent to learn a reliable, robust navigation policy
exclusively utilizing range measurements. The decrease in the size of the observation space enables
faster learning of policies in more complex environments that require a large number of training
samples.

The rest of the paper is organized as follows: Section II provides a background on DRL. The
proposed DRL framework is detailed in Section III. The training and evaluation methodologies are
described in Section I'V. The results are presented and analyzed in Section V, and finally Section
VI provides closing remarks and future work directions.
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2. BACKGROUND ON DEEP REINFORCEMENT LEARNING

RL is a Machine Learning (ML) framework inspired by trial-and-error animal learning to train
agents that interact with the surrounding environment by promoting or discouraging actions utilizing
reward feedback signals designed to gauge effectiveness of executed actions. Deep Learning (DL),
a key ML component, utilizes ANNSs to form an abstract, distinguishable high-level representation
from low-level input features. DRL algorithms combine DL and RL to extract unknown environ-
ment features from high-dimensional input data utilizing ANNs, and decide control actions using
RL. FIGURE 1, portrays the DRL framework.

Reward

Agent l

Take action

State Environment

Observe state

Figure 1: Schematic of deep reinforcement learning framework.

A RL agent observes its environment s; at each time step ¢, and selects an action a; from action
space 4, conforming to a learned policy 7 (a; | s;) that maps states to actions. The expectation of
a discounted, accumulated reward R; = Z;":Oykrw”k at each state is maximized during learning,
where y € (0,1] is the discount factor, and rw; is the scalar reward signal for selecting action a; [22].

2.1 Actor-Critic Framework

An actor-critic framework utilizing deep function approximators that combines both value-based
and policy-based RL is the preferred method to learn policies in continuous and high-dimensional
action spaces, required for robotics applications. This method leverages the joint computing and
decision-making abilities of the actor and critic neural networks to yield low variance and fast speeds
when updating gradients. FIGURE 2, illustrates the Actor-Critic framework.

The actor network strategizes an action output selected from a continuous action space using policy
gradient, utilizing the current state as the input. The critic evaluates the chosen actions and outputs
the associated approximate Q-value for the current state and selected action using an approximated
value function to counter the large variance in the policy gradients. In off-policy algorithms, sam-
ple data accumulated in a replay buffer is utilized to update and approximate the value function
yielding higher sample efficiency than on-policy algorithms. The two networks compute the action
prediction for the current state at each time step to generate a temporal-difference error signal.
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Figure 2: Schematic of Actor-Critic framework.

2.2 Deep Deterministic Policy Gradient

DDPG [18] is a model-free, off-policy actor-critic RL algorithm that combines ANNs with the
actor-critic representation of standard Deterministic Policy Gradient (DPG) [23] to successfully
implement control sequences in a continuous action space. The actor, 7 (s | #) and critic, Q (s, a |
¢) each comprise fully-linked, two-layer feedforward ANNs with Rectified Linear Unit (ReLU)
activation functions.

The loss L is minimized across all sampled experiences to update the critic parameters, ¢,

1 M
L= M ;(yi - 0(sj,a; | ¢))2 M

Here M is a random mini-batch of experiences, and y; is the target value function computed as
follows,

Vi = Ri +¥Q: (Sis1, i (s5iv1 | 01) | ¢1) (2)

0; and ¢, are parameters of the target actor &, and target critic O, respectively, that have the same
structure and parameterization as 7 and Q. The agent periodically updates 6; and ¢, using the latest
6 and ¢ values to improve the stability of the optimization.

The actor parameters, 6 are updated using a sampled policy gradient V4J to maximize the expected
discounted reward,

1 M
Vol ~ o Z; G aiGri 3)

Here G; is the gradient of the critic output with respect to the action selected by the actor network
computed as follows,
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Gai =VaQ(si,n(si | 0) | §) 4

G r; is the gradient of the actor output with respect to its parameters,
Gni=Vonr(si|0) (5)

2.3 Twin-Delayed Deep Deterministic Policy Gradient

TD3 is designed to improve learned policies by preventing overestimation of the value function [19].
Two Q-value functions are learned simultaneously, and the minimum is used for policy updates.
Moreover, the policy is updated less frequently than the Q-value function to further improve learned
policies.

The parameters of the critic, Qx(s,a | ¢r), where k = 2 is the number of critics, are updated by
minimizing the loss Ly as follows,

M
1
Li= ;@i ~Qu(sivai | $1))” (6)
The target value function y; is computed as follows,

yi=R; + mGin(th(Siu, clip(mi(sis1 | 0:) +&) | dri)) (7

Here 6; and ¢, are parameters of the target actor , and target critics Q,, and ¢ is noise added to
the computed action to promote exploration. The action is clipped based on the noise limits.

The actor parameters are updated similar to DDPG using Equation (3) where G; is computed as
follows and G ; is computed as in Equation (5).

Gai = Vamin(Qu(si, n(s: | 0) | 4)) (8)

2.4 Soft Actor-Critic

SAC [20], similar to DDPG and TD3, is a model-free, off-policy actor-critic RL algorithm. In
addition to maximizing the long-term expected reward, SAC maximizes the entropy of the policy,
which is a measure of the policy uncertainty at a given state. A higher policy entropy promotes
exploration, hence the learned policy balances exploitation and exploration of the environment.
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The agent utilizes a stochastic actor that outputs mean and standard deviation, using which an
unbounded action is randomly selected from a Gaussian distribution. The entropy of the policy
is computed during training for the given observation using this unbounded probability distribution.
Bounded actions that comply with the action space are generated by applying tanh and scaling
operations to the unbounded action.

The critic parameters are updated at specific time step periods by minimizing the loss function in
Equation (6), similar to TD3 for & critics.

The target value function y; is computed as the sum of the minimum discounted future reward from
the critic networks R;, and the weighted entropy as follows,

yi =R; +7mljﬂ(th(Si+1,ﬂ(Si+1 | 0) | ¢:1))
)

—alnn(si1 | 6)

Here « is the entropy loss weight. The entropy weight is updated by minimizing the loss function,
L, where H is the target entropy as follows,

| M
L, = i ;(—a’lnﬂ(s,- | ) — aH) (10)

The stochastic actor parameters are updated by minimizing the objective function J ,

M
Je= 25 (- i@ (51n(5310) | 1) + (s 1 0) (1)

3. PROPOSED DEEP REINFORCEMENT LEARNING FRAMEWORK

This section presents the DRL framework, and reward design for quick, efficient and collision-free
AGYV exploration in new, unknown environments.

3.1 Network Architecture

In order to maximize the long-term reward, designed to encourage quick, efficient, and collision-free
exploration of the environment, the DRL agent makes strategic linear and angular velocity action
decisions for the current time step, v, and w;. These decisions are based on LiDAR or camera RGB-
D point cloud range measurements from the current and previous time steps r; and r;_1, the previous
time step’s action a;_1 = (v;_1, w;—1), and the corresponding reward value, R. The proposed DRL
architecture for AGV exploration is shown in FIGURE 3.
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Figure 3: Deep Reinforcement Learning framework for Autonomous Ground Vehicle exploration
without maps.

The agent updates the policy at each time step during training using the selected action, the prior
and current observations after executing the action, and scalar reward feedback, with the objective
of maximizing the long-term reward to promote collision-free exploration.

The addition of global position information obtained via GPS to the observation space will improve
learning sample efficiency, and can encourage more efficient exploration, however it is not viable in
environments that are underground, or inside buildings. To mitigate this, the reward is specifically
shaped to encourage the agent to navigate previously unexplored regions solely utilizing range and
odometry measurements.

3.2 Reward Shaping

The reward function is application specific, and designed to encourage the agent to explore its envi-
ronment efficiently, quickly and safely without collisions. To compare the exploration capabilities
of DDPG, TD3 and SAC, a minimalist reward function is shaped as presented in [9],

R =0.0075r2 + 1.5v2 — 0.6w> (12)

A positive reward is applied to the square of the minimum range measurement, » to incentivize
obstacle avoidance. This reward is highest when the agent is at a greater distance from obstacles,
encouraging the generation of paths devoid of obstacles. The agent is additionally rewarded for swift
navigation through positive reinforcement of linear velocity, v. To encourage efficient exploration, a
negative reward is applied to angular velocity, w to discourage repeated circular motion in the same
vicinity. High coefficients for 2 and v? lead to a compromise between obstacle avoidance ability
and exploratory behavior, hence a balance was determined through trial-and-error experimentation
to prioritize both exploration, and collision avoidance.
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The presented DRL framework can be trained with more specialized application specific reward
functions, such as for SAR operations in forests with thick foliage or urban regions covered in
rubble in the aftermath of a natural disaster that require AGVs to specifically explore shaded regions
underneath trees, boulders or buildings inaccessible to aerial surveillance using Unmanned Aerial
Vehicles (UAVs). The reward for this application can be shaped as,

0.00757% + 1.5v% — 0.6>
Rsar =42.0 if2.0<r <25 (13)
-50 ifr <1.0

In addition to the reward in Equation 12, the agent is assigned a reward of 2.0 when it is between
2.0 and 2.5 m of the nearest object to promote exploration in shaded regions close to obstacles
unobservable to aerial surveillance. In order to improve the safety of exploration trajectories, the
agent is assigned a penalty of 50.0 when it is within 1 m of the nearest obstacle.

The focus of this paper is on evaluating the proposed DRL framework for end-to-end cognitive AGV
exploration without maps, and comparing the performance of sample efficient off-policy algorithms
for this task, hence we use the generalized reward function in Equation 12 for comparison analysis.
The best algorithm is further evaluated using the application specific shaped reward in Equation 13
to demonstrate the effectiveness of the proposed method.

4. TRAINING AND EVALUATION

The MATLAB Robotics System [24] and Reinforcement Learning [25] Toolboxes, and Simulink are
utilized to model the AGV, and train the DRL agent to compare off-policy algorithms DDPG, TD3
and SAC using the reward in Equation 12. The best algorithm is further evaluated in AutoVRL [26],
an in-house high fidelity simulator developed using open-source tools for simulation to real-world
DRL using the shaped reward in Equation 13.

4.1 Environments

The DRL agents are trained in two distinct environments for comparison. The first environment,
depicted in FIGURE 4a, is a simple 25 m x 25 m space with walls that the agent must steer clear of.
The second environment, illustrated in FIGURE 4b, is a more complex 40 m x 40 m space with walls
and various obstacles, dotted in black, that the agent must additionally avoid. The trained agents
from each environment are evaluated in a third environment, illustrated in FIGURE 4c¢, without
prior training or knowledge of map characteristics to evaluate the robustness, and performance
of the learned policies in a new, unknown environment with the same network architecture and
hyperparameters.

The AGYV, identified with a red symbol on the training maps, is set to a random starting position at
the start of each training episode to enhance policy learning. This reset ensures that the agent is not
biased towards any particular initial location.
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Figure 4: Training and evaluation environments with DRL agent marked in red at a randomized

initial location. (a) First training environment. (b) Second training environment. (c) Evaluation
environment.

To further evaluate the effectiveness of the DRL architecture for intelligent application specific
exploration, a realistic 3D 20 m x 20 m outdoor environment with tree and boulder objects, illustrated

in FIGURE 5, is utilized to train and evaluate the best algorithm determined from analyses of prior
results.

Figure 5: Outdoor environment with tree and boulder objects.

This environment includes shaded regions beneath trees and boulders unobservable to aerial surveil-

lance, hence the shaped reward in Equation 13 is utilized to train the DRL agent to specifically
explore shaded regions inaccessible to UAVs.
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4.2 Exploration Quality and Efficiency Quantification

The post-training trajectories learned by the agent are evaluated for exploration quality and effi-
ciency by assigning an Exploration Quality Score (EQS) and Exploration Efficiency Score (EES)
to quantitatively compare the performance of each tested algorithm. The training and evaluation
environments are segmented as shown in FIGURE 6, for the first training environment. Each
environment is divided into 2 m? segments, and further segmented by circles of increasing radii
with radius 10n, wheren =1,2, 3, ...

First Environment

y (m)

0 10 20
X (m)

Figure 6: Occupancy grid map of first environment segmented in circles of increasing radii to score
exploration quality and efficiency.

The EQS for the generated trajectory is scored as follows,

EQS = Zhmax (ng,mex k) (14)
Here k is the number of 2 m? segments covered by the trajectory. The EQS is greater when the
trajectory covers a higher number of segments, and traverses further away from the AGV’s initial
position to regions encompassed by circles of larger radii. 2 m? segments were chosen since it is
reasonable for the AGV’s onboard sensors to collect viable data for down-stream applications within
this region.

The EES is scored as follows where d is the trajectory distance,

EES = % (15)

The EES is higher when the EQS is large, and the distance travelled is small. A higher EES indicates
better energy efficiency, and exploration performance.
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4.3 AGV Model

XTENTH-CAR [27], a proportionally scaled experimental vehicle platform, designed with similar
hardware and software architectures as the full-size X-CAR [28] connected autonomous vehicle,
was modeled and trained in simulation. The XTENTH-CAR AGV has a wheelbase of 0.32 m and
utilizes the Ackermann steering mechanism.

The AGV’s kinematics are computed using a bicycle model, portrayed in FIGURE 7, where the front
and rear wheels are represented by a single wheel located at the center of each axle. This model is
accurate for use at low speeds and offers a good balance between model accuracy and computation
cost [29] for evaluation of the DRL agent.

¥

>

Figure 7: Schematic of kinematic bicycle model.

The bicycle model is represented by the following equations,

x=vcos(y +pB) (16)

y =vsin(y + B) (17)

i = sin(B) (18)

B =tan™! (lfl_: I tan(é)) (19)

Here x and y are position coordinates of the AGV’s center of mass, i is the angle of the AGV’s
heading with respect to the inertial reference frame, 8 is the angle between the velocity vector of
the AGV’s center of mass and its longitudinal axis, /¢ and [, are distances from the center of mass
to the front and rear axles respectively, and velocity, v and steering angle, ¢ are control inputs.
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4.4 Training Conditions

A training episode is concluded when the agent encounters an obstacle or completes the maximum
number of steps permitted in a single episode. Subsequently, the agent is reset to a randomly
determined starting location to initiate the next episode.

The DRL agent is trained to a total of 10,000 episodes, each with a maximum of 1000 steps in
the first environment, and 20,000 episodes, each with a maximum of 2000 steps in the second,
to facilitate rapid iterative learning. The best algorithm is trained for 5000 episodes, each with a
maximum of 1000 steps in the 3D outdoor environment.

Hyperparameters that were modified with non-default values are listed in TABLE 1.

Table 1: Non-Default Hyperparameters

Hyperparameter Value
Discount Factor (y) 0.995
Actor Learn Rate 0.00005
Critic Learn Rate 0.0005
Target Smooth Factor 0.001
Mini Batch Size 128
Experience Buffer Length | 1,000,000

5. RESULTS AND DISCUSSION

This section presents DRL training results that include post-training exploration trajectories and
corresponding average return and steps achieved by the agent each episode iteration during the
training period, utilizing DDPG, TD3 and SAC algorithms.

5.1 Training Performance

An Intel 17 11700K CPU and GeForce RTX 3070 Ti GPU were used for training. TABLE 2,
summarizes the training times for each DRL algorithm in the evaluated environments.

SAC required the longest training time, followed by TD3 and DDPG which required the least. On
average, training in the second, more complex environment required 31% longer training time than
in the first, over twice the number of training episodes. DDPG required 28.5%, TD3 34.4% and
SAC 30.1% longer to train in the second environment.

In the first environment, TD3 required 44.4% longer to train than DDPG, and SAC 137.4% longer
than DDPG and 64.4% longer than TD3. In the second environment, TD3 required 51.1% longer
to train than DDPG, and SAC 140.4% longer than DDPG and 59.2% longer than TD3. On average,
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Table 2: Training Times

Agent Training Time (Hrs)
First Environment: DDPG 66.0
First Environment: TD3 95.3
First Environment: SAC 156.7
Second Environment: DDPG 84.8
Second Environment: TD3 128.1
Second Environment: SAC 203.9

TD3 required 47.8% longer training time than DDPG, and SAC 138.9% longer than DDPG and
61.8% longer training time than TD3.

Training times ranged from 2.75 days in the first environment for DDPG to 8.5 days in the sec-
ond environment for SAC. More optimal policies require longer training times to accommodate
increased episode steps in the first environment, and more training episodes in the second.

5.1.1 First environment

The order 50 moving average return and agent steps during training in the first environment are
illustrated in FIGURE 8 and FIGURE 9. The training results in the first environment are summarized
in TABLE 3.

Average Return in First Environment

500
g ki |
i A _ i T A ] ~ {t
2 300 JiTHTY 7V A
o {
on
£ 200
O
Z
100 :-?g:G
| ~SAC
O.
0 2000 4000 6000 8000 10000

Episode Iteration
Figure 8: Order 50 moving average return during training in the first environment.
DDPG converged first at 170 episodes with an average return of 318 and 865 average steps. TD3
converged last at 960 episodes with an average return of 435 and 1000 average steps, and SAC

converged at 390 episodes with an average return of 320 and the maximum 1000 average steps.
TD3 achieved the highest EQS, and SAC the highest EES.

DDPG learned the least optimal policy with the lowest average return, agent steps, EQS and EES.
TD3 achieves the highest return, and the maximum 1000 steps, however SAC achieves 1000 ex-
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Average Agent Steps in First Environment
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Figure 9: Order 50 moving average agent steps during training in the first environment.

Table 3: First Environment Training Results

Algorithm | Convergence | Average | Average | EQS | EES
Episode Return Steps

DDPG 170 318 865 81 1.82
TD3 960 435 1000 113 | 2.40
SAC 390 320 1000 91 | 2.63

ploration steps more consistently post training convergence. Unlike TD3 which solely maximizes
the long-term expected reward, SAC additionally maximizes the entropy of the policy to promote
exploration. Consequently, TD3 learns a policy with a higher return, but SAC learns the better
policy for agent exploration.

The trajectories in the first environment for each algorithm post training completion are illustrated
in FIGURE 10.

Post-Training Trajectory in First Environment
25|-DDPG

—TD3
20|-SAC

15 7

y (m)
|

10

0 10 20
X (m)

Figure 10: Trajectories in the first environment post training completion.
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Each algorithm achieved 1000 episode steps without collision. SAC covered the most ground, and
exhibited the most efficient exploratory behavior which will result in the greatest energy savings.
TD3 is next best, followed by DDPG which was the most inefficient, covering the same region
multiple times.

5.1.2 Second environment

The order 50 moving average return and agent steps during training in the second environment
are illustrated in FIGURE 11 and FIGURE 12. The training results in the second environment are
summarized in TABLE 4.

Training for 20,000 episodes was insufficient for the DRL algorithms to learn an optimal policy
in the second environment. At the end of the training period, DDPG achieved an average return
of 125 and 530 average steps, TD3 obtained an average return of 230 and 715 average steps, and
SAC converged to a local maximum at 10,620 episodes with an average return of 210 and 1050
average steps. Training was limited to 20,000 episodes to gauge performance in a reasonable time
frame, however, continued training over 75,000 to 100,000 episodes will enable the agents to learn
an optimal policy to traverse the more complex terrain over an indefinite number of exploration
steps.

Average Return in Second Environment
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Figure 11: Order 50 moving average return during training in the second environment.

Table 4: Second Environment Training Results

Algorithm | Average | Average | EQS | EES
Return Steps

DDPG 125 530 60 | 1.92
TD3 230 715 67 | 1.97
SAC 210 1050 110 | 2.24

Training DDPG, TD3 and SAC algorithms in the second environment for 20,000 episodes required
a total of 416.8 hours, as such, it is infeasible to evaluate the algorithms for 75,000+ episodes with
the existing setup. More powerful computer hardware is required. Similar to the training results

1213



https://www.oajaiml.com/ | June 2023 Shathushan Sivashangaran, et al.

Average Agent Steps in Second Environment
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Figure 12: Order 50 moving average agent steps during training in the second environment.
in the first environment, DDPG learned the least optimal policy achieving the lowest return, agent

steps, EQS and EES. TD3 achieved the highest return, however SAC learned a more optimal policy
achieving the highest EQS and EES.

The trajectories in the second environment for each algorithm post training completion are illustrated
in FIGURE 13.

Post-Training Trajectory in Second Environment

Figure 13: Trajectories in the second environment post training completion.

SAC achieved the best performance, learning a trajectory that covers the most distance. TD3 and
DDPG yield similar performance, with TD3 being a marginal improvement.

5.2 Trained Policy Evaluation

The six agents, DDPG, TD3 and SAC, trained in two different environments were evaluated in a
third unknown environment with no prior training or knowledge of environment characteristics, to
evaluate the extensibility of the ubiquitous DRL architecture for AGV exploration in information
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poor environments. FIGURE 14, portrays the trajectories for each agent in the third environment.
The evaluation results are summarized in TABLE 5.

Trained Policies Evaluated in Third Environment
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Figure 14: Trained DRL agents evaluated in the third environment.

Table 5: Third Environment Evaluation Results

Agent Steps | EQS | EES
DDPG Envl | 2151 | 252 | 2.36
TD3 Envl 1533 | 102 | 1.33
SAC Envl | 2971 | 197 | 1.95
DDPG Env2 | 2893 3 0.02
TD3 Env2 321 25 1.56
SACEnv2 | 2839 | 303 | 3.15

The SAC agent trained in the second, more complex environment demonstrated the best perfor-
mance, covering the most ground, efficiently with the highest EQS and EES. The DDPG agent
trained in the first environment performed second best, covering more ground than either TD3 agent.
DDPG trained in the second environment covered the second highest distance, but yielded the worst
exploratory behavior with the least EQS and EES, repeatedly traversing a circular trajectory in the
same vicinity. TD3 agents covered less ground, and exhibited less efficient exploratory behavior
than either SAC agent. DDPG trained in the first environment performed better than that trained
in the second, as the characteristics of the evaluated environment are more similar to the first than
the second. The SAC agents are most robust to differences in environment characteristics, and
performed better when trained in the more complex environment. Both SAC agents performed
well, with the agent trained in the simple first environment achieving the third highest EQS and
EES.

The reward function weights and network hyperparameters can be further engineered for this appli-

cation, and the agent trained over a longer period with more episode steps each episode iteration to
learn an improved policy that explores the surrounding environment indefinitely.
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5.3 Shaped Reward Evaluation

SAC was utilized to learn a policy in a realistic 3D environment using the shaped reward in Equation
13 designed for AGV exploration in shaded regions unobservable to UAVs. The order 50 moving
average return during training is illustrated in FIGURE 15. A post-training trajectory from a ran-
domized initial position is illustrated in FIGURE 16.
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Figure 15: Order 50 moving average return during training in the outdoor environment.
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Figure 16: Trajectory in the outdoor environment post training completion.

The average return increased to 3642 at the end of the training period, yielding a policy that suc-
cessfully promoted exploration in shaded regions beneath trees.
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Bridging the simulation to real-world gap to transfer policies learned in simulation to real-world
robotic systems is a current area of active research. The large number of episodes required to
sufficiently train the agent renders simulation training an essential component for DRL in robotics
applications to minimize cost and possible physical damage caused by collisions during training.
Substantial computation cost is required for training, however, post-training implementation of DRL
agents is significantly less expensive, which makes DRL a powerful tool for real-time AGV motion
planning and control in environments without a-priori maps.

In future work, AutoVRL will be utilized to learn policies to transfer to a physical XTENTH-CAR.

6. CONCLUSIONS

This paper presented an ubiquitous DRL architecture for intelligent AGV exploration without a-
priori maps. Three actor-critic DRL algorithms, DDPG, TD3 and SAC, were trained in two envi-
ronments of varying complexity, and further evaluated in a third with no prior knowledge of map
characteristics. Simulation results demonstrate the effectiveness of the proposed DRL architecture,
reward function and training conditions for quick, efficient and collision-free AGV navigation. SAC
achieved the best performance, yielding trajectories that cover the highest distance, and demon-
strated the most efficient exploratory behavior. Learning requires substantial computation cost,
requiring up to 8.5 days for SAC in the second, complex environment using an Intel i7 11700K CPU
and GeForce RTX 3070 Ti GPU. Improved policies with higher post-training episode steps require
greater training times. Despite the high training cost, post-training implementation of DRL agents
is significantly less expensive, which makes DRL a powerful tool for real-time AGV exploration
in information poor, dynamically altering environments. Reward shaping renders the proposed
DRL framework a versatile tool for a multitude of AGV applications. SAC was trained using a
reward shaped for AGV exploration in regions inaccessible to aerial surveillance in a realistic out-
door environment, yielding a trajectory that specifically explored shaded regions underneath trees,
demonstrating the effectiveness of the proposed DRL framework. In future work, the simulation to
real-world gap will be bridged to transfer policies learned in simulation to the physical AGV using
AutoVRL, a high fidelity DRL simulator developed using open-source tools.
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