
Advances in Artificial Intelligence and Machine Learning; Research 4 (1) 2052-2076 Received 20-01-2024; Accepted 13-03-2024; Published 20-03-2024

Search and Retrieval in Semantic-Structural Representations of Novel
Malware

John Musgrave jmusgrave@wooster.edu
Computer Science Department
Mathematical and Computational Sciences
The College of Wooster
Wooster, OH, USA

Alina Campan campana1@nku.edu
Department of Computer Science
College of Informatics
Northern Kentucky University
Highland Heights, KY, USA

Temesguen Messay-Kebede temesgen.kebede.1@us.af.mil
Air Force Research Lab
Wright-Patterson Air Force Base
Dayton, OH, USA

David Kapp david.kapp@us.af.mil
Air Force Research Lab
Wright-Patterson Air Force Base
Dayton, OH, USA

Boyang Wang boyang.wang@uc.edu
Department of Computer Science
College of Engineering and Applied Science
University of Cincinnati
Cincinnati, OH, USA

Corresponding Author: John Musgrave

Copyright © 2024 John Musgrave, et al. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract
In this study, we present a novel representation for binary programs which captures semantic
similarity and structural properties. This representation enables the search and retrieval of
binary executable programs based on their similarity of behavioral properties. The proposed
representation is composed in a bottom-up approach: we begin by extracting data dependency
graphs (DDG), which are representative of both program structure and operational semantics.
We then encode each program as a set of graph hashes representing isomorphic uniqueness,
a method we have labeled DDG Fingerprinting. We present experimental results of search
using k-Nearest Neighbors in a metric space constructed from a set of binary executables.
Searches in the dataset are based on the operational semantics of specific malware examples.

2052
Citation: John Musgrave, et al. Search and Retrieval in Semantic-Structural Representations of Novel Malware. Advances in Artificial
Intelligence and Machine Learning. 2024;4(1):117.



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

By quantifying behavioral similarity we show that we can recognize patterns of operation
in novel malware with functionality not previously identified. We show in addition that the
associated metric space allows an adjustable level of resolution. Resolution of the features
may be decreased for breadth of search and retrieval, or as the search space is reduced, the
resolutionmay be increased for accuracy and fine-grained analysis of malware behavior. This
allows for explainability in the interpretation of fine-grained analysis.

Keywords: Malware analysis, Static analysis, Semantic analysis, k Nearest Neighbors,
Hamming Space.

1. INTRODUCTION

In this section we briefly reviewwork related to malware analysis and machine learning, and discuss
graph features used in program representation.

1.1 Background and Related Work

Machine learning techniques have been applied in many contexts to accurately classify benign and
malicious programs based on various features. Various classification methods have been used,
such as deep neural networks and support vector machines. These methods of classification are
trained on labeled datasets. An ongoing goal and difficulty in the application of machine learning
to malware detection has been to accurately represent the semantic properties of programs. There
are several existing approaches to analyze a program based on its behavior, including static and
dynamic analysis, or execution traces. Useful features for classification can be extracted at multiple
points in the architectural hierarchy. Some of these features are assembly instructions; n-gram
sequences of instructions and system calls, and program metadata; patterns of bytecode or hex
representations; as well as graphs, n-grams, and sequences of system API calls. Among the most
common representations are term frequency (tf-idf) features, and data flow of functions in high
level languages. However, accurate classification ofmalicious programs based on their behavior and
operational semantics presents several obstacles. Classification is highly dependent on features used
in training and increasing resolution beyond class labels poses a challenge. An in depth discussion
of feature resolution increase is presented in the Results section (section 3.2) [1–9].

Since malware attempts to disguise its operation, behavior may overlap between classes, and pro-
grams of different classes may have highly similar functionality. Obfuscation of behavior presents a
challenge in using behavior to distinguish between classes, and increases in resolution are required
to provide more interpretable results. The use of tf-idf features present challenges to increasing
feature resolution.

Several studies have focused on control flow graph representations of programs and their use in
classification. A number of studies explored the use of static features of file metadata. Decision trees
for the classification of Windows PE files have been effective for classification. Subsequent studies
have used ensemble methods, random forests, and support vector machines, with features extracted
from file headers in Trojan malware. In previous studies we have explored cluster analysis and

2053



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

latent semantic analysis of malicious binaries using term frequency representations. In a previous
study we have performed a quantitative analysis of program networks [10–19].

Hashing of features has been performed in several studies applying machine learning to malware
analysis. The focus of the hashing is often to capture the semantics of a function in a high level
language such as C or Java. Jang et al. successfully used a hash function on features of binary
n-gram sequences to represent malicious programs. These were compared for similarity by their
Jaccard index. The focus of their work was an approach from unsupervised learning, and an anal-
ysis of the clusters of the hashes obtained. They used a co-clustering approach to demonstrate
feature correlation, and also implemented 𝑘-Nearest Neighbors classification, with precision and
recall above 90%. Their features focused primarily on binary strings, but can be extended by the
development of a custom hashing function. Liang et al. applied partial order preserving hashing via
Gödel hashes to obtain an increase in algorithm performance on existing benchmarks for program
flow analysis [20, 21].

Several studies have focused on function abstraction semantics through decompilation. LeDoux et
al. represented a program as a graph of function abstractions obtained from reverse engineering
and used semantic hashing as a measurement of similarity. However, this study did not take a
bottom up approach, and basic block features were specifically not considered. There may be many
equivalent programs for a given malware binary, and whether semantic function abstractions in a
high level language are correlated to lower level binary representations is an open question. In
a similar manner, Alrabaee et al. have used a tf-idf representation with Hidden Markov Models
and graph kernels to obtain a graph of semantic function abstractions for a program. This was
accomplished by constructing a Bayesian network for each of the features collected [22, 23].

Methods of constructing feature vectors as fingerprinting have been explored previously in other
domains such as image and video copy detection [24–26].

More recently Large LanguageModels have demonstrated a significant step forward in representing
executable programs’ semantics. However, the ability of deep learning models to capture program
semantics is not matched by increased explainability of the obtained models. Our primary focus in
the current work is the problem of gaining greater increases in accuracy and insight into program
semantics [27].

1.2 Motivation

In an adversarial environment, malicious programs may be encountered which have not been seen
previously and which contain vulnerabilities that are unknown. The problem of classifying oper-
ational semantics of previously unseen malware with unknown vulnerabilities is an active area of
research.

A classifier’s ability to generalize over unseen data is critical for its successful application to novel
malware identification. This requires the ability to generalize to abstractions above syntax, to
identify patterns and their underlying generative processes, but also a fine grained resolution of
interpretable features. Features representing operational semantics are a necessary step in the clas-
sification process of zero-day vulnerabilities.

2054



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

In this study we intend to show that search and retrieval of programs based on semantics can
be successfully performed on unseen malware samples without prior training. We demonstrate
a method of representing program operational semantics through the construction of features. By
representing a program via semantic features, classification can be focused on operational semantics
with increased ability to interpret results. By using these features, specific characteristics of patterns
are able to be identified. Programs are able to be compared in relative terms of their operation, and
questions of functional class overlap between samples are able to be answered.

We intend to demonstrate that graphs of data dependencies between operands are correlated to both
program structure and operational semantics. This representation can be used as a basis for further
classification. We have called this method DDG Fingerprinting. The construction of a metric space
for this representation allows for search and the evaluation of similarity between programs at a fine
grained level. The resolution of the search space is able to be adjusted, and refinement of the search
based on specificity leads to more accurate results. Comparison across platform architectures is
possible to perform with our approach, although it leads to an increase in the search space and
a decrease in resolution. We intend to pursue this in future studies, but include it briefly in this
study as a demonstration of increased robustness of the proposed feature representation. Finally,
the proposed representation produced by means of DDG Fingerprinting is more explainable than
existing approaches and can be easily interpreted by a data analyst.

An explainable approach to program semantics, which we demonstrate through search, does not
exist presently in previous studies. Adversarial environments present a challenge to the verifica-
tion of program semantics, since formal specifications do not exist. We demonstrate a method to
represent program semantics which can be used in an adversarial environment. An explainable
method of search based on program operational semantics has not previously been performed. This
representation enables searching based on program semantics while also providing an increase in
explainability and resolution.

1.3 Outline

Section 2 is a description of the method of data collection, feature construction, the construction
of the metric space, and search procedure. Section 3 presents the experimental results. Section 4
contains a discussion of results and conclusions. Higher resolution images of the metric space are
presented in the Appendix.

2. METHODOLOGY

The following section is a description of the data collection process and methodology followed for
experiments.

2055



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

2.1 Data Collection

We begin by collecting a dataset of benign samples. Each benign sample is deconstructed into its
functional components. From this set of functional components we build a library of examples of op-
erational semantic behavior. Benign program binaries for Windows were taken from the 𝑆𝑦𝑠𝑡𝑒𝑚32
directory. This system directory contains benign programs that perform standard operating system
functions on the Windows platform. For the library of benign functionality we use a set of 500
programs taken from the Windows system directories.

Malicious samples were taken from the public malware repository 𝑡ℎ𝑒𝑍𝑜𝑜 for Windows and Linux.
The malicious class exemplars we have chosen are the 𝑊𝑖𝑛32.𝐴𝑃𝑇28.𝑆𝑒𝑘𝑜𝑖𝑎𝑅𝑜𝑜𝑡𝑘𝑖𝑡 and the
𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014 Trojan malware. We briefly include a cross-platform example for com-
parison of similarity between platforms, and these samples were taken from the /𝑢𝑠𝑟/𝑏𝑖𝑛 directory
on Linux for benign samples [28].

We have performed our analysis on artifacts of live malware binaries. We selected specific class
exemplars for malicious programs from domain knowledge, and evaluated these samples in relative
terms to a set of known benign functionality.

While elements in the dataset are labeled as malicious and benign, this class label represents the
binary as a whole, and not specific functionality. Determining which functional components are
present in a given binary is a critical question, as obfuscation of functionality is the primary goal of
a malicious actor.

2.1.1 Reverse engineering

Given a binary artifact, we perform reverse engineering on the binary to obtain its x86/64 assembly
representation. This was done with the GNU 𝑜𝑏 𝑗𝑑𝑢𝑚𝑝 utility. The result of this step is a single
document containing the equivalent assembly representation of the program [29, 30].

2.2 DDG Fingerprinting

In this section we present a novel representation for features of malicious programs. This represen-
tation is based on hashes of data dependency graphs, which are directly tied to both the structure
and operational semantics of a program.

2.2.1 Segmentation

We have segmented the program document as a whole into basic block segments. This allows us
to increase the feature resolution to be more fine grained, specifically at the level of basic block
resolution rather than the level of the program as a whole. Each segment is a basic block of
contiguous instructions that are separated by a jump instruction ( 𝑗𝑚𝑝), or other control transition
instruction. We split the document into segments based on these jump instructions [18].

2056



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

mov ecx , rbp − 44
mov eax , ecx
and eax , 400
or eax , 140
or ecx , 1
cmp r i p + 170 , 0
cmovne ecx , eax
mov rbp − 44 , ecx
mov r i p + 180 , 0
jmp 0x100000000

𝑎1 𝑎2

𝑎3 𝑎4

𝐴𝑑𝑑𝑔 = {𝑎𝑖 | 𝑎𝑖 ∈ 𝐴𝑜𝑝𝑒𝑟𝑎𝑛𝑑}

Figure 1: A single basic block of assembly instructions and a corresponding directed graph
representing data dependencies. The data dependency graph shown is constructed
from dependencies between data movement instructions. Nodes in the graph represent
data operands. An instruction that moves data between two operands creates a data
dependency. We represent this relationship by adding an edge between two operands.
Four data operands are present in the basic block, two register direct addresses in 𝑒𝑐𝑥 and
𝑒𝑎𝑥, and two register offset addresses in 𝑟𝑏𝑝 and 𝑟𝑖𝑝. The 𝑒𝑐𝑥 register has the highest
number of dependencies as well as the highest degree in the graph, with three edges from
𝑒𝑎𝑥, 𝑟𝑏𝑝 and 𝑟𝑖𝑝.

2.2.2 Data dependency graph extraction

Any operand using the result of a previous instruction creates a data dependency. We represent
these data dependency relationships between the operands within a program segment in the form
of an undirected graph corresponding to the data-dependency graph (DDG). The graph’s nodes are
operands from data movement operations in the segment, and an edge is placed between nodes rep-
resenting the two operands in a 𝑚𝑜𝑣 instruction. FIGURE 1 shows a code block and its dependency
graph.

In comparison to 𝑡 𝑓 −𝑖𝑑𝑓 representations of programs, where a single term (𝑚𝑜𝑣) captures amajority
of variance in the term frequency distribution, we capture additional information for the analysis
of relationships between operands in 𝑚𝑜𝑣 instructions. A more complete representation of the
term distribution can be performed by repeating this process to construct dependency graphs for

2057



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Figure 2: Feature extraction process for 𝐷𝐷𝐺 𝐹𝑖𝑛𝑔𝑒𝑟 𝑝𝑟𝑖𝑛𝑡𝑖𝑛𝑔. Data dependency graphs represent
patterns of data movement. The Weisfeiler-Lehman graph hashing algorithm is used to
compare graphs for isomorphism, which are collected into a set, one per program.

every term. Further, we have represented dependencies using undirected graphs for simplicity. An
additional resolution increase could be obtained by using directed graphs for each DDG graph.

2.2.3 Graph hashing

Each data dependency graph was subsequently hashed for its isomorphic uniqueness using the
Weisfeiler-Lehman graph hashing algorithm. This method yields a hash value which represents
a single graph, such that two isomorphic graphs will correspond by having the same hash value.
We use the 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑋 library’s implementation of the Weisfeiler-Lehman graph hashing algorithm
for undirected graphs. Each basic block segment has a resulting hash which corresponds to its data
dependency graph. Since the program has been segmented into basic block segments and a data
dependency graph has been extracted for each basic block, we can construct a set of hashes for each
program binary sample in our dataset as shown in FIGURE 3 [31, 32].

2058



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

P1 = {0 : ’ d065c6962d38654c57e4ba3e3cf7e54c ’ ,
1 : ’60 e7bbbe5c520d9011c0e21333912de5 ’ ,
2 : ’45 a5cb23f4ecba58dcec1e04f92390a7 ’ ,
. . .
233 : ’ f8bdeba55cbbc00a8413f528b729527e ’ ,
234 : ’11 d4db31c81f5617e52dc0998de02846 ’}

Figure 3: A program represented as a set of hashes. The hashes collected represent a pattern of
isomorphically unique data dependency graphs.

A point critical to our hypothesis is that data dependency graphs can be used to represent operational
semantics. In our method we have hashed graphs for isomorphic uniqueness, and then analyzed
the set of patterns which are descriptive of structural properties. We claim that data movement
is representative of program operational semantics. We use data dependency graphs to represent
this structure. Segmentation of the program is required in order to extract the data dependency
graphs. Each program is therefore represented as a set of hashes, with each hash representing an
isomorphically unique graph. The set of hashes represents a program’s functionality as a collection
of isomorphically unique patterns of data dependency. This representation enables an increase in
explainability and feature resolution in an adversarial environment. Likewise, it allows us to answer
questions related to behavioral overlap between programs, and allows us to search a dataset of
examples. A more detailed view of the DDG Fingerprinting process is shown FIGURE 2.

We have represented each set (program) as a one-hot encoded vector. The dimensions of the vector
space correspond to individual unique hashes identified for blocks of the programs in our dataset,
and a vector’s components are 0 or 1 to signify the absence or presence of a block with that hash
code in the corresponding program [33].

Other hashing algorithms may also be considered, such as algorithms that produce semantically
similar hashes. The selection of the hashing algorithm in our work was focused on representing
graph isomorphism.

2.3 Hamming Space

Next, we construct a metric space for our features based on Hamming Codes. Each vector is
a program’s Hamming Code and the distance metric between vectors is the Hamming Distance.
The Hamming Code for a program is constructed by viewing the isomorphic hashes of the DDG
Fingerprint as categorical values. Each isomorphic hash value is assigned one dimension in the
vector representation. Next, each each vector component is either 0 or 1, to represent the absence
or presence in that program of a block segment with that isomorphic signature.

Formally, let 𝐹 = ℎ1, ℎ2, ..., ℎ𝑚 be the set of all hash values of all blocks present in the library of
program artifacts. An arbitrary ordering of elements is assumed during the construction of vectors.
The Hamming Code for a program P is the vector (𝑣1, 𝑣2, ..., 𝑣𝑚), where 𝑣𝑖, 𝑖 = 1..𝑚 is 1 if the

2059



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Figure 4: t-SNE projection of Hamming space for Windows malicious and benign samples

program P contains a block segment with an isomorphic signature ℎ𝑖, and 0 if the isomorphic
signature is not present.

To uniqueness of isomorphismwe used a hash table to determine the existence of a given hash value,
which can be accomplished by inserting keys for each hash value from a segment, and is repeated
for each segment in the program. This yields a set of unique hashes for each segment in the program.
The values within the vector are one-hot encoded to represent the existence of an isomorphic pattern
across all samples in the dataset.

The Hamming Distance is computed by computing the difference between two equal length strings
of the one-hot encoded vectors. To compute Hamming Distance across the entire Hamming Space,
the process was repeated for every isomorphic pattern in the library of examples. [33–35].

As every isomorphic pattern in the library of examples contributes a dimension to the Hamming
Code, the dimensionality of the space is very high. Our collection of examples has over 500
samples across multiple platform architectures, and the complete space has over 40k unique patterns
of data dependency. Although the dimensionality is initially very large, the feature resolution
can be adjusted once the specific characteristics of the search have been refined, which reduces
the dimensionality to several hundred dimensions between a set of programs. We also use non-
parametric methods for search, which are not as sensitive to high dimensional data, and are described
in the next sub-section.

2.4 k-Nearest Neighbors

By creating a library of vectors with their Hamming Distances and composing a metric space, we
can measure the similarity between vectors in terms of the distance metric. Vectors in our Hamming

2060



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

space with low distance correspond to semantically similar programs, due to: 1. DDG graphs reflect
operationally semantically similar blocks; 2. the graph hashing process identifies and preserves
DDGs similarity through isomorphism.

Therefore, when presented with a new program of an unknown class we extract the program’s DDG
Fingerprint, calculate the Hamming Code vector, and then query the set of examples. This can be
done quickly and accurately by using k-Nearest Neighbors (k-NN). Since the distance metric in
the space is Hamming Distance, we can retrieve the most semantically similar examples from the
library of known programs for a new artifact with an unknown class. We present results for both the
construction of the metric space using the Hamming Distance, and the k-NN search in the metric
space in the following section [36, 37].

3. EXPERIMENTAL RESULTS

3.1 Quantifying Overlap of Functionality

Our model makes it possible to answer a specific question: what is the degree of similarity that
an unseen program has to an existing and previously seen program? Let us consider a malicious
sample from the dataset, one file from the 𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014 Trojan malware binary.

To measure programs in terms of dissimilarity, a naive approach would compare across different
operating systems, and so we can compare this malware sample to the GNU/Linux 𝑙𝑠 program. It
is likely that 𝑙𝑠 will primarily read information from the filesystem. We expect a comparison of
Trojan malware and the 𝑙𝑠 program samples to not share many functional elements. We are able
to quantify similarity of the operational semantics and perform further analysis, and this is shown
in FIGURE 6. FIGURE 3.1 shows the relative comparison between program representations, and
that the similarity may be represented in terms relative to each sample. The total number of data
dependency graphs collected is 234 for 𝑙𝑠 and 622 for 𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014 sample 1. The
set difference between the two sets will give us the degree to which the two programs are unique
and differ from each other. The number of data dependency graphs that are present in 𝑙𝑠 that are not
present in the 𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014 sample is 121. The 𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014 sample
set difference 𝑙𝑠 has 509 unique data dependency graphs.

Another open question is what is the degree of functional overlap. We can measure the common
functional patterns of data dependency between the two programswith the set intersection operation:

𝐴 ∩ 𝐵

The degree of overlap between two sets can be determined by the Jaccard coefficient, which is the
ratio of cardinalities of the set intersection and union [38, 39].

|𝐴 ∩ 𝐵| / |𝐴 ∪ 𝐵|

In order to calculate the Jaccard coefficient, we calculate the set intersection and union for our
example. The intersection of 𝑙𝑠 and 𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014 is 113. We then calculate the union,
which is 743. The Jaccard coefficient is then 113/743, or 0.152 [35].

2061



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Figure 5: The overlap between malicious and benign samples is given by the Jaccard coefficient.
This means that a median value of 20% of the structure of data movement within a
program is shared between malicious and benign samples. However, in the median
example, 80% of the functionality of malware is not shared with benign samples, and
50% of benign functionality is not shared in the malicious sample, or described by the set
intersection.

Binary Name DDG Count Set Difference Jaccard
1 𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014, sample 1 622 509 .152
2 𝑙𝑠 234 121 .152

Figure 6: Naive approach: a comparison between the Zeus Trojan and the GNU/Linux 𝑙𝑠 program.

The degree of functional overlap is highly dependent on the selection of the samples in the library
used to compose the Hamming space. However, one of the strengths of our program representation
is that it offers the ability to adjust the level of feature resolution. Without increased resolution,
it is difficult to interpret these results. For instance, we can repeat this process for the malicious
Linux binary 𝐿𝑖𝑛𝑢𝑥.𝑊𝑖𝑟𝑒𝑛𝑒𝑡 and benign samples collected from the /𝑢𝑠𝑟/𝑏𝑖𝑛 directory, which
contains Unix system resources. For a comparison, we compare this malicious sample to a random
set of benign Linux programs. These samples share at most a Jaccard coefficient of 0.270 with
the malware. The minimum amount of overlap for these samples is 0.064, with a median of .204
Jaccard overlap. This means that the malicious binary typically shares 20% of its functionality with
benign programs, and that these programs are also 80% dissimilar from the malware. Without an
increase in feature resolution, it is challenging to know which properties are important to the class,
the class composition, the degree to which the classes overlap, or the patterns that differentiate the
class.

If we examine the benign Windows programs present in our dataset, then we can compare the
𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟 𝐹𝑒𝑏2014 sample to the larger class of known functionality in system utilities.
After deconstructing samples in the 𝑆𝑦𝑠𝑡𝑒𝑚32 directory to our benign dataset, we can then ask the
question what is the largest degree of overlap between the benign class examples and a specific
malware sample?

2062



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

There is one and only one sample in the composed dataset that has a Jaccard coefficient of 1 with
the Trojan malware. Based on the structure of data dependency we can discover that surprisingly
𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014 contains as a proper subset the system program 𝑐𝑠𝑟𝑠𝑠.𝑒𝑥𝑒. This utility
is the 𝐶𝑙𝑖𝑒𝑛𝑡/𝑆𝑒𝑟𝑣𝑒𝑟𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 for Windows. 𝑐𝑠𝑟𝑠𝑠.𝑒𝑥𝑒 is also used as an exploitation
mechanism for Trojan malware to corrupt a system. Identification of the method of exploitation
used by the Trojan malware may not definitive evidence to differentiate between classes. However
this behavior and functionality is a validation of the prediction, and has been discovered through
our method of search. The operational semantics of the malware have a degree of correlation
that was identified solely by the use of the feature representation. A fine grained analysis of the
functionality enables further inferences regarding the correlation of functionality with a larger class.
An unknown binary which includes benign code with known vulnerabilities as a proper subset can
be considered suspicious behavior, which could be used to disguise its functionality. A legitimate
user would likely have privileges to access this specific system utility based on their level of access.
Further exploration of the domain reveals known software vulnerabilities disclosed by CVE. This
relationship between the programs was discovered from the analysis of the structural properties of
their data dependency graphs, and by collecting hashes for each graph into sets [40, 41].

3.2 Results of k-Nearest Neighbors Search

Provided with an example program of an unknown class, a search in our metric space using k-NN
returns as a result the set of 𝑘 data points which are closest to this example based upon the specified
distance metric. These are the data points with the lowest Hamming Distance from an example
program. A low Hamming distance is a measurement of similarity and potential overlap between
data points and the selected example. Using this method we are able to answer questions related to
the similarity and overlap of operational functionality between programs. We are able to quantify
the similarity between programs within a given space from the distance metric, and measure the
degree to which programs are similar or different. This is useful in an adversarial environment when
new program binary artifacts are provided without class labels or specifications. The similarity of
functionality can be discovered without the presence of a formal specification for verification. In
an adversarial environment, a binary not previously seen with high similarity of functionality to a
malicious program can be immediately identified and acted upon by an analyst or automated security
policy. The metric space allows for comparison of similarity based on the distance metric, and this
is easily interpreted from the results of k-NN search. Further insights into specific datasets can be
obtained from the measurement of similarity, and these are easily interpreted and visualized

The examples in FIGURE 7, show a progressive increase in the resolution as the search is refined,
with the complete space shown in FIGURE 4. This figure shows a projection of a high dimensional
space using stochastic neighbor embedding (𝑡 − 𝑆𝑁𝐸). The search space and dimensionality of
search space is reduced as the resolution is increased progressively in each figure. Figures are pre-
sented in more detail in Appendix A in FIGURE 10-FIGURE14. This allows us to perform a more
fine grained comparison of similarity between data points, and provides increases in explainability
[42].

For the two malicious examples we have selected, we show the results of the k-NN search in
FIGURE 8 and FIGURE 9. We show the results for 𝑘 = 7. The names of programs with the highest
degree of similarity are listed alongwith the HammingDistance from the selectedmalware example.

2063



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Figure 7: Progressive increases in resolution of the Hamming Space using t-SNE projection. This
figure shows the 𝑘 neighbors identified in the high dimensional Hamming Space using
kNN. Images of the space are presented in increased resolution in Appendix A. Malicious
samples identified from search are highlighted in red.

This is useful to determine what functionality is present in the malicious sample. The functionality
of the malicious sample is defined in terms of the known benign program functionality [43].

3.3 Discussion

To our knowledge, data flow analysis has not been performed using features constructed in a bottom-
up approach. This allows for an increase in resolution. This process yields very high dimensional
vectors for a large search space, but the high dimensionality can be reduced by adjusting the feature
resolution. A typical weakness of high dimensional spaces is the warping that occurs from the
addition of higher dimensions. However, this is mitigated in the Hamming Space. An advantage to
using k-NN is that an unseen example can be determined to be similar or different to a collection
of existing examples that have been seen by the system. By creating a library of vectors with their
Hamming Distances we can measure the similarity between vectors in terms of similarity via the

2064



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Neighbor Hamming Dist. % Difference Program Name Description

1 91 0.21% subst.exe substitutes a virtual drive for a physical drive
2 91 0.21% dpapimig.exe DPAPI Key Migration Wizard
3 91 0.21% TapiUnattend.exe Telephony Unattend Action
4 91 0.21% wininit.exe Windows Start-Up Application
5 95 0.22% fc.exe DOS file compare utility
6 95 0.22% icsunattend.exe no description available
7 95 0.22% regedt32.exe Registry Editor Utility

Figure 8: k-Nearest Neighbors search results with k=7 for 𝑍𝑒𝑢𝑠𝐺𝑎𝑚𝑒𝑜𝑣𝑒𝑟_𝐹𝑒𝑏2014. This table
shows the indices for the 7 closest programs in a library of examples to an unseenmalware
example, along with the Hamming Distance from the malware to each neighbor. In order
to find more fine-grained differences the resolution level can be increased based on these
results, which are at the lowest level of resolution.

distance metric. The similarity being measured is representative of features of data dependency
graph isomorphism, and this is directly tied to both the structure and operational semantics of the
program. We can quickly and accurately query the set of examples for a new example and receive
the 𝑘 neighbors most associated with the vector based on the Hamming Distance. An advantage is
that a new example can be determined to be similar or different to a collection of existing examples
that have been seen by the system.

A disadvantage of this approach is that the Hamming vectors increase the dimensionality of the
dataset, yielding high dimensional data, and require reduction. A strength of this approach is that it is
computationally feasible, and that the similaritymetric is an accurate representation of the program’s
functionality. This allows for an increase in interpretability. One weakness of this approach is that
the Hamming Space must be recomputed based on the new data. When novel malware samples are
encountered with behavior not previously seen, the Hamming Codes must be re-calculated. The
cost of computation is the product of isomorphically unique hashes. But, this can be performed
offline based on a specific period of time. Online learning was not the primary focus, but we intend
to explore increases in efficiency and applications to real-time systems in future work.

A fundamental trade-off exists within our data between the level of resolution and the similarity.
Low resolution is advantageous in quickly searching a large breadth in the search space. Once the
search space has been narrowed at low-resolution and high dimensionality, a more fine-grained
approach can be taken. As examples are analyzed with lower resolution they appear more similar
and the distinguishing features are unclear. When the level of resolution is increased, differences
are able to be discovered. Representing data with an adjustable resolution is advantageous for
this reason. At high resolution levels, individual similarities and differences between samples can
be shown clearly. Decision boundaries between examples can be determined as the resolution is
increased. Quantitatively, the difference as measured by the percentage of DDG patterns that differ
between samples increases as the resolution increases and dimensionality decreases. We use Jaccard
coefficient to demonstrate the overlap between specific examples at high resolution levels.

In order to simulate an adversarial use case, a small set of unknown malicious binaries were se-
lected and compared to a large class of benign examples. We have focused on benign examples
of functionality for comparison, since obfuscation is a goal of an attacker. Additionally, since no

2065



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Neighbor H-Dist % Difference Program Name Description

1 338 0.78% AtBroker.exe Windows Assistive Technology Manager
2 393 0.91% wksprt.exe RemoteApp and Desktop Connection Runtime
3 393 0.91% wowreg32.exe SetupAPI 32-bit Surrogate
4 397 0.92% dllhost.exe COM DLL library Hosting Surrogate
5 406 0.94% appidcertstorecheck.exe AppID Certificate Store Verification Task
6 406 0.94% MRT-KB890830.exe Malicious Software Removal Tool
7 414 0.96% cleanmgr.exe Disk Space Cleanup Manager for Windows

Figure 9: k-Nearest Neighbors search results with k=7 for 𝑊𝑖𝑛32.𝐴𝑃𝑇28.𝑆𝑒𝑘𝑜𝑖𝑎𝑅𝑜𝑜𝑡𝑘𝑖𝑡. This
table shows the indices for the 7 closest programs in a library of examples to an unseen
malware example, with the Hamming Distance from the malware to each neighbor. In
order to find more fine-grained differences the resolution level can be increased based on
these results, which are at the lowest level of resolution. We highlight that the 𝐴𝑡𝐵𝑟𝑜𝑘𝑒𝑟
executable is commonly used to disguise the behavior of malware.

specification exists for verification prior to execution in an adversarial environment, the binary file
is the sole artifact available for analysis. While malicious programs at the level of binary files may
have class labels, this is the lowest level of resolution, and often not descriptive of fine-grained
program operation. We have shown that identification of malicious behavior and functionality on
a fine-grained level, even when obfuscated, is possible using our representation as discussed in
Section 3 and 3.1 of the Experimental Results and, FIGURE 8 and FIGURE9.

We divide our computation process into three stages for analysis. A pre-processing stage provides
decompilation, extraction of data dependency graphs, and assembling the hashes for the DDG
Fingerprint representation. Next, the complete Hamming Space must be computed by computing a
Hamming Code for each program. This Hamming Code provides a distance to each program in the
dataset. And finally, the search step is accomplished with k-Nearest Neighbors.

The pre-processing stage is ideal for offline processing in order to compose a library of examples.
The ideal use-case is that an unseen sample is provided to the system as a single binary. The class of
this novel binary is unknown, but we assume that it is provided in an adversarial environment. Since
the binary that has not previously been seen by the system, it has no specification or description of
behavior provided. Offline processing of previously seen binaries provides a reference for a library
of behaviors. Some assumptions of the scalability are that the number of binaries that are new to the
system will be much smaller than the library of example binaries. Given this constraint, the process
of decompilation and data dependency graph extraction can be completed for a single binary inmuch
less time than pre-processing for the complete dataset. This approach is scalable for performing a
comparison of a small number of binaries with a large number of previously seen examples. This
makes offline processing of known binaries ideal, and new samples are processed in a just-in-time
manner.

The algorithmic complexity of the pre-processing stage is performed in linear time 𝑂 (𝑛). While
there are many steps to be completed during pre-processing, this computation scales linearly with
the size of the binary in terms of the number of basic blocks and the size of the data dependency
graphs. Searching the examples composed for our dataset can be completed in constant time 𝑂 (𝑛),
where the complexity grows linearly in proportion to the number of malware samples provided as

2066



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

feature vectors. The scalability of the pre-processing and searching stages are some of the strengths
of our approach.

One limitation of the method is the algorithm to compute the Hamming Space is done in quadratic
time. However, this computation is only performed once per session on a data set with a fixed size.
This uses quadratic complexity 𝑂 (𝑛2) because each pattern of isomorphism must be compared to
each unique pattern of isomorphism across the dataset. The cost of computing the Hamming Space
is necessary when the system encounters an unseen binary, but this is not a high frequency event.
This computation has lower algorithmic complexity than other similar forms of comparison, such
as the enumeration of all possible subgraphs and comparing each subgraph for isomorphism, which
is a factorial operation 𝑂 (𝑛!). Graph hashes are inserted into hash table for uniqueness in the list
of hashes, and the retrieval of all keys in the table is an 𝑂 (𝑛) process. The algorithmic complexity
of the Weisfeiler-Lehman graph hashing algorithm is 𝑂 (𝑛), where the complexity grows linearly
in proportion to the number of multisets, and the number of elements in each multiset for a single
iteration of a graph [32].

Features using the 𝑡 𝑓 − 𝑖𝑑𝑓 representation for training classifiers on malware datasets are not able
to easily and accurately represent data movement. We have argued that a representation of data
movement can accurately capture program semantics. This was demonstrated through the prediction
of data present in malware used as a method of exploitation and vulnerability. Term frequency
representations do not capture the structural representation present in data dependency graphs. This
makes increases in resolution challenging. We have shown that our method is able to provide
increases and decreases in feature resolution, as seen in FIGURE 7.

The method described in section 2 could be easily implemented in security tools for a behavioral
description when one is not present. Search examples can be provided by an analyst in a fine or
coarse grained level of resolution for a relative comparison of similarity. This feature resolution
provides the ability for security tools to answer questions of class overlap. This is not possible
in existing methods without significant steps towards explainability. This method enables added
explainability for tools using classification results by providing a measurement of similarity. For
further insight a domain expert is required to validate the manner in which similarity between
specific samples can be further analyzed.

One limitation of the feature representation is that it is a high dimensional space. Machine learning
methods sensitive to high dimensional data would not be optimal. However, support vector ma-
chines and kernel methods would be ideally suited for working with high dimensional data, which
is a topic we intend to explore in future studies. Our method uses a Hamming Space with a high
number of dimensions, so unlike high dimensional Euclidean spaces, is not subject to the same
warping at high dimensions.

4. CONCLUSIONS

In this study we have proposed a novel feature representation for binary programs which is able to
capture semantic and functional aspects of programs. We have collected a dataset of malicious and
benign programs, and by segmenting them we extract graphs of data dependencies. We represented
the isomorphic uniqueness of these graphs by hashing using Weisfeiler-Lehman graph hashing.

2067



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Next, we collected data dependency hash values into a set of unique hashes for our artifact collection,
and we constructed a search space using Hamming codes and the the Hamming distance.

Using this new feature representation that we call DDG Fingerprinting, we are able to answer
questions of overlap between specific executable instances and sets of programs to potentially
analyze larger classes. We have performed search in the Hamming space with k-Nearest Neighbors.

This method is successful because data dependency is representative of operational semantics and
structural properties of the program. Additionally, features were constructed in a bottom up ap-
proach, from which we are able to make additional inferences. This increase in accuracy and feature
resolution allows programs to be compared in terms of their functionality, and this can be performed
across platforms. In future studies we intend to explore the implications of increased resolution in
semantic feature representations. Efficient search without prior training or deep learning represents
an increase in accuracy, resolution, and interpretability.

4.1 Future Work

In future studies we intend to explore the impact of this feature representation on classifier accuracy,
and to perform an analysis and comparison of classifiers using other graph features in comparison
with our representation.

4.1.1 Acknowledgments

This research was supported in part by Air Force Research Lab grant #FA8650 to the University of
Cincinnati.

References

[1] Souri A, Hosseini R. A State-Of-The-Art Survey of Malware Detection Approaches Using
Data Mining Techniques. Hum Centric Comput Inf Sci. 2018;8:3.

[2] Deldar F, Abadi M. Deep Learning for Zero-Day Malware Detection and Classification:a
Survey. ACM Comput Surv. 2023.

[3] Zhou Y, Liu S, Siow J, Du X, Liu Y. Devign: Effective Vulnerability Identification by
Learning Comprehensive Program Semantics via Graph Neural Networks. Adv Neural Inf
Process Syst. 2019;32

[4] Wang Y, Wang K, Gao F, Wang L. Learning Semantic Program Embeddings With Graph
Interval Neural Network. Proc ACM Program Lang. 2020;4(OOPSLA):1-27.

[5] Park E, Cavazos J, AlvarezMA. Using Graph-Based Program Characterization for Predictive
Modeling. In: Proceedings of the tenth international symposium on code generation and
optimization; 2012:196-206.

2068



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

[6] Rawashdeh O, Ralescu A, Kapp D, Kebede T. Single Property Feature Selection Applied to
Malware Detection. In: NAECON IEEE National Aerospace and Electronics Conference.
IEEE Publications; 2021:98-105.

[7] Kebede TM, Djaneye-Boundjou O, Narayanan BN, Ralescu A, Kapp D. Classification
of Malware Programs Using Autoencoders Based Deep Learning Architecture and Its
Application to the Microsoft Malware Classification Challenge (Big 2015) Dataset, in
2017IEEE National Aerospace and Electronics Conference (NAECON). IEEE Publications;
2017: 70-75.

[8] Djaneye-Boundjou O, Messay-Kebede T, Kapp D, Greer J, Ralescu A. Static Analysis
Through Topic Modeling and Its Application to Malware Programs Classification, in 2019
IEEE National Aerospace and Electronics Conference (NAECON). IEEE Publications;
2019:226-231.

[9] Chandrasekaran M, Ralescu A, Kapp D, Kebede TM. Context for api calls in malware vs
benign programs. In: International Conference on Modelling and Development of Intelligent
Systems. Springer; 2020. p. 222-34.

[10] Bruschi D, Martignoni L, Monga M. Detecting Self-Mutating Malware Using Controlflow
Graph Matching. In: International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer; 2006:129-143.

[11] Cesare S, Xiang Y. A Fast Flowgraph Based Classification System for Packed and
Polymorphic Malware on the Endhost, in 2010 24th Ieee International Conference on
Advanced Information Networking and Applications. IEEE Publications; 2010:721-728.

[12] Cesare S, Xiang Y, Zhou W. Control Flow-Based Malware Variantdetection. IEEE Trans
Depend Sec Comput. 2013;11:307-317.

[13] Cesare S, XiangY. Classification ofMalware Using Structured Control Flow. In: Proceedings
of the Eighth Australasian Symposium on Parallel and Distributed Computing-Volume 107;
2010:61-70.

[14] Shafiq MZ, Tabish SM, Mirza F, Farooq M. Pe-Miner: Mining Structural Information to
Detect Malicious Executables in Realtime. In: International Workshop on Recent Advances
in Intrusion Detection. Springer; 2009:121-141.

[15] Siddiqui M, Wang MC, Lee J. Detecting Trojans Using Data Mining Techniques. In:
International Multi Topic Conference. Springer; 2008:400-411.

[16] Witten IH, Frank E, Trigg LE, HallMA,HolmesG, CunninghamSJ.Weka: practical machine
learning tools and techniques with Java implementations. 1999.

[17] Musgrave J, Purdy C, Ralescu AL, Kapp D, Kebede T. Semantic Feature Discovery of Trojan
Malware Using Vector Space Kernels, in 2020 IEEE 63rd International. Midwest Symp
Circuits Syst (MWSCAS). 2020:494-499

[18] Musgrave J, Messay-Kebede T, Kapp D, Ralescu A. Latent Semantic Structure in Malicious
Programs. In: International Conference on Modelling and Development of Intelligent
Systems. Springer; 2022:234-246.

2069



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

[19] Musgrave J, Messay-Kebede T, Kapp D, Ralescu A. A Novel Feature Representation for
Malware Classification. 2022. ArXiv preprint: https://arxiv.org/pdf/2210.09580.pdf.

[20] Jang J, Brumley D, Venkataraman S. Bitshred: Feature Hashing Malware for Scalable Triage
and Semantic Analysis. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security; 2011:309-320.

[21] Liang S, Sun W, Might M. Fast Flow Analysis With Godel Hashes, in 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation. IEEE
Publications. 2014:225-234.

[22] LeDoux C, Lakhotia A, Miles C, Notani V, Pfeffer A, Discovering Shared Code to Aid
Malware Forensics, in 6th Usenix Workshop on Large-Scale Exploits and Emergent Threats
(LEET 13), 2013.

[23] Alrabaee S, Shirani P, Wang L, Debbabi M. Fossil: A Resilient and Efficient System for
Identifying Foss Functions in Malware Binaries. ACM Trans Privacy Sec. 2018;21:1-34.

[24] Oostveen J, Kalker T, Haitsma J. Feature extraction and a database strategy for video
fingerprinting. Recent advances in visual. Inf Syst: 5th International Conference, VISUAL
2002.. Taiwan: Hsin Chu, 2002 Proceedings; 2002; 5:117-128.

[25] Esmaeili MM, Fatourechi M, Ward RK. A Robust and Fast Video Copy Detection System
Using Content-Based Fingerprinting. IEEE Trans Inf Forensics Sec. 2010;6:213-226.

[26] Fatourechi M, Lv X, Esmaeili M, Wang Z, Ward R. Image and Video Copy Detection Using
Content-Based Fingerprinting. Multimedia image and video processing; 2017:459-486.

[27] Xu FF, Alon U, Neubig G, Hellendoorn VJ. A Systematic Evaluation of Large Language
Models of Code. In: Proceedings of the 6th ACM SIGPLAN international symposium on
machine programming; 2022:1-10.

[28] https://thezoo.morirt.com/

[29] http://ref.x86asm.net/HTML-Editions

[30] https://man7.org/linux/man-pages/man1/objdump.1.html

[31] Hagberg A, Swart P, Chult DS. Exploring Network Structure, Dynamics, and Function Using
NetworkX, Los Alamos National Lab. (LANL). Los Alamos, NM; 2008.

[32] Shervashidze N, Schweitzer P, Van Leeuwen EJ, Mehlhorn K, Borgwardt KM. Weisfeiler-
Lehman Graph Kernels. J Mach Learn Res. 2011;12.

[33] Brownlee J. Why One-Hot Encode Data in Machine Learning, Machine Learning Mastery;
2017:1-46.

[34] Hamming RW. Error Detecting and Error Correcting Codes. Bell Syst Tech J. 1950;29:147-
160.

[35] Tan PN, Steinbach M, Kumar V. Introduction to Data Mining. India: Pearson Education.
2016.

2070



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

[36] Cover T, Hart P. Nearest Neighbor Pattern Classification. IEEE Trans Inf Theor. 1967;13:21-
27.

[37] Hart PE, Stork DG, Duda RO. Pattern classification. Hoboken: Wiley. 2000.

[38] Suppes P. Axiomatic Set Theory. Courier Corporation; 1972.

[39] Leskovec J, Rajaraman A, Ullman JD. Mining of Massive Data Sets. Cambridge university
press; 2020.

[40] https://nvd.nist.gov/vuln/detail/CVE-2022-22047

[41] https://www.secpod.com/blog/windows-csrsselevation-of-privilege-vulnerability-cve-2022-
22047/

[42] Hinton GE, Roweis S. Stochastic Neighbor Embedding. Adv Neural Inf Process Syst.
2002;15.

[43] Symbolic math, Toolbox et al. Matlab. Mathworks Incorp. 1993.

2071





https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Appendix A. Appendix

2073



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Figure 10: Resolution increase 1. t-SNE projection of Hamming Space for features of DDG
Fingerprints for programs. Malicious samples identified from search are highlighted
in red.

Figure 11: Resolution increase 2. t-SNE projection of Hamming Space for features of DDG
Fingerprints for programs. Malicious samples identified from search are highlighted
in red.

2074



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Figure 12: Resolution increase 3. t-SNE projection of Hamming Space for features of DDG
Fingerprints for programs. Malicious samples identified from search are highlighted
in red.

Figure 13: Resolution increase 4. t-SNE projection of Hamming Space for features of DDG
Fingerprints for programs. Malicious samples identified from search are highlighted
in red.

2075



https://www.oajaiml.com/ | March 2024 John Musgrave, et al.

Figure 14: Resolution increase 5. t-SNE projection of Hamming Space for features of DDG
Fingerprints for programs. Malicious samples identified from search are highlighted
in red.

2076


	INTRODUCTION
	Background and Related Work
	Motivation
	Outline

	METHODOLOGY
	Data Collection
	Reverse engineering

	DDG Fingerprinting
	Segmentation
	Data dependency graph extraction
	Graph hashing

	Hamming Space
	k-Nearest Neighbors

	EXPERIMENTAL RESULTS
	Quantifying Overlap of Functionality
	Results of k-Nearest Neighbors Search
	Discussion

	CONCLUSIONS
	Future Work
	Acknowledgments


	Appendix

