
Advances in Artificial Intelligence and Machine Learning; Research 3 (3) 1259-1273 Received 26-5-2023; Accepted 25-7-2023; Published 02-8-2023

Sentiment Analysis: A Systematic Case Study with Yelp Scores

Wenping Wang wenpingw@alumni.cmu.edu
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Jin Han
Amazon Inc, 410 Terry
Ave N, Seattle 98109, WA, USA

Chen Liang
Google Inc, 1600
Amphitheatre Parkway, USA

Tong Chen
Google Inc, 1600
Amphitheatre Parkway, USA

Chengze Fan
Meta Platforms,
1 Hacker Way, USA

Jingxian huang
Meta Platforms,
1 Hacker Way, USA

Corresponding Author:Wenping Wang

Copyright © 2023 Wenping Wang, et al. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract
Sentiment Analysis is a classic and well-defined task for machine learning and natural lan-
guage processing. Over the years, we have seen much progress in machine learning as a
whole and in natural language processing. Given that in commercial applications, we are
heavily constrained by cost, throughput and latency, we wonder how better accuracy can be
brought about by using complex, high-latency models, than easy, low-latency models that
can be deployed in embedded devices and in high throughput scenarios. In this article, we
focus on the Yelp Review dataset as a test bench. By predicting Yelp overall ratings based
on user review text and other related features, we experiment with various existing machine
learning algorithms, from easy logistic regression to BERT embedding-based deep models.
We also use ensemble to combine the aforementioned models into a single predictor, seeing
if a combination of these models will achieve better performance. Among all the models,
we can see that a simple TF-IDF baseline with MLP ensemble can reach an accuracy higher
than pure MLP models, proving that in a production scenario, we may be able to emphasize

1259
Citation: Wenping Wang, et al. Sentiment Analysis: A Systematic Case Study with Yelp Scores. Advances in Artificial Intelligence and
Machine Learning. 2023;3(3):74.

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

throughput and latency by using small models, instead of relying on heavy, multi-layerMLPs,
with proper vectorizer and data processing.

Keywords: Sentiment analysis, Yelp dataset, Transformer embedding, Ensemble

1. INTRODUCTION

Sentiment analysis has long been a well-defined natural language processing subtask in machine
learning. It is easy for humans to tell that whether a piece of text excerpt, for example, a review
towards services, is positive or negative, and even give a good estimate of the rating based on what
they have just read. Meanwhile, machine learning models may not easily draw such a conclusion.
Thus, given how comprehending the sentiment behind text is a challenging task for machines, we
think it would be interesting and meaningful to learn a predictor of ratings based on text alone.

Yelp has been one of the most popular and influential sites for people to rate and review businesses,
presenting us with an abundant corpus for sentimental analysis. Besides rating businesses on a scale
of 1 to 5 stars, Yelp also allow users to write text reviews that could relatively explain the reasons
behind the given ratings. Thus, we have a very high quality dataset for sentiment analysis.

In this article, our contributions can be summarized into the following:

• investigate what makes a review positive or negative based on the review text and a small set
of attributes;

• experiment with different machine learning algorithms and tokenizers, in the order of param-
eter size from simple to complex, and proves that Logistic regression models can be as same
powerful as MLPs and is much better than several non-regression models;

• investigate how and to what extent an ensemble models and feature engineering can boost
inference performance.

2. BACKGROUND AND RELATEDWORKS

Sentiment analysis has been widely explored in previous works. [1] did a very thorough review
of the works, especially statistical approaches, while the more recent one [2] primarily focuses on
deep neural networks. In general similar statistical approaches are mature and has been applied in
various tasks [3–5].

[6] are among the first ones to conduct classification on sentiment usingmachine learning techniques.
They found that, unlike traditional tasks such as classification on document topics, sentiment clas-
sification is especially difficult for machines to outperform human baselines. A piece of task could
contain no obviously negative words, but has a negative connotation. Thus, sentiment analysis
actually requires deeper understanding of the underlying text.

1260

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

More recent work relies more on extensive feature engineering and more innovative models. In
[7], they propose to use a combination of feature generation method to find the best prediction
result. They use Part-of-Speech to analyze the semantic structure of English sentences and use it to
select out more representative and meaning words. In [8] the authors take advantage of deep neural
networks and propose an innovative user-word composition vector model. This model incorporates
user-specific information into the meaning of a certain word. Further, [9] utilized pre-trained lan-
guage models and achieved a very high accuracy.

The Yelp dataset has been a very popular data source for various NLP tasks, specifically for rating
prediction, [10] experiments several feature extraction approaches, along with statistic predictors
including regression-based ones and SVM-based approaches, and shares some insightful observa-
tions. However, the authors didn’t utilize other state-of-the-art works such as BERT, and did not
tried out other interesting approaches such as ensemble methods that combines models together to
further optimize the prediction accuracy.

As already been proven in other NLP tasks [11], LLM is also very powerful in sentiment analysis. In
[12], the authors evaluates the performance of LLM on 13 subtasks, showing that LLM outperform
smaller models, especially when the training data is limited. However, LLMs still suffer from the
expense of computation resources and latency due to model sizes.

3. DATASET

We collect data from Yelp Open Dataset from Yelp official account. The dataset contains 132k
entries in total. Sincewe are doing supervised learning, we split up the Yelp_train dataset (8 : 1 : 1
split) for training, validation and testing.

The features in the Yelp dataset can be divided into 5 major categories:

• Review Text, which is the text content input from users;

• Descriptive features of review text, namely ”nchar”, ”nword”, ”sentiment score”, ”useful”,
”funny”, and ”cool”. These 5 features describe the review text, indicating the number of
characters, number of words, the sentiment score, and the number of people who vote the
review as useful, funny and cool;

• Uni-gram features, namely”gem”,”incredible”,”perfection”,”phenomenal”,”divine”, ”die”,”highly”,”superb”,”heaven”,”amazing”,”favorites”,”sourced”,”perfect”,
”knowledgeable”,”gross”,”poorly”,”response”,”flavorless”,”waste”,”terrible”,”tasteless”,
”rude”,”awful”,”inedible”,”horrible”,”apology”,”disgusting”,”worst”. There are 19 uni-
gram features in total, and they represent the number of occurrence of 19 given words in the
review text;

• Categorical features, namely ”star”, ”city”, ”name”, and category;

• Spatiotemporal features, namely ”date”, ”longitude”, and ”latitude”.

1261

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

(a) Baseline approaches. (b) Multi-layer Perceptron approaches.

(c) Ensemble approaches. We tried three different
combinations of feature extractors and predictors, and
use a weighted sum to determine the final prediction.

(d) AdamBoost approaches.

Figure 1: Various combinations of feature extractors and predictors, summarized in four different
groups. Here purple cells are feature extractors and blue cells are different predictor models

4. MODEL FORMULATION

4.1 Outline

To predict the user rating in an NLP approach, a system need to

1. extracts and prepares the features into numerical representations, then

2. feeds the features into a predictor to produce a probability distribution of the user rating

We explored several different approaches for each of the above two components, and conducted
experiments over various combination of them. Section 3.2 will cover the two feature extraction
approaches, while the rest of this section will go through various predictors. See FIGURE 1, for
details.

1262

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

4.2 Feature Extraction

The two feature extraction methods that we explore are hashing vectorizer and TF-IDF.

Hashing vectorizer We use the hashing vectorizer offered by the scikit-learn library to convert
a collection of review text into a matrix of token occurrences. A hashing vectorizer returns the a
count for every token in the document, so it is no different from a regular bag-of-words model
(called counter vectorizer in scikit-learn) in terms of how text features are turned into numeric
representation. However, hashing vectorizer has the following two advantages:

1. Scale better with large document sets

2. Work well with batch processing

Comparing with a count vectorizer, hashing vectorizer imposes little requirements on memory when
working with large datasets because it doesn’t need to store the vocabulary dictionary. In addition,
count vectorizer doesn’t work so well with batch processing, because it is hard to maintain a stable
representation of the token matrix. The size of the vocabulary dictionary in one batch of documents
might be different from another, so we could end up getting matrices with different number of
columns. However, the hashing vectorizer doesn’t require an extra step to learn the vocabulary
dictionary, which means if we set the 𝑛𝑢𝑚_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 parameter properly, it would ensure that
feature space still remains the same even when new tokens may be added in each batch.

TF-IDF vectorizer One apparent issue with hashing vectorizer is that common words such as
”the” and ”like” are associated with high counts when they are actually not so meaningful. This
motivates us to consider the TF-IDF vectorizer which address this issue ([13]).

The TF-IDF acronym stands for ”Term Frequency - Inverse Document Frequency”. Like how count
and hashing vectorizer assigns a count value to each token, the TF-IDF assigns the TF-IDF score in
the following way:

For a term 𝑖 in document 𝑗 :

TF-IDF Score = 𝑡 𝑓𝑖, 𝑗 × 𝑙𝑜𝑔(𝑁
𝑑𝑓𝑖

)

where

𝑡 𝑓𝑖, 𝑗 = number of occurrences of 𝑖 in 𝑗
𝑑𝑓𝑖 = number of documents containing 𝑖
𝑁 = total number of documents

As the formulation presents, the Term Frequency describes how often tokens appear in the document,
while the Inverse Document Frequency down-scales tokens that appear too often across documents.
In summary, the TF-IDF address the issue with hashing vectorizer by penalizing common words
and assigning higher values to the more meaningful ones.

1263

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

4.3 Baseline Models

Since Yelp star ratings take on discrete values, we treat it as a classification problem and implement
four baseline models using the scikit-learn machine learning library.

1. Logistic Regression with SGD I

2. Logistic Regression with SGD II (a variant of SGD I)

3. Multinomial Naive Bayes

4. Passive Aggressive

We choose these algorithms specifically because they are suitable for this classification task, and
because they are online learning algorithms that can perform incremental learning from mini-batch
of data instances which are lightweight. This ensures that these algorithms can be done at a very
low latency in high throughput production. Since we are dealing with a large dataset, to simulate the
throughput of a server under highest workload, we choose to feed the classifiers with mini-batches
of 1000 instances to mitigate overhead and ensure stable performance. This means that we will have
at most 1000 instances in the machine’s main memory during the entire training process.

Logistic Regression Logistic Regression is a common classification model that is based on regres-
sion analysis and is most often used to explain the relationship between a set of binary predictors
and classification labels. And the final output is a probability between 0 and 1. For the purpose of
this task, we use logistic regression to predict the star rating of each review, and apply Stochastic
Gradient escent (SGD) to minimize the loss function. We normalize the word count vector to ensure
the extracted features are binary. We build two baseline models in this way, namely SGD I and SGD
II, where they mainly differ in hyper-parameters. Compared to SGD I, SGD II is simply set to have
more epochs and a smaller stopping criterion.

Multinomial Naive Bayes Multinomial Naive Bayes is another good choice as a baseline model
because it is suitable for text classificationwithword counts. Given a set of training data, it computes
the prior probability of reviews for each star rating 𝑃(𝑟𝑎𝑡𝑖𝑛𝑔), and the probability of observing a
certain feature given the star rating 𝑃(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 |𝑟𝑎𝑡𝑖𝑛𝑔). Thus, using the Baye’s rule, the posterior
probability for each class

𝑃(𝑟𝑎𝑡𝑖𝑛𝑔 | 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒) = 𝑃(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 |𝑟𝑎𝑡𝑖𝑛𝑔)𝑃(𝑟𝑎𝑡𝑖𝑛𝑔)
𝑃(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒)

We then assign each data point to the class having the largest posterior probability. We also add
smoothing to the model to ensure non-zero probability, and the smoothing parameter is set to 0.1
because the hashing vectorizer normalizes the word count matrix.

Passive Aggressive Passive Aggressive is another online classification machine learning algo-
rithm ([14]). It is very similar to a Support vector machine because it is margin-based. Passive
Aggressive also aims at maximizing the margin of the separating planes between the data points.

1264

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

4.4 Multi-Layer Perceptron

We also consider building a neutral network for this text classification task and decide to build a
multi-layer perceptron model. To translate vocabulary in the review text into numerical representa-
tions, we decide to use BERT pretrained text embedding.

BERT BERT is a widely used word embedding pre-trained on Wikipedia and BookCorpus, a
dataset consisting of over 10, 000 books of 16 different genres [15]. BERT embedding is different
from other popular word embeddings such as Word2Vec or GloVe, mainly because it is context-
dependent. While Word2Vec and GloVe generate just one embedding vector for each word in the
document, BERT could generate multiple vectors if the given word appears multiple times under
different context. consider the following simple example:

”The doctor used his cell phone to take a picture of the blood cell samples”

The word ”cell” clearly has different meanings depending on whether it is used together with
phone or blood. Word2Vec or GloVe embeddings will ignore this difference and generate only
the same one vector for the word, but BERT will output two different embedding vectors for this
word in this example, and potentially capture more information about the feature [16]. Given the
difference between BERT and other context-independent embeddings, we decide to apply BERT
for our Perceptron model because it captures features more accurately and could potentially lead to
better model performance.

After applying the BERT embedding, our final embedding vector is of length 768, which can then
be used as input to our Multi-layer Perceptron model.

Other Features Besides the review text, we also want to incorporate other features into the Multi-
layer Perceptron model, since the uni-gram features and the sentiment score provided in the dataset
might be useful as well. Thus, we conduct some featuring engineering and construct 8 additional
features to be used together with the BERT embedding vector.

We process each feature to ensure that their values are in range [0, 1] :

• useful: apply shifted logistic regression with weight of 1

• funny: apply shifted logistic regression with weight of 1

• cool: apply shifted logistic regression with weight of 1

• positive: sum positive uni-gram counts, apply shifted logistic regression with weight of 1

• negative: sum positive uni-gram counts, apply shifted logistic regression with weight of 1

• nchars: apply shifted logistic regression with weight of 0.1

• nwords: apply shifted logistic regression with weight of 0.5

• sentiment score: (score + 5)/10 since sentiment scores are in range [−5, 5]

1265

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

The shift logistic regression we used in defined as follow:

shifted value =
1 − 𝑒−𝑥∗𝑤

1 + 𝑒−𝑥∗𝑤

where 𝑥 represents feature values and 𝑤 represents the weight. This way, all the 8 additional values
are in range [0, 1].

In this case, we build two Multi-layer Perceptron models under different settings:

Shallow Model The shallow Multi-layer Perceptron model consists of 7 fully-connected layers
and uses the rectifier linear unit (ReLU) activation function. The input layer consists of the 768
features output by BERT, and the output layer consists of the five star ratings. The 7 layers are as
follows:

[768, 1024, 512, 512, 256, 64, 32, 5]

Deep Model For the deep Multi-layer Perceptron model, we also incorporate the 8 additional
features that we construct earlier. We take the outer product of this vector and the BERT embedding
vector, and the final input vector is thus of length 768 × 8 = 6144. The deep model consists of 9
layers and also uses the ReLu activation function:

[6144, 4096, 2048, 1024, 512, 256, 64, 32, 5]

4.5 Ensemble Model

To further boost model performance, we apply ensemble method to combine our various models
into a single predictor.

Heterogeneous classifiers The classifiers we use for ensemble include Logistic Regression,Multi-
nomial Naive Bayes, Passive Aggressive and Multi-layer perceptron. For each of the baseline mod-
els, we use either the hashing or TF-IDF vectorizer for feature extraction. And the final combined
models are as follows:

• Baseline models ensemble: (hashing vectorizer) LR + MNB + PA

• Baseline models and MLP: (hashing vectorizer) LR + MNB + PA + MLP

• Baseline models and MLP: (TF-IDF vectorizer) LR + MNB + PA + MLP

Weighted Voting The way we ensemble the heterogeneous classifiers is through weighted voting.
For each classifier, we get the probability vector that describes the probabilities that a given data
point belongs to each of the 5 star rating.

[𝑃(1|𝑑𝑎𝑡𝑎), 𝑃(2|𝑑𝑎𝑡𝑎), 𝑃(3|𝑑𝑎𝑡𝑎), 𝑃(4|𝑑𝑎𝑡𝑎), 𝑃(5|𝑑𝑎𝑡𝑎)]

Each classifier is also assigned a weight between 0 and 1, and we computed the weighted sum of the
probability vectors for all classifiers. Then, the final prediction is the star rating that has the largest
weighted sum of probabilities.

1266

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

Considering all the classifiers we used for ensemble, the outputs of the Logistic Regression and
Multinomial Naive Bayes are already probability values. For Passive Aggressive, we can also get
the probabilities using the scikit-learn library. And for Multi-layer Perceptron, we use the softmax
function to normalize the output values into probability distribution.

Weights Enumeration To approximate the best weight assigned to each classifier, we use enu-
meration. And the pseudocode is provided below

best_ensemble = []

for w_1 in (0, 1, 0.02):
for w_2 in range(0, 1, 0.02):

for w_3 in range(0, 1, 0.02):

sum_prob = w_1 * LR + w_2 * MNB + w_3 * PA

predict_labels = argmax(sum_prob)

compare the accuracy by comparing predict_labels and ground truth
update best_ensemble if the current model is better

if current_acc > old_acc:
best_ensemble = [w_1, w_2, w_3]

4.6 AdaBoost

The final ML algorithm that we experiment with is AdaBoost. AdaBoost runs a weak classifier mul-
tiple times on the dataset and adjust the weights assigned to each data point. Incorrectly classified
data points will get larger weights so that they receive more attention during the next iteration. We
employ the AdaBoost algorithm with decision stumps (1-level decision trees).

We construct two AdaBoost models:

1. All features, including review text (BERT embedding), sentiment score, uni-grams, and other
spatiotemporal features.

2. All features except for review text.

Feature processing Wewant to use all the features provided in the dataset, but not all features are
numerical. The features that need special processing include: date, city, name, and category. And
we convert them into numerical features in the following way:

• date: extract out day, month, and year;

• city: compute length(city);

• name: compute length(name);

1267

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

• category: use hashing vectorizer.

Other features are processed using the same procedure as documented in theMulti-Layer Perceptron
section.

5. EXPERIMENTS AND RESULTS

We evaluate all of our models based on their test or validation accuracy.

5.1 Feature Extraction

We would first like to examine the effectiveness of our two different feature extraction methods. As
we introduced in Section 4.2, we experiment with both the hashing and the TF-IDF vectorizer. We
think that our TF-IDF vectorizer could lead to better model performance because it scales the word
count matrix to focus on more meaningful words, but we would like to verify if that is actually the
case (TABLE 1).

Table 1: Test Accuracy of Hashing vs. TF-IDF Vectorizer

Hashing TF-IDF

LR with SGD I 0.5541 0.5611
LR with SGD II 0.5450 0.5670
Naive Bayes 0.4754 0.4846
Passive-Aggressive 0.5253 0.5374

Looking at the reported test accuracy, we observe a consistent increase in performance across all
baseline classifiers. The test result is consistent with our hypothesis that TF-IDF vectorizer leads to
more meaningful features.

5.2 Baseline Models

Since we employ batch processing for all the four baseline models. We would like to examine the
learning curves of these classifiers. For the following plots, we use hashing vectorizer and evaluate
the models on the a held-out validation set.

As illustrated by FIGURE 2, we observe a general increasing trend in validation accuracy across all
classifiers until training examples reach 20,000 when it starts converging. The validation accuracy
curve is not smooth because we feed all classifiers with mini-batches of 1000 instances. Overall,
while the Multinomial Naive Bayes model consistently has the lowest validation accuracy, the
performance is stable across all other classifiers.

1268

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

(a) As a function of examples (b) As a function of runtime

Figure 2: The learning curves for baseline models

5.3 Multi-layer Perceptron

For Multi-layer Perceptron, we would like to examine the effectiveness of our two Perceptron
models. As discussed in Section 3.3, we implement two models: a shallow model with 7 layers and
a deep model with 9 models. Generally, we would expect the deep model to have better performance
because it should be able to recognize more aspects of the input data. The table below summarizes
the performance of our shallow and deep model, evaluated on the test set (TABLE 2).

Test Accuracy
Shallow Model 0.5307
Deep Model 0.5282

Table 2: Performance of two MLP Models

Test Accuracy
All features 0.5345
All without review text 0.4370

Table 3: Performance of the two Adaboost
Models

To our surprise, our shallow model actually has consistently better performance than the deep
Multi-layer Perceptron model. Recall that our deep model input layer includes not only the BERT
embedding vectors, but also the 8 additional features that we construct. The 8 additional features are
descriptive features of review text such as sentiment score, positive and negative uni-grams, and the
number of characters. Initially, we think that these features are closely related to sentiment analysis.
While sentiment score measures the strength of positive/negative reviews, the positive and negative
uni-grams features should also be helpful in predicting the star ratings. However, the results shows
the opposite: adding these additional features do not lead to better model performance.

5.4 Adaboost

For Multi-layer Perceptron, we would also like to compare the performance of two models. As
discussed in Section 3.3, we again implement two models: one based on all features and a second
one based on all but the review text.

1269

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

Looking at the test accuracy reported in Table 3, we observe that there is significant increase inmodel
performance when review text is added to the Adaboost Model. This again verify the importance of
the review text feature. We have also plot the training accuracy (right figure) and the test accuracy
(right figure) as a function of the number of trees. We observe that as the AdaBoost model reaches
stable performance at round 100 trees.

Figure 3: Test and training accuracy as a function of number of trees

5.5 Analysis

The following TABLE 4, summarizes all the models we use and their corresponding test accuracy

Table 4: Performance of All Models

Test Accuracy

MLP Shallow Model 0.5307
MLP Deep Model 0.5282
Adaboost I 0.5345
Adaboost II 0.4370
Baseline (hashing) Ensemble 0.5633
Baseline (TF-IDF) Ensemble 0.5689
Baseline (hashing) and MLP Ensemble 0.5832
Baseline (TF-IDF) and MLP Ensemble 0.5837

Comparing with our baselines’ performance listed in Section 5.2, it can be observed that Multi-layer
Perceptron does outperform the baseline models. However, it is excited to see that the performance
can be further improved by ensembling the MLP model with all the baseline models. We believe it
is because there is a significant diversity among these ensembled models (Table 5).

We also conduct some error analysis on our best model. To see exactly which set of data points are
incorrectly classified, we calculated the per-rating precision and recall in FIGURE 5 and 6.

We observe that our best prediction model performs better when predicting star ratings of 1, 4, and
5, but really struggles with 2 and 3. For star rating of 5, our best model is able to correctly classify

1270

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

Table 5: Counts of the predicted and the golden ratings: Baseline (TF-IDF) and MLP Ensemble
model

Golden Ratings
1 2 3 4 5 Total

Model Predictions 1 215 83 22 4 3 327
2 58 133 36 11 2 240
3 19 101 192 62 9 383
4 22 69 245 650 237 1223
5 24 27 68 444 978 1541
Total 338 413 563 1171 1229 3714

Table 6: Error Analysis by Ratings for the Baseline (TF-IDF) and MLP Ensemble model

Star Ratings TP TN FP FN Precision Recall

1 215 3376 112 123 65.74% 63.60%
2 133 3301 107 280 55.41% 32.30%
3 192 3151 191 371 50.13% 34.10%
4 650 2543 573 521 53.14% 55.50%
5 978 2485 563 251 63.46% 79.57%

79.57% of the test data points, but it could only correctly classify 32.30% of the data that has ratings
of 2. We think this makes sense in that it is easy to distinguish between a 1-star review and a 5-star
review, but the boundary between a 2-star and a 3-star might be more ambiguous (Table 6).

6. CONCLUSION AND FUTUREWORK

In this article, we experiment with various classification algorithms that are suitable for predicting
Yelp star ratings based on review text and attribute set.

We explore two feature selection techniques, namely Hashing and TF-IDF vectorizers. We show
that TF-IDF vectorizer could lead to better model performance, because it emphasizes on more
meaningful words.

We employ several baseline models with the ability of online and incremental learning, and investi-
gate on their learning curves. We also use Multi-layer Perceptron with BERT embedding, showing
that the review text is the most important feature comparing to others. The performance of our two
AdaBoost models is also consistent with this finding.

Finally, we use the ensemble method to combine various models into a single predictor and our best
prediction model turns out to be ensemble model generated with all four baseline models and the
Multi-layer Perceptron.

For future work, it is worth investigating more feature extraction and embedding methods since
review text is the dominate feature for this classification task. The approach we purpose is generic

1271

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

to other tasks as well [17]. We also believe that our MLP model using BERT embedding could
have better performance, if we have the chance to conduct parameter tuning and pre-training, and
with some current hardware machine learning optimization techniques [19], we can achieve a good
performance with less resource constraints.

References

[1] MedhatW, Hassan A, Korashy H. Sentiment Analysis Algorithms and Applications: A Survey.
Ain Shams Eng J. 2014;5:1093-1113.

[2] Zhang L, Wang S, Liu B. Deep Learning for Sentiment Analysis: A Survey. WIREs Data
Mining Knowl Discov. 2018;8:1253.

[3] Yue T, Wang Haohan. Deep Learning for Genomics: A Concise Overview. 2018. ArXiv
preprint: https://arxiv.org/pdf/1802.00810v3.pdf

[4] Wang W, Guo Y, Shen C, Ding S, Liao G, Fu H et al. Integrity and Junkiness Failure
Handling for Embedding-Based Retrieval: A Case Study in Social Network Search. 2023.
ArXiv preprint: https://arxiv.org/pdf/2304.09287.pdf

[5] Wenting Y, Liu X, Yue T, Wang W. A Sparse Graph-Structured Lasso Mixed
Model for Genetic Association With Confounding Correction. 2017. ArXiv preprint:
https://arxiv.org/pdf/1711.04162.pdf

[6] Pang B, Lee L, Vaithyanathan S. Thumbs Up? Sentiment Classification Using Machine
Learning Techniques. 2002. ArXiv preprint: https://arxiv.org/pdf/cs/0205070.pdf

[7] Fan M, Khademi M. Predicting a Business Star in Yelp From Its Reviews Text Alone. 2014.
ArXiv preprint: https://arxiv.org/ftp/arxiv/papers/1401/1401.0864.pdf

[8] Tang D, Qin B, Liu T, Yang Y. User Modeling With Neural Network for Review Rating
Prediction. In: Proceedings of the 24th international conference on artificial intelligence,
IJCAI’15. AAAI Press. 2015: 1340-1346.

[9] Alamoudi ES, Alghamdi NS. Sentiment Classification and Aspect-Based Sentiment Analysis
on Yelp Reviews Using Deep Learning and Word Embeddings. J Decis Syst. 2021;30:259-
81. [10] Asghar N. Yelp Dataset Challenge: Review Rating Prediction. ArXiv preprint:
https://arxiv.org/pdf/1605.05362.pdf

[10] Asghar N. Yelp Dataset Challenge: Review Rating Prediction. ArXiv preprint:
https://arxiv.org/pdf/1605.05362.pdf

[11] Chen T, Wang X, Yue T, Bai X, Le CX, Wang W et al. Enhancing Abstractive Summarization
With Extracted Knowledge Graphs and Multi-Source Transformers. Appl Sci. 2023;13:2076-
3417.

[12] Zhang W, Deng Y, Liu B, Pan SJ, Bing L. Sentiment Analysis in the Era of Large Language
Models: A Reality Check. 2023. ArXiv preprint: https://arxiv.org/pdf/2305.15005.pdf

[13] Roelleke T, Wang J. TF-IDF Uncovered: A Study of Theories and Probabilities. In:
Proceedings of the 31st annual international ACM SIGIR conference on research and
development in information retrieval, SIGIR’08. NY. ACM. 2008: 435-442.

1272

https://www.oajaiml.com/ | July 2023 Wenping Wang, et al

[14] Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y. Online Passive-Aggressive
Algorithms. J Mach Learn Res. 2006;7:551-585.

[15] Devlin J, ChangM-W, LeeK, ToutanovaK. Bert: Pretraining of Deep Bidirectional Transform-
ers for Language Understanding. 2018. ArXiv preprint: https://arxiv.org/pdf/1810.04805.pdf

[16] Zhang L, Negrinho R, Ghosh A, Jagannathan V, Hassanzadeh HR, et al. Leveraging Pretrained
Models for Automatic Summarization of Doctor-Patient Conversations. 2021. ArXiv preprint:
https://arxiv.org/pdf/2109.12174.pdf

[17] Yang X, Ye W, Breitfeller L, Yue T, Wang W. Linguistically Inspired Neural Coreference
Resolution. Adv. Artif Intell Mach Learn. 2023;3:1122-1134.

[18] YuK,WangY, Zeng S, Liang C, Bai X, ChenD et al. Inkgan: Generative Adversarial Networks
for Ink-And-Wash Style Transfer of Photographs. 2023;3: 1220-1233.

[19] Zhou Y, Gupta U, Dai S, Zhao R, Srivastava N, et al. Rosetta: A Realistic High-Level
Synthesis Benchmark Suite for Software Programmable FPGAs. In: Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA’18. NY.
Association for Computing Machinery. 2018: 269-278.

1273

	INTRODUCTION
	BACKGROUND AND RELATED WORKS
	DATASET
	MODEL FORMULATION
	Outline
	Feature Extraction
	Baseline Models
	Multi-Layer Perceptron
	Ensemble Model
	AdaBoost

	EXPERIMENTS AND RESULTS
	Feature Extraction
	Baseline Models
	Multi-layer Perceptron
	Adaboost
	Analysis

	CONCLUSION AND FUTURE WORK

