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Abstract

Fuzzy techniques depend heavily on eliciting meaningful membership functions for the fuzzy
sets used. Often such functions are obtained from data. Just as often they are obtained from
experts knowledgeable of the domain and the problem being addressed. However, there
are cases when neither is possible, for example because of insufficient data, or unavailable
experts. What functions should we choose and what should guide such choice? This paper
argues in favor of using Cauchy membership functions, thus named because their expression
is similar to that of the Cauchy distributions. The paper provides a theoretical explanation
for this choice.
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1. INTRODUCTION

It is well known that the introduction of fuzzy sets opened up new possibilities in modeling and
reasoning under uncertainty and imprecision [1]. The introduction of the notion linguistic variable
has brought about additional benefits allowing for quantitative computation and its interpretation in
word and reasoning [2].

In many practical applications of fuzzy techniques (see, e.g., [3-7,1]), the membership functions
can be obtained from the experts. In other applications, the fuzzy sets are elicited directly from
the data without the intervention of a human expert, imposing some condition on the underlying
summarization procedure [8,9]. However, an important question arises: what is to be done when
neither of these two approaches can be used? What functions should we then use? Experiments
(see, e.g., [10,11]) show that in many applications, the following membership functions work best:
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The expression (1) describing these membership functions is similar to the known expression for
the probability density function f(x) of a Cauchy distribution (see, e.g., [12]):

f(x) = const -
1+

)
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Because of this similarity, membership functions (1) are known as Cauchy membership functions.

A natural question is: how can we explain this empirical fact — that Cauchy membership functions
work better than other functions tried? To answer such a question, we must define in a precise
manner what it is really meant by “work better” and it is here suggested that this may be defined
from two points of view — efficiency and reliability. In the remainder of the paper the efficiency
is considered, showing that along with Gaussian membership functions, the Cauchy membership
functions lead to efficient learning. To clarify, by efficient we mean an approach where, in the
process of training a fuzzy model, straightforward one step computations are possible. This paper
explores theoretically (in an almost axiomatic-like manner, that is, by imposing desired properties
on the membership function) the basis for selection of a membership function in order to achieve
efficient learning.

2. WHICH MEMBERSHIP FUNCTIONS LEAD TO THE MOST
EFFICIENT LEARNING

2.1 Formulation of The Problem

From expert rules to fuzzy rules. One of the main reasons why Lotfi Zadeh invented fuzzy
techniques was to translate expert rules that use imprecise (fuzzy) natural-language properties like
small, medium, etc., into a precise control strategy. For this purpose, to each such property P,
Zadeh proposed to assign a function up(x) (known as membership function) that describes, for
each possible value x of the corresponding quantity, the degree to which, according to the expert,
an object with this value satisfies the property P — e.g., to what extent the amount x is small. This
degree is usually assumed to be from the interval [0,1].

This is how first applications of fuzzy techniques emerged: researchers elicited rules and mem-
bership functions from the experts, and used fuzzy methodology to design a control strategy. The
resulting control was often reasonably good, but not perfect. So, a natural idea was proposed: to
use the original fuzzy control as a first approximation, and then to tune its parameters based on the
practical behavior of the resulting system.

This fuzzy learning idea was first used in situations when we have expert rules that provide a reason-
able first approximation. However, it turned out that this learning algorithm leads to a reasonable
control even in the absence of expert rules, i.e., based solely on data.

Natural question: which membership function should we use? When starting with expert knowl-
edge, membership functions are elicited from the experts. But when using fuzzy learning to situa-
tions when there is no expert knowledge, a natural question is: which membership functions should
we use?
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2.2 How to Select Membership Functions

Main idea: A natural idea is to select a membership function that would make learning faster. How
can we do that?

Need for differentiability: The main objective of any learning is to optimize the corresponding
objective function — a loss or cost function, which measures the discrepancy between the desired
and actual behavior of the system. That is, if we have examples of desired outputs, then the objective
is to minimize the discrepancy between the values produced by the system and the values we want
to obtain.

Since the invention of calculus, the most efficient optimization techniques are based on computing
the derivatives: one of the main objectives (and still one of main uses) of calculus is to identify
points where a function attains its maximum or minimum among the roots of the first derivative. In
machine learning, one of the simplest approaches is to achieve this is based on gradient descent.

The result of processing by several fuzzy layers is a composition of functions corresponding to
each layer. So, to compute the derivative of the resulting transformation, we need to know the
derivatives corresponding to each layer. From this viewpoint, to find a membership function that
will make learning faster, we need to find membership functions which are differentiable and whose
derivatives are easy to compute. Ideally, it should be possible to express such derivatives in terms of
the original function (as is the case, for example, for the sigmoid and hyperbolic tangent functions
often used in training neural networks).

In more precise terms, the problem is as follows: when computing the derivative y’(x) for some
input x, it is desired to use the fact that u(x) has already been computed. Thus, in computing the
value u’(x),we can use not only the input x, but also the value u(x). In other words, we are looking
for an expression u’(x) = f(u(x), x) for the simplest possible function of two variables, f(a, x).

The meanning of simplest: In a computer, the only hardware supported operations with numbers
are arithmetic operations: addition, subtraction (which, for the computer, is, in effect, the same as
addition), multiplication, and taking an inverse (division is implemented as a/b = a - (1/b)). To be
more precise, computing an inverse is also implemented as a sequence of additions, subtractions, and
multiplications, so each computation actually consists of additions, subtractions, and multiplications
— and thus, computes a polynomial, since a polynomial can be defined as any function that can
be obtained from variables and constants by using addition, subtraction, and multiplication. For
example, to compute exp(x) or sin(x), most compilers compute the value of a polynomial that
approximates the desired function — usually this polynomial is simply the sum of the first few terms
of this function’s Taylor expansion.

From this viewpoint, looking for the simplest function f(a,x) means looking for a polynomial
f(a,x) that can be obtained by using the smallest possible number of arithmetic operations. (In a
computer, unary minus is easy, so it is not counted.) Moreover, it is customary in machine learning
(e.g., inregression problems) to look for the smallest degree polynomial to order to avoid overfitting.

Required asymptotic behavior: A typical membership function corresponding to notions like
small and medium is only satisfied, with a reasonable degree, for a bounded set of values. That is,
the support of a membership function is bounded. Thus, in the limits, when x — co orx — —o0, we
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should have p(x) — 0. Thus, it makes sense to consider membership functions with this asymptotic
property.

More over, most membership functions do not just asymptotically tend to 0, they are equal to 0
outside some intervals. For such function, in the areas where u(x) = 0, we expect u’(x) = 0, i.e.,
we have f(0,x) = 0 for all x. Since the function f(a,x) is a polynomial, this means that all its
monomials must be proportional to a, i.e., we must have f(a,x) = a - g(a,x) for some function
g(a,x). Thus, looking for the simplest function f(a,x) means looking for the simplest functions
g(a,x). The cases when computing g(a, x) requires 0 or 1 arithmetic operation are considered next.

When computing g(a, x) requires no arithmetic operations: This means that the value g(a, x) is
equal to one of the given values, i.e., to g(a,x) € {a,x, ¢} for some constant c.

- If g(a, x) = a, it follows that ' (x) = f(u(x),x) = p(x) - g(u(x),x) = u(x) - u(x) = p(x)?,
ie., d’;—(xx) = u(x)? hence i‘(‘—i)"g = dx. Integrating, we obtain —ﬁ = x + C, and hence
w(x) = —ﬁ. This function is unbounded, so it cannot serve as a membership function. In
this case, adding unary minus, i.e., considering g(a, x) = —a, does not help.

du(x)

* If g(a,x) = x, it follows that p’(x) = u(x) - x, i.e., 4= = u(x) - x hence dplx)

H(x)
Integrating, obtains In(u’(x)) = % +C, ie., u'(x) = Aexp (%) for some constant A =

=x-dx.

exp(C). This is not a membership function, but by adding unary negation, i.e., by considering
g(a,x) = —x, we obtain u’(x) = exp (—"2—2) — a very reasonable case of Gaussian membership
functions.

* If g(a,x) = c, it follows that u’(x) = ¢ - u(x), i.e., % = ¢ - u(x) hence d'“((xx))

Integrating, we obtain In(u’(x)) = ¢-x+C,i.e., u’ (x) = A-exp (c - x) —also not membership
functions.

= c - dx.

When computing g(a, x) requires one arithmetic operation: This operation can be addition/subtraction
or multiplication.

1. For addition, we can have g(a,x) =a+a, g(a,x) =a+c, g(a,x) =x+x,g(a,x) =x+c,or
g(a,x) = a + x. In the first case, leads to an unbounded function. The second case, leads to a
sigmoid function — that does not have the right asymptotic behavior forx — *co. The third and
fourth cases, lead to the Gaussian functions —re-scaled in the third case and shifted in the fourth
case. Finally, the last case leads to a reasonable differential equation u’(x) = u(x) - (u(x) +x),
but the problem is that this equation does not have an explicit solution. This means that while
computing ' (x) using u(x), computing u(x) itself will be difficult — so this case should also
be dismissed.

2. For multiplication, the same five different cases are obtained as for addition, with the addition
operator replaced by the multiplication operator: g(a,x) =a-c, g(a,x) =x-c,g(a,x) =a-a,
g(a,x) =x-x,or g(a,x) = a-x. The first case leads to an unbounded function, the second
to a re-scaled Gaussian function. The third g(a,x) = a - a, leads to Z—’; = 13 and hence to

Z—‘; = dx. Integrating, we obtain —m =x+C,i.e., u(x) = -2(x + C). This expression is
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not defined for large positive x, so it should also be dismissed. The fourth case g(a,x) = x - x,

leads to d”(x) = p(x) - x% hence :((x)) = x? - dx. Integrating, obtains In(u(x)) = 3 - x* + C,

and hence ,u(x) = exp (3 - x3 + C), which is not bounded, so it has to be dismissed.

Finally, the last case, g(a x) = a - x, yields d“—(x) = pu(x)? - x hence Z’; Ej)) = x - dx. Integrating, we

obtain — “(1x) -x%2 + C, hence u(x) = —. This is not a membership function, but adding

unary minus, i.e., by considering g(a,x) = —a - x, leads to u(x = Togc , 1.e., what we called a
b id (a,x) lead (x) 2 e h lled

Cauchy membership function.

Resulting membership functions: A membership function y is said to be normal if sup  u(x) = 1.
Normal membership functions are preferred as they are considered to represent a fully defined
concept. It is easy to see that sup, 1/(x%/2 + C) = 1/C, so if this were to be a normal membership
function, C must be equal to 1. Thus, the resulting membership function is shown in equation (3).

u(x) = ——. 3)

1+7

Taking into account that the numerical value of a physical quantity depends on the choice of the
measuring unit and on the choice of the starting point, changing a measuring unit and/or a starting
point, a new numerical values X can be obtained from previous values x by a linear transformation
X = k-x+a, where k is the ratio of the measuring units and a is the difference in starting points. (A
classical example is the relation between temperature ¢¢ in Celsius and temperature ¢ in Fahrenheit:
tr =18 tc +32)

When the original values x are described by the membership function (3), then, the membership

function for X is obtained by substituting in (3), the expression x = % This leads to the
membership function shown in the equation (4),
(x) = — @
/’lX - 1 N (X—a)2 .
2k2
or, by letting 2k? = K to the Cauchy membership function shown in equation (5).
(X) = — )
Mcauchy = — o
L+ (%%%)
Similarly, substituting x = X,;“ = exp (—%), we obtain
(X -a)’
px(X) = exp [—2—](2 ) (6)
or, in terms of the new parameter K:
2
X—-a
Mgaussian (X) =exp _( K ) . (7
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Figure 1: The Cauchy and Gaussian membership functions for a = 12, K = 3.

FIGURE 1 for uc and ug, for the same choice of the parameters a and K, shows that these functions
are quite similar.

It is easy to see that in each case, the respective derivatives, u’(x) can be easily calculated in terms

of u(x) and the derivative of ( z ) Indeed, for the Cauchy membership function, its derivative
is as given in the equation (8), while for the Gaussian function as shown in the equation (9).

X—a

®)
©)

/J,cauchy (X) = _2ﬂ2c (X)

, X
H gaussian(x) = _QMG(X)

On what basis should we prefer one of these membership functions? Recall that selecting a differ-
entiable membership problem, and moreover a function whose derivative can be computed in terms
of the function itself, results in an efficient calculation of the gradient of the cost function associated
to a learning task. As previously mentioned, using fuzzy sets presents the additional advantage of
being able to use fuzzy logic in reasoning tasks. When using the standard fuzzy logic operators
for conjunction and disjunction (respectively min and max), Cauchy and Gaussian membership
functions produce the same result. However, for the standard negation operator (u(-) = 1 — u(+)),
the results are different as it can be seen in the equations (10) and (11) below.

1 1+ Lo
/“lCauchy(x) =1 _/JCauChy(x) =1- 1+ (x a) a 1+ (x a)
2
(XKZ) (x - Cl)
- = 3 (10)
1+—(x 0’ K2+ (x-a)

— _ (xfa)2
ﬂGaussiun(x) =1 - puGaussian(x) =1—e K2 . (11)

This means that for the same tuple of parameters (a, K), the Cauchy membership function is slightly
fuzzier than the Gaussian membership and therefore better able to distinguish between data points
represented by the fuzzy set, than the Gaussian membership function. It is also expected that the use
of the Cauchy membership function in computing the gradient of the cost function is more efficient.
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3. CONCLUSION

This paper considered the problem of choosing a membership function from a theoretical - axiomatic-
like perspective - of efficiency of learning. It was found that given the criteria for the simplest
fuzzy learning, the membership functions which satisfy these criteria are the Cauchy and Gaussian
membership functions shown in the equations (5) and (7) respectively, with the Cauchy function to
be preferred.
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