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Abstract
In recent years, Machine Learning (ML) and Automated Machine Learning (Auto-ML) have
attracted significant attention. The ML pipeline involves repetitive tasks such as data pre-
processing, feature engineering, model selection, and hyperparameter tuning. Developing
a machine learning model demands considerable time for development, stress testing, and
numerous experiments. Additionally, constructing a model with a limited search space of
pipeline steps and various algorithms can take hours. As a result, Auto-ML has become
widely adopted to reduce the time and effort required for these tasks. However, most current
Auto-ML frameworks primarily concentrate on algorithm selection and hyperparameter op-
timization, known as CASH, while overlooking other critical ML pipeline steps like data pre-
processing and feature engineering. This limited focus often results in suboptimal pipelines
for specific datasets. Moreover, a significant number of frameworks overlook the integration
of meta-learning, resulting in the promotion of high-performing pipelines customized for
individual tasks rather than a universally optimal solution. Consequently, this deficiency
necessitates the quest for a new pipeline tailored to each unique task, further underscoring the
importance of a more comprehensive approach in Auto-ML frameworks. Additionally, while
some Auto-ML frameworks address the entire pipeline, they often overlook the challenges
posed by imbalanced datasets. To address these issues, we propose a novel and efficient
meta-learning Auto-ML framework that effectively manages imbalanced datasets. The pro-
posed framework outperforms state-of-the-art results in terms of accuracy, precision, recall,
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and time, demonstrating, on average, more than 5% improvement compared to the existing
auto-ML frameworks. This paper also illustrates how our proposed framework outperforms
current state-of-the-art solutions.

Keywords: Automated Machine Learning (Auto-ML), supervised learning, CASH, hyper-
parameter optimization (HPO), Meta-learning

1. INTRODUCTION

The success of artificial intelligence and ML has been evident across various sectors and domains,
garnering significant attention from both business and research communities. The effectiveness
of ML algorithms largely depends on the availability of extensive datasets, making data a crucial
and influential component of the ML process. The proliferation of the internet, social media,
diverse applications, devices, and data sources has led to an unprecedented growth in data volume.
Generally, the quality of data directly impacts the performance of ML outcomes. While ML has
found broad application in fields like speech recognition [1], predictive analytics [2–6], image
classification [7–9], text classification [10], and recommendation systems [11–14], a multitude
of ML and deep learning techniques are being employed across various domains, particularly in
the current era of Big Data [15, 16].The rise of Big Data calls for a robust data science presence
to handle the daily flood of data. However, finding skilled data scientists for manual analysis is
challenging. This has sparked interest in automating the ML process to streamline pipeline con-
struction. Data scientists often conduct iterative experiments to build quality ML models, making
the process complex and time-consuming. This process involves a series of steps, as illustrated in
FIGURE 1 [17].

Figure 1: The standard ML pipeline

Data scientists encounter numerous challenges in their work. These challenges encompass a diverse
array of potential ML algorithms that must be navigated, including XGBoost, linear regression,
SVM, decision tree, K-nearest neighbor, neural network, random forest, and Bayesian classifier.
The nature of the problem at hand, whether supervised or unsupervised, dictates the selection
of algorithms that are applicable and suitable for the specific task. Additionally, data scientists
are tasked with fine-tuning a set of hyperparameters for the chosen algorithm. Evaluating the
model’s performance involves a variety of metrics like accuracy, recall, precision, and the F1
score, adding another layer of complexity in selecting the most appropriate metric. Decisions
made by data scientists at each stage significantly impact the final performance results and the
quality of the ML model being developed [18–20]. Experimenting with multiple ML classifiers on
the same dataset often yields divergent outcomes and performance metrics, typically necessitating
human intervention in the decision-making process. While human-in-the-loopML offers a practical

3072



https://www.oajaiml.com/ | December 2024 Ibrahim Gomaa, et al.

approach to optimizing the manual ML process, it remains resource-intensive, time-consuming, and
reliant on manual labor. Consequently, there has been an increase in interest in automating the
entire process of constructing an ML pipeline. Presently, Auto-ML has gained significant traction
as a means of automating ML procedures, emerging as a crucial research area due to the rapid
proliferation of ML across various industries and domains. Auto-ML, a term denoting techniques
that automate the implementation and development ofMLmodels, aims to deliver high-performance
solutions within specified time constraints [21].

Initially, Auto-ML was designed to automate a particular component of the ML workflow, namely
the Combined Algorithm Selection and Hyperparameter optimization (CASH) [22]. CASH refers to
a process that involves both selecting themost suitableML algorithm for a given task and optimizing
the hyperparameters associated with that algorithm. CASH aims to enhance efficiency, perfor-
mance, and the overall quality of ML models by finding the best algorithm and hyperparameter set-
tings for a specific dataset and problem. Over time, Auto-ML expanded to include broader compo-
nents of the ML workflow, such as feature engineering, feature preprocessing, model selection, and
model interpretability. As Auto-ML progressed, and to circumvent the significant time investment
required to construct a ML model for a specific dataset by exhaustively testing all pipelines, meta-
learning has been implemented to leverage insights from past experiments, eliminating the necessity
to initiate each pipeline from the beginning. Meta-learning refers to the process of developing
AI systems capable of adapting to new tasks and enhancing their performance without requiring
extensive retraining. These algorithms typically involve training a model across a spectrum of
diverse tasks to acquire transferable knowledge that can be applied to new tasks. This contrasts
with traditional ML, where a model is typically trained for a singular task and exclusively utilized
for that specific task.

While current Auto-ML frameworks have made progress in reducing the manual effort involved
in constructing ML models, they struggle with effectively managing imbalanced datasets, which
are prevalent across various real-world applications and industries. These imbalanced datasets
are found in contexts such as fraud detection in banking transactions, fraud detection in auditing
processes, ransomware detection in backup systems, cancer detection in medical diagnosis, predic-
tion of machine failures, identification of cyber threats, and predicting customer churn. Given the
widespread reliance on imbalanced datasets, it is crucial to identify an optimal approach for handling
such data. Several essential tasks must be undertaken when preparing imbalanced datasets before
constructing anMLmodel, including data resampling, transformation, and preparation. These tasks
play a critical role in enabling themodel to learn efficiently from the data without being biased by the
majority class. For instance, consider a scenario where a training dataset for banking transactions,
D, contains 10,000 records (transactions) with a target variable, C, having two distinct values (non-
fraud, fraud). In this dataset, 9,900 records are assigned the value “non-fraud”, while 100 records
are assigned the value “fraud”. After training an ML classifier to predict the target variable C, a test
dataset with 1,000 records is used for evaluation, comprising 950 records with the value “non-fraud”
and 50 records with the value “fraud”. When the trained model is employed to predict the classes
for the test dataset, it assigns all instances the value “non-fraud” and fails to predict any instances
with the value “fraud”. This issue arises due to the model being biased by the majority class value
“non-fraud”, which accounts for 99% of the target class. The primary function of the model is to
detect fraudulent transactions, a task in which it failed to identify any instances.
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Existing Auto-ML frameworks still face limitations such as not including all ML pipeline steps and
focusing solely on the CASH component in specific frameworks like OAML [23], AMLBID [24],
and Auto-Weka [25]; lacking integration with meta-learning techniques in certain frameworks like
Auto-Weka, TPOT [26], H2O [27], ML-Plan [28], STREAMLINE [29], OAML, AutoKeras [30],
LightAutoML [31], and Naive AutoML [32]; ineffective management of imbalanced datasets across
all frameworks; and a requirement for prior technical proficiency. To address these challenges, the
proposed framework has been developed. This framework is designed with specific objectives in
mind. Firstly, it aims to integrate meta-learning, utilizing past ML pipeline performance to expedite
learning for new tasks. Secondly, it addresses the issue of imbalanced datasets to ensure accurate and
unbiased predictions. Thirdly, it is intended to be user-friendly for individuals with varying technical
backgrounds. Lastly, the framework provides intelligent pipeline recommendations, reducing the
need for trial-and-error experimentation. Overall, our framework aims to provide an Auto-ML
solution that is efficient and effective for a diverse range of tasks and various types of datasets,
spanning balanced, imbalanced, binary class, and multi-class datasets.

In this paper, we introduce SML-AutoML, a novel and efficient meta-learning-based Auto-ML
framework that concentrates on the entire ML pipeline rather than solely automating the CASH
process. The CASH component typically accounts for 20% of the time spent by data scientists in
constructing an ML pipeline for a specific problem [33]. Furthermore, our proposed framework
leverages meta-learning to easily adapt to new tasks with minimal steps. Without meta-learning,
traditional Auto-ML frameworks can identify effective architectures for individual tasks but struggle
to do so for new tasks. Additionally, our framework excels in handling imbalanced datasets and
enhancing performance by incorporating critical feature engineering and preprocessing steps such as
feature selection, data resampling, collinearity assessment, and advanced transformation algorithms.
Moreover, our framework speeds up recommending the optimal pipeline for a given dataset. The
proposed framework is applicable across a range of real-world applications and sectors, including
fraud detection in banking transactions, credit risk assessment in the financial technology industry,
fraud detection in auditing processes, ransomware identification in backup systems, diabetes and
cancer detection in medical diagnosis, machine failure prediction, cyber threat identification, and
customer churn prediction.

The rest of this paper is organized as follows: in Section 2, we present a brief review of related work.
In Sections 3, 4, and 5, we propose our solution for recommending a complete ML pipeline for any
given dataset. The experimental results are presented in Section 6. Finally, Section 7 concludes and
proposes directions for possible future work.

2. RELATEDWORK

ML is a very important science that can be adapted to different domains and used to solve compli-
cated problems. In addition, Auto-ML frameworks have gained significant attention in recent years
due to their ability to simplify the ML process and enable non-experts to build effective models. In
this literature review, we explore three categories of Auto-ML frameworks: meta-learning-based
frameworks, non-meta-learning-based frameworks, and cloud-based frameworks. We discuss the
key features of each framework within these categories.
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2.1 Meta-Learning-Based Auto-ML Frameworks

In recent years, several Auto-ML frameworks have been developed using centralized ML packages.
Among these frameworks, some fall into the category of meta-learning-based frameworks:

Auto-Sklearn [34], is the most popular framework among the existing Auto-ML frameworks be-
cause it was developed on top of the most popular Python ML library, Scikit-Learn [20]. Auto-
Sklearn includes some improvements over Auto-WEKA, such as considering meta-learning [35].
The meta-learning approach depends on the recognition of the characteristics of the datasets. It
recommends the appropriateML pipeline that fits those characteristics. Auto-Sklearn uses Bayesian
optimization [36], to determine and store the best ML pipeline with the highest performance for
each dataset. According to the study that had been made by [37], Auto-Sklearn outperformed Auto-
WEKA system in most of the cases. Although Auto-Sklearn 2.0 [38], includes some improvements
over Auto-Sklearn for a faster and more efficient Auto-ML solution, it still lacks the ability to
handle imbalanced datasets effectively. Auto-Sklearn 2.0 depended on constructing a portfolio,
which can be built offline and consists of ML pipelines to perform well on as many datasets as
possible. AlphaD3M [39], is an Auto-ML framework that uses reinforcement learning techniques to
optimize theML pipeline. In AlphaD3M, the process of model discovery or model recommendation
is achieved by performing iterative experiments with different ML pipelines. These ML pipelines
are generated by inserting, deleting, or replacing different pipeline parts. The optimal pipeline
is eventually identified through these trained pipelines, as all actions and decisions are included.
AMLBID [40], is an open-source auto-ML framework. AMLBID is a meta-learning-based ap-
proach that has been proposed to automate ML models built over industrial data. ATM [41], is an
example of a distributed and scalable Auto-ML framework that helpsML users upload their datasets,
choose among ML algorithms, and define a search space for hyperparameters. Consequently, ATM
recommends the optimal ML pipeline for those datasets by utilizing Bayesian optimization system
and meta-learning techniques. Additionally, as R is one of the most popular programming and
statistical languages in data science, SmartML has been proposed as the first Auto-ML framework
for automating classification problems depending on R packages [42]. The automation process in
SmartML is divided into two phases. In the first phase, a knowledge base of meta-features and
algorithms performance across different training datasets is constructed. In the second phase, for a
given dataset, the meta-features are extracted and compared with the meta-features that are stored in
the framework’s knowledge base; then the nearest neighbor technique is used to identify the similar
datasets in the knowledge base. The retrieved datasets are used to identify the best-performing
algorithms on them, hence recommending the dominant algorithm. SmartML depends on SMAC
Bayesian Optimization [16], for hyperparameter tuning step.

2.2 Non-Meta-Learning-Based Auto-ML Frameworks

On the other hand, there are also frameworks that do not belong to the meta-learning-based category,
such as Auto-WEKA [25, 43], TPOT [26], H2O [27], ML-Plan [28], STREAMLINE [29], OAML
(GAMA) [23], AutoKeras [30], LightAutoML [31], and Naive AutoML [32].

Auto-WEKA [25], is an Auto-ML framework that has been implemented on top of the popular
data mining tool named WEKA [44]. Auto-WEKA uses the SMAC [45], optimization algorithm
and depends on some algorithms of feature selection that have been implemented in WEKA to
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solve the CASH problem. In Auto-WEKA 2.0 [43], the new release of Auto-WEKA, updates
have been developed to be integrated within the WEKA ecosystem rather than being a standalone
piece of software. Besides, including regression problems instead of only supporting classification
problems. TPOT [26], was initially developed to deal with biomedical data science, but later
it was adapted to handle any ML problem. TPOT is an open-source Auto-ML framework. It
automates the ML process by handling feature preprocessing, model selection, and hyperparameter
optimization tasks. Similar to Auto-Sklearn, TPOT gained popularity for being built on top of
Python’s popular ML library, Scikit-Learn. TPOT uses a genetic programming algorithm described
in [46], to construct genetic programming trees to combine the algorithms used in ML pipelines.
Moreover, TPOT utilizes different algorithms for each task; for example, for feature preprocessing,
it utilizes algorithms such as Principal Component Analysis (PCA) and scalers; for feature selection,
it uses algorithms such as Recursive Feature Elimination (RFE) [47], and variance thresholds, and
for classification problems, it employs algorithms such as K-Nearest Neighbors (KNN), Decision
Tree and Random Forest. In general, TPOT is one of the most popular Auto-ML frameworks
today. H2O [27], is a distributed Auto-ML framework that automates the process of training many
different ML models. The H2O training step is executed on the server and can be accessed by APIs
of different programming languages such as R, Python, Java, and Scala. H2O automates feature
engineering, data preprocessing, model selection, and hyperparameter optimization. H2O adapts
fast random search and stacked ensembles to optimize the recommended pipeline. LightAutoML
[31], is an open-source auto-ML framework that was proposed to serve the financial sector. It
can automate ML pipeline steps such as feature engineering, data preprocessing, model selection,
and hyperparameter optimization. ML-Plan [28], is another Auto-ML framework that depends
on hierarchical task networks (HTNs) [48]. ML-Plan automates the ML process by automating
algorithm selection and algorithm configuration tasks. STREAMLINE [29], is an Auto-ML frame-
work that focuses on conducting a transparent end-to-end ML pipeline. It was designed to easily
conduct ML modeling and analysis for binary classification problems. It focused exclusively on the
binary classification supervised learning problem with tabular data. In [49], authors proposed an
ML software development pipeline that integrates Auto-ML with MLOps. Through the Auto-ML
module, the software automates the process of building and tuning MLmodels for supervised learn-
ing classification problems. On the other hand, in the MLOps module, the software automates the
process of deploying and monitoring the machine models. OAML [23], is an Auto-ML method that
automates the online learning process. OAML focused on finding the optimal configuration of ML
pipelines in the context of batch learning. OAMLwas developed to solve the online CASH problem
in classification problems. OAML relied on the drift concept to monitor the models and update the
pipelines when a drift was detected. AutoKeras [30], is an Auto-ML library that automates the
process of building and training deep neural networks to solve standard ML problems. AutoKeras
provides an end-to-end deep learning solution to users, where the search space can be customized
by the user. AutoKeras is built on top of Keras and TensorFlow. In [50], authors proposed an Auto-
ML solution to automate the process of building ML models for big data. The solution focused on
hyperparameter optimization and the training process. The solution utilized Fabolas [51], and learn-
ing curve extrapolation [52], for hyperparameter optimization. Moreover, in the training process,
the solution adapted methods that fit the large-scale datasets, such as Bag of Little Bootstraps [53],
k-means clustering for SVMs, subsample size selection for gradient descent, and subsampling for
logistic regression. Naïve AutoML [32], Introduced as a benchmark to serve as a reference point for
comparing Auto-ML frameworks. This approach constructs the ML pipeline sequentially, one step
at a time, without considering the potential benefits of jointly optimizing algorithm selection and
hyperparameters across the entire pipeline. Its primary objective is to quickly provide a satisfactory
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model rather than finding the optimal model. To achieve this, Naïve AutoML incorporates an
aggressive early-stopping heuristic. In [49], authors proposed anML software development pipeline
that integrates Auto-ML with MLOps. Through the Auto-ML module, the software automates the
process of building and tuning ML models for supervised learning classification problems. On the
other hand, in the MLOps module, the software automates the process of deploying and monitoring
the machine models.

2.3 Cloud-Based Auto-ML Frameworks

Nevertheless, several cloud-based platforms have considered automating the ML process, consid-
ering the high computational power that characterizes cloud environments and hence can facilitate
trying different experiments with different ML algorithms and with a wide range of hyperparam-
eters. For example, Google Auto-ML [54], is a cloud-based service provided by Google Cloud to
automate the ML process to help ML experts or traditional users with less technical backgrounds.
Google Auto-ML provides a wide range of ML algorithms for different tasks, such as traditional
ML, natural language processing (NLP), and computer vision. For traditional ML tasks, the Auto-
ML Tables service can be used for tabular and structured data by automating ML pipeline tasks
such as feature engineering, model selection, and hyperparameter tuning. Moreover, for natural
Language processing tasks, Auto-ML Natural Language and Auto-ML Translation services can be
used to deal with text in tasks like text analysis, language detection, sentiment analysis, and text
similarity. Furthermore, for computer vision tasks, Auto-ML Vision and video intelligence services
can be used to extract insights from visual data such as object detection, image classification, and
object localization.

Moreover, Azure Auto-ML [55], is another cloud-based service provided by Microsoft to automate
both classification and regression tasks. Azure Auto-ML depends on Bayesian optimization and
collaborative filtering in searching for the optimal ML pipeline for a given dataset. Azure Auto-ML
is based on the search space of Scikit-Learn. Moreover, Amazon SageMaker [56], is a cloud-based
service provided by Amazon to automate the ML process. Among the different Auto-ML cloud
platforms, Amazon SageMaker has had a wide spread in the last few years. Amazon SageMaker
provides ML users with a wide range of ML and deep learning frameworks. Moreover, deploying
ML models can be performed on auto-scaling clusters in multiple zones, thereby guaranteeing high
availability and high performance during online predictions. Furthermore, Amazon provides a large
set of pre-trained models for different tasks such as recommendation systems, image classification,
text analysis, and voice recognition.

In addition, Auto-AI [57], is a cloud-based service provided by IBM to automate ML classification
and regression tasks. Auto-AI automates the ML process through a set of steps. First, identify the
best model (model selection) for the given dataset. Second, apply the feature selection step to keep
only the features that support the problem and eliminate the remaining features. Finally, examine a
wide range of hyperparameters. Auto-AI accordingly recommends the best-performingML pipeline
based on metrics such as accuracy and precision.
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2.4 Domain-Specific AutoML Applications

Generally, Auto-ML has been broadly adapted in various domains, such as healthcare [58–64],
blockchain [65], finance [31, 66, 67], transportation [68, 69], and manufacturing [40, 70]. This wide
spectrum of applications increases the need for more work and research to enhance the capabilities
of existing Auto-ML approaches.

While all of these Auto-ML frameworks provide partial or complete ML pipeline automation, each
one works differently and targets different algorithms or dataset structures. Although considering
meta-learning approaches and ensembling algorithms in some frameworks, some challenges still
exist.

Challenge 1: These frameworks are inefficient when applied to imbalanced datasets.

Challenge 2: Lack of advanced data preprocessing and feature engineering steps

Challenge 3: the high computational power that is needed to perform auto-ML experiments using
these frameworks.

In the next section, we will show our proposed Auto-ML framework, which tackles these three
challenges.

3. Proposed Auto-ML Framework: SML-AutoML

In this section, we present a newAuto-ML framework called SML-AutoML, designed to address the
challenges and constraints encountered in current frameworks. SML-AutoML stands as an Auto-
ML framework constructed upon the foundation of the Python library Scikit-Learn. This innovative
framework incorporates a repository of data collected from past ML experiments, leveraging this
information to construct models illustrating how various ML algorithms are likely to fare across
different datasets. When presented with a novel dataset, SML-AutoML utilizes these models to
direct experimentation and suggest the most suitable ML pipeline. Each recommendation provides
the SML-AutoML framework with additional insights via a feedback mechanism, enabling it to
refine its models and enhance their performance metrics (accuracy, recall, and precision).

FIGURE 2 provides an overview of the architecture of the SML-AutoML framework. This frame-
work consists of two main components. The first component is the controller, which interacts with
the training datasets. The controller gathers information regarding the various datasets, aiding in
the understanding of their unique characteristics. To retrieve this information from the training
datasets, the controller utilizes standard APIs like OpenML-Python [71]. The second component
is the ML pipeline manager. This manager receives the characteristics of new datasets from the
controller and archives them in its repository alongside the features of past datasets. Within the data
repository are also stored the outcomes of diverse ML experiments conducted on varied training
datasets with distinct characteristics. These experiments showcase the performance of the ML
pipeline across different datasets. The ML pipeline manager is complemented by background
processes that continuously evaluate new datasets and enhance SML-AutoML’s internalMLmodels.
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Figure 2: SML-AutoML architecture

These models empower the ML pipeline manager to identify the most analogous datasets and,
subsequently, the pertinent ML pipeline for the new datasets.

The development of the SML-AutoML framework progresses through two main phases. The initial
phase is the offline training stage, during which the framework undergoes training using differ-
ent ML algorithms and datasets possessing distinct features. The subsequent phase is the online
prediction stage, where an ML pipeline is suggested for a given new dataset utilizing the models
established during the offline stage.

Subsequent sections delve into how SML-AutoML acquires meta-features, which are characteristics
of datasets. A series of ML experiments is introduced, featuring diverse pipelines to monitor the
performance of each pipeline across each dataset. Additionally, the utilization of this knowledge
base to recommend the fitting ML pipeline for a specific dataset is elucidated.

3.1 SML-AutoML Offline Stage

In this learning step, SML-AutoML discovers the characteristics of the training datasets and per-
forms experimentalML over those training datasets. FIGURE3 illustrates the offline SML-AutoML
stage. The offline SML-AutoML pipeline stage consists of a set of steps. First, training datasets
from the OpenML repository [72], and Kaggle are input to the SML-AutoML framework. For each
training dataset, the framework performs two tasks:

• Identifying datasets’ characteristics

• Evaluating ML pipelines on the training datasets

In the first task, datasets’ characteristics are extracted by calculating some meta-features that de-
scribe the datasets and help in identifying their main features. The calculated meta-features are then
stored as metadata to be utilized in matching new datasets through the online stage.
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Figure 3: SML-AutoML Offline Stage

In the second task, anML training process is performed, and multiple pipelines are performed on the
training datasets. The training process consists of two main parts: data preprocessing and CASH.
In the data preprocessing part, different preprocessing pipelines, which represent the combination
of all preprocessing and feature engineering algorithms, are applied to the given training dataset.
Pipelines that fit the characteristics of the given dataset are applied, and the remaining pipelines
are excluded. For example, if the given dataset has no missing values, all pipelines that include
imputation algorithms are excluded. After that, the preprocessed dataset that was obtained from
each pipeline is transferred to the CASH part. In the CASH part,a grid search approach is used to
try different classifiers with different hyperparameters and select the best classifier and hyperpa-
rameters that achieve the highest performance [73]. TABLE 1 shows the different algorithms that
have been used in the complete pipeline. The performance of the dominant pipeline is then stored
in an evaluation matrix as metadata to be utilized in learning new datasets through the online stage.
We outline the process of offline training in Algorithm 1.

The proposed framework considers all tasks of the complete ML pipeline (i.e., data pre-processing,
feature engineering, model selection, and hyperparameter optimization). The data pre-processing
task considers the most popular techniques for processing datasets. For example, it considers
multiple imputation algorithms to fill missing values such as mean, median, mode, and K-nearest
neighbors [24]. For encoding data and transforming categorical features to numerical features,
algorithms such as One Hot Encoder, Ordinal Encoder, and Log Transformer are considered. Also,
for scaling and normalizing the data, scaler algorithms such as Min-Max scaler are considered [74].
In addition, for data balancing, data resampling techniques such as oversampling [75], undersam-
pling [76], and combined sampling [77], are used. Moreover, PCA [78], and polynomial features
are employed in the feature engineering part. Finally, for feature selection, RFE-Random Forest,
remove collinearity, and variance threshold techniques are examined. Currently, the proposed
SML-AutoML framework has been trained using 14 different classifiers (as shown in TABLE 2) to
complete the whole Auto-ML pipeline selection lifecycle.
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Table 1: The list of algorithms used by SML-AutoML

Data preprocessing Feature engineering Feature selection Classifiers

Ordinal Encoder GaussianNB
One Hot Encoder SVM
Log Transformer KNeighbors
Imputer – Mean PCA RFE-RandomForest Decision Tree
Imputer – Median Polynomial Features Remove Collinearity RandomForest
Imputer – Simple (Mode) Variance Threshold ExtraTreesClassifier
Imputer – KNN GradientBoostingClassifier
Resampling – Over Sampling Logistic Regression
Resampling – Under Sampling Bagging
Resampling – combine sampling LDA
Min Max - Scaler XGBoost

SGD
Ridge
LGBM

Algorithm 1 Offline training
Input: Datasets D, preprocessing pipelines Prepip, CASH search space CASHsp
Output: datasets characteristics DMeta, evaluation matrix Ematrix

1: for 𝑑i ⊂ 𝐷 do
2: diMeta ← extract characteristics of di
3: Append diMeta to DMeta
4: for 𝑝i ⊂ 𝑃𝑟𝑒pip do
5: if 𝑝i 𝑓 𝑖𝑡𝑠 𝑑iMeta then ⊲ //check whether all tasks in pi can be performed on di
6: 𝑑iTemp ← di
7: 𝑀𝑜𝑑𝑒𝑙best ← grid search (diTemp , CASHsp)
8: Append Modelbest to Ematrix
9: else
10: continue
11: end if
12: end for
13: end for

To the best of our knowledge, another limitation of most of the existing Auto-ML frameworks is
that they do not handle imbalanced datasets carefully, even though imbalanced datasets are widely
spread. In fact, imbalanced datasets exist in various use cases such as retail, churn prediction, fraud
detection, and cancer prediction. To tackle this challenge, SML-AutoML added some tasks in the
search space such as log transformers, data resampling, and collinearity removal.

After identifying the characteristics of the training dataset and performing ML pipelines on these
training datasets, the result of these two steps is stored in a data repository to be utilized for the
online prediction and for recommending the appropriate ML pipeline for any new dataset not in the
training set.

In addition, the data stored in the data repository acts as a knowledge base for analyzing the perfor-
mance of eachML pipeline on the different datasets. This in turn helps in extracting the relationship
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Table 2: Characteristics of the 30 datasets used for the evaluation

Dataset Cardinality Degree Num of
Classes

Minor
Class % Dataset Cardinality Degree Num of

Classes
Minor
Class %

Credit-Card-Fraud 284807 31 2 0.17 Heart-Attack-
Analysis-
Prediction

303 13 2 83.6

Telco-Customer-
Churn

7043 21 2 26 Hiring-Decisions-
in-Recruitment

1500 10 2 45

Anomaly-Detection 134229 8 2 4.8 manufacturing-
defect

3240 16 2 19

Covid-19 5644 106 2 9.9 Marketing-
Campaign

2240 28 2 17.5

Malware-Detection 5210 70 2 47.7 Minsk2020-ALS 64 134 2 94
House-Sales-

Prediction
21613 4 5 0.13 online-course-

engagement
9000 8 2 65.7

Oil-Spill 937 50 2 4.37 pet-adoption 2007 12 2 49
Wine-Quality 1599 12 6 0.62 Simple-Loan-

Classification
61 7 2 35.5

Occupancy-
Detection

8143 7 2 21.2 Thyroid-Disease 383 16 2 39

Abalone 4168 9 21 0.14 Titanic-Dataset 891 11 2 62
Bank-Marketing 41188 20 2 12.7 weather-

classification
13200 10 4 100

diabetes-prediction 100000 8 2 8.5 air-quality-health-
impact

5811 13 5 1.16

Drink-and-Drive 12282 5 2 45.6 Student-
performance

2392 14 5 9

E-Commerce-
Shipping

10999 11 2 67.5 Advanced-IoT-
Agriculture

30000 14 6 100

Employee-Attrition 59598 23 2 90.6 diagnosed-cbc 1281 14 9 3.27

between the ML pipeline performance and the features of the datasets so that future pipeline rec-
ommendations better match the dataset features.

3.2 SML-AutoML Online Stage

After constructing the knowledge base in the training stage, the knowledge base is utilized in
prediction and pipeline recommendation for new datasets. In general, SML-AutoML follows a set
of steps to recommend an ML pipeline for any given dataset. These steps are shown in FIGURE 4.

The process of recommending an ML pipeline for a given dataset is executed through three steps:

• Dataset characterization, where the SML-AutoML framework identifies the characteristics of
the given dataset by computing a set of meta-features.

• Similar datasets identification, where the computedmeta-features are comparedwith themeta-
features of all training datasets stored in the data repository, and identify the three nearest
datasets.
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Figure 4: SML-AutoML Online Stage

• Automatic pipeline recommendation, where the extraction of the stored ML pipelines perfor-
mance that has been stored in the data repository of those three nearest datasets happens, and
the recommendation of the dominant ML pipelines occurs. If no similar datasets exist for the
given dataset, the characteristics of the given dataset are stored in a data repository to be trained
using a customized search space. We outline the process of online pipeline recommendation
in algorithm 2.

Algorithm 2 Online prediction
Input: Dataset to be trained d, evaluation matrix Ematrix, Training datasets’ characteristics DMeta,
preprocessing pipelines Prepip, CASH search space CASHsp, Similarity threshold TH
Output: Recommended pipeline Piprecomend, Ematrix, DMeta

1: dMeta ← extract characteristics of d
2: diSimilar ← get the nearest dataset to d (dMeta, DMeta)
3: if 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑, 𝑑iSimilar) >= 𝑇𝐻 then
4: 𝑃𝑖𝑝recomend ← get dominant pipeline (diSimilar, Ematrix)
5: else
6: Append dMeta to DMeta
7: for 𝑝i ⊂ 𝑃𝑟𝑒pip do
8: if 𝑝i 𝑓 𝑖𝑡𝑠 𝑑Meta then ⊲ //check whether all tasks in pi can be applied on d
9: 𝑑Temp ← d
10: 𝑀𝑜𝑑𝑒𝑙best ← grid search (dTemp , CASHsp)
11: Append Modelbest to Ematrix
12: else
13: continue
14: end if
15: end for
16: end if
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4. EXPERIMENTAL EVALUATION

In this section, we present an evaluation of SML-AutoML’s ability to automatically recommend the
best ML pipeline for a given dataset. We implement all of our code in Python version 3.9.

4.1 Training Data Collection

As discussed in Section 3.1, SML-AutoML requires a corpus of previous training sessions where
the framework explores different training datasets that have different characteristics and are trained
using different ML algorithms. We evaluate our framework on 300 classification datasets with
different characteristics, such as number of instances, number of features, type of features, number
of classes, and class imbalance. All datasets are obtained from various sources, including the
OpenML repository [72], and Kaggle.

4.2 ML Pipeline Recommendation Evaluation

In this section, we demonstrate how learning from the training sessions improves SML-AutoML’s
ability to find a good ML pipeline for a given dataset. To accomplish this, we compare SML-
AutoML with the most popular Auto-ML pipeline generation platforms. We performed four differ-
ent experiments where we tracked multiple evaluation measures such as accuracy, precision, recall,
and time. First, we compare SML-AutoML with two open-source Auto-ML pipeline generation
platforms: TPOT and H2O. Second, we compare SML-AutoML with one open-source Auto-ML
pipeline generation platform: Auto-Sklearn. In the third experiment, we compare SML-AutoML
with two cloud-based Auto-ML platforms: Microsoft Azure Auto-ML and IBM Auto-AI. And
finally, we compare SML-AutoML with one open-source Auto-ML pipeline generation platform:
LightAutoML [31].

4.2.1 Datasets

We used 30 public datasets1 with different characteristics to compare our proposed framework to
the existing frameworks. TABLE 2 presents details about the datasets used in the evaluation.

4.2.2 Solution environment and hardware

Our proposed framework was implemented in Python 3.9 on a Windows 10 Core i7 CPU machine
with 16GB of RAM to compare it with Naive AutoML, TPOT, H2O, LightAutoML, OAML, and
Streamline. TABLE 3 shows the time in minutes it takes for Naive AutoML, TPOT, H2O, Ligh-
tAutoML, OAML, Streamline, and SML-AutoML to recommend an ML pipeline for each of the
evaluation datasets.

1 https://github.com/IbrahemGomaa/ML-Datasets/blob/main/Datasets.txt
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Table 3: Performance Evaluation (time) SML-AutoML vs Naive AutoML, TPOT, H2O,
LightAutoML, OAML, and Streamline

Auto-ML Frameworks

Datasets Naive
AutoML TPOT H2O Light

AutoML OAML Stream
line

SML-
AutoML

Credit-Card-Fraud 4.1 700 1.8 13.7 2.85 2916 0.67
Telco-Customer-Churn 10.5 29.1 1.4 2.25 2.7 628 0.62
Anomaly-Detection 12.7 295.2 1.7 19.9 2.78 676 4.3
Covid-19 5.6 35.7 1.5 10.5 2.7 396 1.1
Malware-Detection 6.3 31.9 1.72 7.7 2.7 421 0.48
House-Sales-Prediction 35.7 155 1.33 11.3 2.7 1.1
Oil-Spill 4.6 5.12 1.06 0.97 2.7 242 0.16
Wine-Quality 0.22 20.7 1.63 8 2.7 0.15
Occupancy-Detection 27.3 12.4 1.7 3.5 2.7 299 0.5
Abalone 11.5 104.2 1.73 13.4 2.7 1.83
Bank-Marketing 8.2 167.5 2.3 12.8 2.8 472 1.9
diabetes-prediction 9.8 204.6 1.37 6.8 2.7 566 2.5
Drink-and-Drive 0.1 14.9 1.5 8.6 2.7 458 0.9
E-Commerce-Shipping 0.5 16.3 1.6 12.8 2.7 495 1.1
Employee-Attrition 19.4 275 1.8 16.3 2.8 586 3.2
Heart-Attack-
Analysis-Prediction 0.15 4.8 1.3 2.1 2.7 132 0.4

Hiring-Decisions-
in-Recruitment 6.5 14.3 1.4 8.4 2.7 169 1.2

manufacturing-defect 3.13 17.2 1.5 11.4 2.7 177 1.3
Marketing-Campaign 20.7 16.8 1.7 10.9 2.7 212 2.3
Minsk2020-ALS 3.35 5.4 1.4 7.5 2.7 98 0.4
online-course-engagement 15.1 13.9 1.7 14.2 2.7 507 2.4
pet-adoption 4.2 8.6 1.4 7.6 2.7 133 0.8
Simple-Loan-Classification 2.1 4.2 1.3 5.8 2.7 82.1 0.3
Thyroid-Disease 3.8 12.2 1.6 11.3 2.7 162 1.2
Titanic-Dataset 10.7 56 1.8 15.2 2.7 418 2.2
weather-classification 14.6 112.3 1.7 9.4 2.7 2.6
air-quality-health-impact 18 101.7 1.5 8.2 2.7 1.3
Student-performance 8.7 49.5 1.7 6.4 2.7 1.1
Advanced-IoT-Agriculture 2.9 142 1.8 11.3 2.7 1.8
diagnosed-cbc 7.9 35.8 1.5 6.3 2.7 0.5

Moreover, the proposed framework was implemented in Python 3.9 using a virtual machine with
Ubuntu 20.04, 12 GB of RAM, and 4 processors to compare it with Auto-Sklearn. TABLE 4 shows
the time in minutes it takes for Auto-Sklearn and SML-AutoML to recommend an ML pipeline for
each of the evaluation datasets.
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Table 4: Performance Evaluation (time) SML-AutoML vs Auto-Sklearn

Auto-ML Frameworks

Datasets Auto-Sklearn SML-AutoML

Credit-Card-Fraud 60.1 0.66
Telco-Customer-Churn 59.9 0.55
Anomaly-Detection 60 4.1
Covid-19 59.8 1
Malware-Detection 60.1 0.45
House-Sales-Prediction 59.9 1.1
Oil-Spill 59.8 0.15
Wine-Quality 60 0.15
Occupancy-Detection 59.9 0.38
Abalone 59.8 1.8
Bank-Marketing 59.8 1.9
diabetes-prediction 59.9 2.4
Drink-and-Drive 60.1 0.8
E-Commerce-Shipping 60 1.1
Employee-Attrition 60.1 3.1
Heart-Attack-Analysis-Prediction 60.1 0.4
Hiring-Decisions-in-Recruitment 60 1.2
manufacturing-defect 59.8 1.2
Marketing-Campaign 60 2.3
Minsk2020-ALS 59.8 0.4
online-course-engagement 60 2.3
pet-adoption 60.1 0.8
Simple-Loan-Classification 60.1 0.4
Thyroid-Disease 60 1.1
Titanic-Dataset 59.8 2.3
weather-classification 59.8 2.5
air-quality-health-impact 59.8 1.4
Student-performance 60 1.3
Advanced-IoT-Agriculture 60.1 2.1
diagnosed-cbc 60 0.4

On the other hand, we compared our framework with Azure Auto-ML and IBMAuto-AI. We used a
compute cluster with 4 vCPUs (cores), 14 GB of RAM, and 28 GB of storage to perform Auto-ML
experiments for the 30 datasets on Microsoft Azure. On the other hand, we used an environment
with 8 vCPUs and 32 GB of RAM to perform Auto-ML experiments for the 30 datasets on IBM
Watson ML. TABLE 5 shows the time in minutes it takes for Azure Auto-ML, IBM Auto-AI, and
SML-AutoML to recommend an ML pipeline for each of the evaluation datasets.

Finally, TABLE 6 and TABLE 7, summarize the performance of the proposed framework against
the existing frameworks for the binary and multi-class classification datasets.
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Table 5: Performance Evaluation (time) SML-AutoML vs Azure Auto-ML and IBM Auto-AI

Auto-ML Frameworks

Datasets Azure Auto-ML IBM Auto-AI SML-AutoML

Credit-Card-Fraud 84 127 0.67
Telco-Customer-Churn 52.6 5 0.62
Anomaly-Detection 112.3 5.3 4.3
Covid-19 50.8 6.1 1.1
Malware-Detection 123.4 7.2 0.48
House-Sales-Prediction 58.6 9.4 1.1
Oil-Spill 63.7 6.3 0.16
Wine-Quality 62.6 11.7 0.15
Occupancy-Detection 59.46 6.6 0.5
Abalone 120.8 8.9 1.83
Bank-Marketing 78 12.9 1.9
diabetes-prediction 86.5 15.7 2.5
Drink-and-Drive 50.3 12.3 0.9
E-Commerce-Shipping 51.9 11.6 1.1
Employee-Attrition 102.6 38.2 3.2
Heart-Attack-Analysis-Prediction 48.6 6.4 0.4
Hiring-Decisions-in-Recruitment 53 11.8 1.2
manufacturing-defect 58.2 17.3 1.3
Marketing-Campaign 72.6 24 2.3
Minsk2020-ALS 48.3 9.7 0.4
online-course-engagement 66.3 22.3 2.4
pet-adoption 51.3 14.3 0.8
Simple-Loan-Classification 47.6 4.5 0.3
Thyroid-Disease 56.2 7.8 1.2
Titanic-Dataset 66.4 15.4 2.2
weather-classification 71.4 19.4 2.6
air-quality-health-impact 59 14.5 1.3
Student-performance 54.8 12.3 1.1
Advanced-IoT-Agriculture 61.8 11.2 1.8
diagnosed-cbc 48.3 6.3 0.5

4.3 Evaluation Results and Analysis

In this section, we will analyze the experimental results that have been performed to compare our
proposed framework, SML-AutoML, with the existing frameworks. In the results of the experi-
ments, presented in TABLE 6, and TABLE 7, it is shown that the performance of the proposed frame-
work, SML-AutoML, and Naive AutoML, TPOT, H2O, OAML, Streamline, and Auto-Sklearn
frameworks is almost similar in terms of accuracy, precision, and recall measures of binary class
datasets, with a slight superiority of SML-AutoML in those measures. However, this superiority
appears greatly in the same measures (accuracy, precision, and recall) for multi-class datasets.
Additionally, SML-AutoML dominates TPOT, H2O, LightAutoML, OAML, Streamline, and Auto-
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Table 6: AutoML frameworks’ performance comparison for binary classification

Open-source solutions Cloud-based solutions Proposed

Datasets Measure Naive
AutoML TPOT H2O Light

AutoML OAML Stream
line

Auto-
sklearn

Azure
Auto-ML

IBM
Auto-AI

SML-
AutoML

Credit-Card-
Fraud

Accuracy 99.9% 99.9% 99.9% 99.8% 99.8% 99.9% 99.9% 99.9% 99.9% 99.9%
Precision 99.9% 99.9% 83.7% 99.8% 94.9% 99.9% 99.9% 93.6% 99.9%
Recall 99.9% 99.9% 79.5% 99.8% 90.4% 99.9% 99.9% 79.3% 99.9%

Telco-
Customer-
Churn

Accuracy 79.8% 79.6% 78.2% 80.6% 78.8% 80.5% 79.5% 80.9% 80.1% 85.3%
Precision 78.7% 83.3% 60.9% 77.5% 67.2% 78.3% 79.9% 73.6% 85.3%
Recall 79.8% 98.9% 80.4% 78.8% 81.5% 79.5% 80.9% 53.2% 98.7%

Anomaly-
Detection

Accuracy 96.2% 97.3% 96.3% 97% 96.8% 96.9% 97.1% 97% 95.3% 98%
Precision 95.7% 96.4% 62.4% 96.4% 78.5% 96.9% 96.7% 79% 98%
Recall 96.2% 96.5% 64.6% 96.8% 88.4% 97.1% 97% 21.4% 98%

Covid-19
Accuracy 90.9% 91.2% 83.8% 10% 90.3% 90% 90.8% 90.7% 90.3% 93.8%
Precision 88.2% 100% 24.1% 91.2% 50.8% 89.4% 89.3% 72.2% 100%
Recall 90.9% 97.7% 78.6% 90.3% 98.7% 90.8% 90.7% 27% 97.4%

Malware-
Detection

Accuracy 99.3% 99.2% 99.4% 98.9% 98.6% 99.1% 99.3% 99.1% 96.5% 99.3%
Precision 99.3% 99.2% 99.3% 98.6% 99% 99.3% 99.1% 95% 99.3%
Recall 99.3% 99.8% 99.5% 98.6% 99.5% 99.3% 99.1% 95.6% 99.3%

Oil-Spill
Accuracy 96% 97.4% 96% 96.2% 96.5% 96.3% 96.1% 97.3% 97.6% 98.7%
Precision 95.7% 33.3% 53% 96% 68.3% 95.1% 97.2% 81.5% 98.7%
Recall 96% 77.7% 83.3% 96.5% 95% 96.1% 97.3% 64.5% 98.7%

Occupancy-
Detection

Accuracy 99.4% 99.6% 99.4% 99.2% 99.7% 99.3% 99.6% 99.4% 99.3% 99.6%
Precision 99.4% 99.3% 98.7% 99.7% 98% 99.6% 99.4% 98.2% 99.6%
Recall 99.4% 100% 99.5% 99.7% 99.8% 99.6% 99.4% 98.8% 99.6%

Bank-
Marketing

Accuracy 91.6% 91% 90.2% 90.6% 91.4% 91% 90.9% 92.1% 86.4% 93.5%
Precision 91.1% 91.8% 88.4% 92.5% 91% 92% 92.8% 84.1% 93.6%
Recall 91.6% 91% 90.2% 91.4% 91% 90.9% 92.1% 86.4% 93.5%

diabetes-
prediction

Accuracy 97% 97.4% 81.5% 96.8% 96.4% 96.3% 97.8% 97.2% 97% 98.1%
Precision 97% 98.7% 69.2% 96.4% 96.7% 98.1% 97.5% 79% 98.1%
Recall 97% 97.4% 81.5% 96.4% 96.3% 97.8% 97.2% 71.6% 98.1%

Drink-and-
Drive

Accuracy 67.9% 67.8% 61.8% 65.8% 68% 62% 68% 68.1% 63% 82.5%
Precision 64.4% 78.5% 45% 67% 46.6% 64.2% 65.2% 27.5% 83%
Recall 67.9% 84.8% 61.8% 68% 62% 68% 68.1% 39.5% 91%

E-
Commerce-
Shipping

Accuracy 68.5% 70.1% 64.6% 67.8% 69.4% 67.9% 68.3% 68.7% 59.7% 87.7%
Precision 80% 83.8% 58.6% 80.5% 79.2% 80.1% 80.6% 45% 87.7%
Recall 68.5% 70.1% 51.3% 69.4% 67.9% 68.3% 68.7% 34.7% 94.5%

Employee-
Attrition

Accuracy 75.6% 75.2% 75.7% 79.2% 76.3% 77.2% 74.8% 77.8% 79% 89.4%
Precision 75.6% 81% 60.5% 76.3% 69.8% 74.8% 77.8% 72.3% 89%
Recall 75.6% 95.2% 73.4% 76.3% 77.2% 74.8% 77.8% 52.2% 92.4%
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Table 6: Continued..

Open-source solutions Cloud-based solutions Proposed

Datasets Measure Naive
AutoML TPOT H2O Light

AutoML OAML Stream
line

Auto-
sklearn

Azure
Auto-ML

IBM
Auto-AI

SML-
AutoML

Heart-
Attack-
Analysis-
Prediction

Accuracy 78% 78% 79.5% 77.6% 78.6% 77.3% 79.2% 79% 77.8% 83.2%
Precision 78% 81% 61% 78.6% 73% 79.2% 79% 68.8% 83.2%
Recall 78% 94.4% 56.3% 78.6% 68.5% 79.2% 79% 62.4% 92.7%

Hiring-
Decisions-in-
Recruitment

Accuracy 92% 94.2% 91.8% 91.2% 93.2% 91.8% 94.3% 94.3% 92.1% 94.6%
Precision 92% 93.2% 91.8% 93% 84.5% 94% 94.3% 90.5% 94.6%
Recall 92% 94.2% 91.8% 93.2% 86.4% 94.3% 94.3% 92.1% 94.6%

manufacturing-
defect

Accuracy 96% 97.3% 95.6% 96% 96.5% 95.8% 95.7% 96.2% 95.7% 97.4%
Precision 96% 97.3% 93.8% 96.5% 91% 95.7% 96.2% 95.7% 98.6%
Recall 96% 97.8% 94% 96.5% 90.4% 95.7% 96.2% 95.7% 97.4%

Marketing-
Campaign

Accuracy 85.4% 86.2% 85.5% 83.2% 84% 84% 85.2% 85.6% 84.1% 89%
Precision 82.9% 83.5% 79.3% 81.4% 75.5% 83.1% 83.4% 72% 85.4%
Recall 85.4% 91% 71.8% 84% 79.7% 85.2% 85.6% 68.8% 89%

Minsk2020-
ALS

Accuracy 75% 74.5% 72.7% 23.4% 75% 74.3% 75.1% 75.6% 73.8% 80.2%
Precision 76% 74.5% 66% 75.5% 66.2% 75.8% 77.2% 72% 75.8%
Recall 75% 74.5% 64.5% 75% 62.3% 75.1% 75.6% 73.8% 80.2%

online-
course-
engagement

Accuracy 96.7% 97.4% 96% 97.1% 96.8% 96.3% 97.4% 97% 96% 97.3%
Precision 96.7% 96.8% 72% 96.5% 88% 96.8% 96.7% 92.2% 97.3%
Recall 96.7% 96.8% 73% 96.8% 87.5% 96.8% 97% 92.6% 97.3%

pet-adoption
Accuracy 94.5% 95.2% 95% 95.7% 95.3% 94.8% 95% 94.8% 93.7% 96.3%
Precision 94.5% 95.4% 62.4% 94% 89% 94.6% 94.8% 94% 96.3%
Recall 94.5% 95.4% 61.3% 94% 87.4% 95% 94.8% 93.7% 96.3%

Simple-
Loan-
Classification

Accuracy 94.7% 95.4% 93.8% 95.5% 94.2% 93.8% 94.7% 95.2% 93.7% 95.3%
Precision 95.3% 95.4% 71% 94.2% 89.5% 94.9% 95.4% 90.5% 97.2%
Recall 94.7% 95.4% 66.7% 94% 86.4% 94.7% 95.2% 89.4% 95.3%

Thyroid-
Disease

Accuracy 95.6% 97.2% 94.8% 94.3% 95.5% 95.2% 96% 97.5% 95.6% 97.4%
Precision 95.8% 97.5% 87.4% 95.5% 92.7% 96.6% 98.4% 91.5% 98.6%
Recall 95.6% 97.2% 88.6% 95.5% 89.5% 96% 97.5% 95.6% 97.4%

Titanic-
Dataset

Accuracy 78.7% 85.4% 78.2% 78.4% 77.6% 78.4% 79.2% 86.4% 77.9% 88.3%
Precision 78.7% 85.4% 67.3% 77.6% 74.3% 79.5% 86.4% 64.2% 88.3%
Recall 78.7% 85.4% 53.8% 77.6% 72.6% 79.2% 86.4% 58.4% 88.3%

Sklearn frameworks over time, as shown in TABLE 3, and Table 4. SML-AutoML can recommend
the appropriate pipeline faster for most datasets. Moreover, the TPOT framework dominates the
H2O framework in accuracy, precision, and recall for all datasets. On the other hand, H2O and
OAML take less time in all experiments than TPOT because of their dependence on a sample of the
data instead of the total population or the whole dataset.
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Table 7: AutoML frameworks’ performance comparison for multi-class classification

Open-source solutions Cloud-based solutions Proposed

Datasets Measure Naive
AutoML TPOT H2O Light

AutoML OAML Auto-
sklearn

Azure
Auto-ML

IBM
Auto-AI

SML-
AutoML

House-Sales-
Prediction

Accuracy 64.8% 64.7% 65.2% 0.01% 64.9% 64.8% 66.5% 33% 72.6%
Precision 59.3% 71.3% 68.8% 42% 55.9% 65.8% 43.2% 72.6%
Recall 64.8% 64.7% 65.2% 64.9% 64.8% 66.5% 33% 72.9%

Wine-
Quality

Accuracy 58.7% 68.5% 69.8% 0.0% 71% 64.2% 68.9% 59.5% 88.2%
Precision 55.7% 62.7% 66.2% 67.6% 60.8% 66% 55.9% 88.1%
Recall 58.7% 68.5% 69.8% 71% 64.2% 68.9% 59.5% 88.2%

Abalone
Accuracy 25.9% 26.5% 28.3% 0.0% 26.6% 24.5% 27.8% 28.1% 80%
Precision 24.6% 29.6% 29.2% 23% 22.1% 25.7% 26.2% 80%
Recall 25.9% 27.7% 28.3% 26.6% 24.5% 27.8% 28.1% 79.1%

weather-
classification

Accuracy 91.3% 92.4% 92.8% 0.0% 92.6% 90.7% 90.5% 90.2% 97.4%
Precision 91.4% 92.7% 92.8% 92.8% 91.5% 90.6% 87.6% 98.2%
Recall 91.3% 92.4% 92.8% 92.6% 90.7% 90.5% 85.2% 97.4%

air-quality-
health-
impact

Accuracy 95% 92.3% 94.5% 0.0% 95.2% 95.4% 94.9% 90.2% 98.6%
Precision 94.6% 92% 89.2% 94.6% 94.5% 94.3% 88.5% 99.1%
Recall 95% 92.3% 91.3% 95.2% 95.4% 94.9% 89.2% 98.6%

Student-
performance

Accuracy 92.3% 93.3% 92.2% 0.8% 93.4% 92.2% 92% 91.5% 97.3%
Precision 92.1% 93.2% 91.4% 93.2% 91.6% 91.3% 79.5% 95.6%
Recall 92.3% 93.3% 92.2% 93.4% 92.2% 92% 86.5% 97.3%

Advanced-
IoT-
Agriculture

Accuracy 100% 99.9% 99.9% 0.3% 99.9% 99.9% 99.9% 94.8% 99.9%
Precision 100% 99.9% 99.4% 99.9% 99.9% 99.9% 86.7% 99.9%
Recall 100% 99.9% 99.5% 99.9% 99.9% 99.9% 94.8% 99.9%

diagnosed-
cbc

Accuracy 98.1% 98% 97.6% 0.0% 98.5% 97.8% 98.7% 88.5% 99.8%
Precision 98.1% 98% 89.2% 98.5% 97.8% 98.7% 87.7% 99.8%
Recall 98.1% 98% 87% 98.5% 97.8% 98.7% 85.7% 99.8%

Moreover, SML-AutoML and Azure Auto-ML outperform IBM Auto-AI in all measures of most
of the datasets. It is also shown that the performance is almost similar between the SML-AutoML
framework and Azure Auto-ML, with a slight superiority for SML-AutoML. However, this supe-
riority appears greatly in performance and time in the case of multi-class datasets, as shown in
TABLE 6, and Table 7.

Our proposed framework demonstrates a notable superiority in terms of cost-efficiency, as it requires
less time to recommend an appropriate pipeline for a given dataset. This advantage stems from its
implementation of a meta-learning approach and its utilization of diverse datasets during the training
phase.
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On the other hand, SML-AutoML outperforms existing frameworks in terms of accuracy, precision,
and recall, particularly for multi-class datasets. The exceptional performance of SML-AutoML
can be attributed to the comprehensive range of tasks integrated into its pipeline. These tasks
encompass various preprocessing steps, such as data resampling, ensemble algorithm utilization,
and collinearity detection, as well as an extensive array of ML algorithms and their corresponding
hyperparameters. By adopting this comprehensive approach, SML-AutoML effectively optimizes
the end-to-end process for a given dataset, resulting in enhanced overall performance compared to
other frameworks.

However, it is important to acknowledge that some existing Auto-ML frameworks achieve compa-
rable results for imbalanced binary datasets by incorporating ensemble algorithms. Nevertheless, it
should be emphasized that relying exclusively on ensemble algorithms is insufficient to consistently
produce well-performing models across all instances of imbalanced datasets.

5. CONCLUSION AND FUTUREWORK

In this paper, we propose a new Auto-ML framework named SML-AutoML for the automatic rec-
ommendation of ML pipelines. The significant advantage of our proposed framework is its ability
to recommend the appropriate pipeline for a given dataset in a short time. Moreover, its ability
to deal with imbalanced binary and multiclass datasets. Those advantages are due to integrating
multiple components, such as utilizing meta-learning, including data resampling techniques, using
additional transformation techniques that fit the nature of imbalanced datasets, and making use of
both ensemble and basic algorithms. Thus, adapting those components enables our framework to
outperform state-of-the-art results in terms of accuracy, precision, recall, and time. Experiments and
analysis show that our proposed framework achieves, on average, more than 5% outperformance
compared to the existing auto-ML frameworks. For future work, we intend to extend our proposed
framework to include unsupervised learning and time series forecasting problems.
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