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Abstract
The challenge of designing timetables for public transit is to adjust departure time to the
varying passenger flow, provide high quality service, and optimize allocation of recourses.
The timetable design method proposed in this study, is based on both fuzzy constraint and
fuzzy goal, vehicle usage degree and passenger satisfaction, with big and small size vehi-
cles. Passenger flow is extracted from real operation data of Shijiazhuang bus line 1, which
includes history data of Intelligent Card (IC), to record passenger alighting time, and Global
Position System (GPS), to record real-time location of vehicles. Decision-making on size of
the vehicles to be used, and time interval at certain time state is discussed. Two strategies are
investigated including minimizing total cost per minute, and random selection of vehicle size
followed by maximizing the degree of fuzzy constraints. Cost of timetable evaluates from
four criteria: cost of waiting time, travel time, bus services time, and vehicle drive distance.
Heuristic algorithms are designed to solve this problem and integer programming is used in
producing timetable. Different strategies are compared on the basis of current experimental
results, and show that random selection of vehicle size followed by maximizing the degree
of fuzzy constraints is a flexible and effective way in generating a timetable.
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1. INTRODUCTION

A timetable for public transit is a sequence of times when vehicles depart form bus station. Urban
development and expansion rely on high service levels of public transit. Optimizing timetables is a
rapid way to improve the service quality and rearrange limited resources. Even headway dispatch is
the simplest and most common way to build a timetable. However, this often cause overcrowding
at peak hours and low usage of vehicle at off peak hours. Accurate passenger flow is the key
information in designing an efficient timetable. However, obtaining the specific information of
passenger flow is a hard problem. Vehicle capacity is also a very important constraint, which limits
the maximum number of on board passengers. The object of designing a new timetable is to provide
a comfortable bus ride for passengers while allocating resources efficiently.

Previous research on obtaining the passenger flow focuses mainly on three aspects [1]: modeling
passenger behaviors, using Automatic Collection Systems, and and extracting from IC card. A
cellular automata-based alighting and boarding micro-simulation model for passengers in Beijing
Metro stations is build according to the observation of alighting and boarding [2]; the model helps
metro company in organizing passenger and evaluating function of facilities. Origin-destination of
passengers are estimated from origin-only Automatic Fare Collection system [3], and many other
potentials of Automatic Data Collection are discussed. Destination location for each individual can
be estimated by analyzing the data from Smart Card Automated Fare Collection system [4]. The
smart card is used to investigate passenger trips (user type, on-board time, travel modes) to develop
a new fare system of South Korea. Instead of using onemaximum fee, the new system charges based
on travel distance to reduce the cost of passengers [5]. Multi-modal journeys (bus-to-underground,
underground-to-bus, and bus to bus) are analyzed with Oyster smart fare payment data in London
[6], to study how passenger travel in their daily life.

In this study, passenger flow is extracted, by combining data of GPS and IC, from real system.
The data comes from Intelligent transport system (ITS), which is widely developed in many cities
of China, and the operation data used in many researches. The reliability of the bus service is
evaluated based on GPS and IC data, in which the travel time and headways at each bus stop are
obtained from GPS. The number of boarding passengers is obtained from IC data [7]. Passenger
flow at bus stop, and bus line can be obtained by integrating GPS and IC data [8]. Matching the
boarding bus stop of passengers is much easier than an alighting bus stop, as boarding bus stop
can be obtained from smart card tapping time (from IC card) and vehicle stop time (from GPS
records). Deriving the passenger density and estimating passenger destination based on tapping
time and boarding bus stops [9], was proposed in 2014. This is the point of departure of this study
in estimating the destination of passengers.

From previous research, it can be see that detail information of passenger is fundamental of timetable
scheduling. There are two common ways to built a timetable [10], frequency-based operation and
timetable-based operation. Frequency-based operation is widely used in regular scheduling where
the demand is stable, while timetable-based needs to adjust departure time to fit the variation of
the passenger flow. Frequency determination using counted passenger data is studied in [11], in
which service time is divided into small time periods (like one hour) and each period has a different
frequency to adjust the variation of passenger flow; four methods are proposed to derive frequency,
two are based on the maximum on-board passenger load of all bus stops, the other two are based
on the ride distance of passengers; the four methods all provide schedule that reach certain load
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standard and avoid overcrowding. Frequency decides the crowed on-board situation. The joint
optimization of price and frequency are discussed in [12]. Uncertain demand of passenger flow
is taken into account in bus frequencies optimization, and described as a probability distribution
function [13].

As discrete time intervals have limit values under bounded constraints [14], determination of pre-
ferred headwaysmainly use heuristic algorithms and are formulated as amixed integer programming
problem [15]. Decision making on time interval between two successive bus services with discrete
time is easy to model and apply in real system [16]. Continuous service time is rescaled to discrete
values of equal time intervals (unit of time can be 30 s, 1 min, 2 min) [17], and each discrete value
is a time state that have its own value of features like: passenger flow of the line, arriving rate
and leaving rate of bus stops. Hierarchical classification algorithms have been used to classify bus
service time into few periods [18], time states in one period has same features [19]; but if the time
span of each period is quite long, it fails to describe the traffic situation precisely. The shorter the
time period, the more precisely can the travel condition be described.

Most of the timetable scheduling optimization problems in previous studies are formulated into
an objective function with crisp constraints. However in the real world system, there are many
reasons that affect transit system: population, weather, season, expand of city etc. Incomplete
knowledge, fluctuation of passenger flow, and varying riding time challenge the performance of
these approaches in deterministic environment [20]. Various kind of uncertainties can be categorized
as stochastic uncertainty and fuzziness [21]. Stochastic uncertainty relates to the uncertainty of oc-
currences of events which lie in well defined information [22]. A fuzzymulti-objective optimization
problem is formulated to model single bus line timetabling [23]. The relationship between the
objective functions and decision variables is described by fuzzy reasoning schemes [24]. Weighted
constraint aggregation in fuzzy optimization is specified by the preference of the decision-maker
[25, 26]. A summary of understanding of fuzzy optimization and clarification of fuzzy goals and
constraints are given in [22].

Our previous work [27, 28], design and optimization of timetable to meet dynamic temporary
passenger flow under a fuzzy environment, followed the decision-making under fuzzy environment
proposed by Bellman and Zadeh [29]. Two fuzzy constraints: the usage degree of service buses
(𝜇𝑢) and the satisfaction degree of passengers (𝜇𝑠) were proposed and compared with the model
under crisp constraints. The results show that the model with fuzzy constraints shorten the waiting
time for passengers, and could adjust timetable better to fit the variation of passenger flow.

The model with two fuzzy constrains takes into consideration of both passengers satisfaction and
bus capacity usage degree. However, time interval at peak hours and off peak hours changes a lot
as passenger flow fluctuates. The variation of time interval cause dissatisfaction (especially winter
in the morning) as passengers don’t know how long they must wait. Boundary of headways may
cause low usage degree in off peak hours (when capacity of vehicle is large), or over crowded at
peak hour(when capacity of vehicle is small). Multi-vehicle in timetable scheduling have been
investigated by many researchers [14, 30, 31], Minimum cost per minute is used to make decision
of the size of vehicle in timetable scheduling [15]. Based on the achievements of previous research,
hybrid vehicle timetable scheduling under fuzzy constraints is investigated in this study. Two vehicle
sizes, 𝐵𝑏𝑖𝑔 and 𝐵𝑠𝑚𝑎𝑙𝑙, are considered to reduce the variance of time interval between two successive
vehicles. Two strategies, minimize total cost per minutes of objective function, random selection of
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vehicle size followed by maximizing the degree of fuzzy constraints is used to decide the vehicle
size being used at certain time state.

Heuristic algorithms are designed to build decision space, which contain size of vehicle and value
of time interval at each time state. Integer programming is used to produce the timetable based
on service time and decision space. Different strategies in our model are compared on the basis of
current experimental results, and show that random selection of vehicle size followed bymaximizing
the degree of fuzzy constraints is a better way to generate a flexible and effective timetable.

The notation and terminology are described in section 2. Models and formulations are introduced
in section 3. The algorithms to calculate decision space and design timetable are given in section 4.
Comparison between different models is shown in section 5. Conclusions and future research are
summarized in section 6.

2. NOTATION AND TERMINOLOGY

To model the problem of timetable design, a number of quantities and operational constraints [23],
are defined as follows:

2.1 Assumptions

(a) Time State Space: To apply the approach described in [29], the continuous service time space T
is translated into a discrete finite 𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑡𝑒 𝑆𝑝𝑎𝑐𝑒 : T , with P = |T | < ∞, with equivalent
interval of one minute (that is, for 𝑡𝑖 , 𝑡𝑖+1 ∈ 𝑇, 𝑡𝑖+1 − 𝑡𝑖 = 1).

(b) Time Stage Space: T is divided into finite Time Stage Space, K, with N = |K | < ∞, with
equivalent interval 𝜏 ∈ [5, 30] (minutes) depending on operating requirements. The time
state 𝑡 corresponds to the time stage 𝑘 , where 𝑘 is obtained by Eq. (1).

𝑘 = ⌈𝑡/𝜏⌉ (1)

(c) The timetable S = {𝑠1, 𝑠2, . . . , 𝑠M}, corresponds to service time span [𝑠1, 𝑠M] where 𝑠𝑚
denotes the departing time for 𝑚th bus service from the first bus stop. The departure time
of the first/last bus services 𝑠1/𝑠M are predefined. M is the total number of services.

(d) The decision variable, 𝛿 ∈ Δ, with |Δ| = Q < ∞, i.e. 𝛿 takes values in a finite set of time
intervals between two successive bus stops; where 𝛿1 < 𝛿2 <, . . . , < 𝛿Q , with 𝛿𝑖+1 − 𝛿𝑖 =
1, 𝑖 = 1, 2, ....Q − 1.

(e) Bus stops are numbered from 1 to 𝐽. For 𝑗 ∈ J = {1, . . . , 𝐽} passengers arriving in the time
interval 𝛿 ∈ Δ are distributed uniformly.

(f) The maximum bus capacity B of big/small vehicle is B𝑏𝑖𝑔/B𝑠𝑚𝑎𝑙𝑙
1.

(g) 𝐷𝑖𝑠 is the distance from the first bus stop to last bus stop.

1 In China, B is defined very precisely as the number of passenger seats plus the bus effective standing area (sq.m.) times 8 (this
assumes that up to 8 people can stand on a square meter surface).
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2.2 Constraints

To capture the traffic conditions at time sate 𝑡 ∈ T corresponding to time stage 𝑘 ∈ N , with time
interval 𝛿 ∈ Δ, and vehicle size B, B ∈ {B𝑏𝑖𝑔,B𝑠𝑚𝑎𝑙𝑙}. The following constraints are given.

(a) 𝑏𝑘𝑗 denotes the arriving rate of bus stop 𝑗 , at time stage 𝑘 . The number of passengers wait-
ing/boarding at bus stop 𝑗 is 𝑏𝑘𝑗 × 𝛿, and waiting time of these passengers is (𝑏𝑘𝑖 × 𝛿2)/2.

(b) 𝑎𝑘𝑖 𝑗 denotes the leaving rate of passengers boarding from bus stop 𝑖 and alighting at bus stop 𝑗
at time stage 𝑘 . The number of passengers boarding from bus stop 𝑖 and alighting at bus stop
𝑗 is 𝑏𝑘𝑖 × 𝛿 × 𝑎𝑘𝑖 𝑗 .

(c) N 𝑡 , 𝛿
𝑗 denotes the number of passengers still on-board the bus when it leaves bus stop 𝑗 , and
shown in Eq. (2).

N 𝑡 , 𝛿
𝑗 = N 𝑡 , 𝛿

𝑗−1 + 𝑏𝑘𝑗 × 𝛿 −
𝑗−1∑
𝑖=1

𝑏𝑘𝑖 × 𝛿 × 𝑎𝑘𝑖 𝑗 (2)

(d) 𝑡𝑘𝑗 is the travel time between stops 𝑗 and 𝑗 + 1 for bus depart bus stop 𝑗 at time stage 𝑘 .

(e) 𝑤𝑘
𝑗 is the weight of bus stop 𝑗 at 𝑘 .

(f) When vehicle capacity is B, 𝜇𝑠,B (N 𝑡 , 𝛿
𝑗 ) is the membership function of fuzzy goal (passen-

ger satisfaction), evaluated at the number of passengers on-board, N 𝑡 , 𝛿
𝑗 ; 𝜇𝑢,B (N 𝑡 , 𝛿

𝑗 , 𝑛) is
the membership functions of constraint (vehicle usage degree), evaluated at the number of
passengers on-board, N 𝑡 , 𝛿

𝑗 and threshold 𝑛. The shape of fuzzy constraint is adjustable with
different value of 𝑛 to fit the needs of scheduler and produce certain number of bus services.

(g) 𝜇𝑡𝑠,B (𝛿), 𝜇
𝑡
𝑢,B (𝛿) are the membership functions for passenger satisfaction and vehicle usage

degree respectively, evaluated at N 𝑡 , 𝛿
𝑗 , aggregated over all but the last bus stop.

(h) 𝜇𝑡𝐷,B (𝛿) is the fuzzy set of decision, which results from the intersection of 𝜇𝑡𝑠,B (𝛿) and 𝜇
𝑡
𝑢,B (𝛿).

(i) 𝛿𝑡 means the optimized time interval at time state 𝑡.

(j) C𝑡
B (𝛿) denotes cost per minute under different time interval 𝛿 vehicle at time state 𝑡 with size B.

(k) A 1 × P Vector FlagB (𝑡) is used to record the size of vehicle that should be used at time state
𝑡. A 1× P Vector FlagS (𝑡) is used to record weather there is a bus service at time state 𝑡 after
timetable scheduled.

3. MODEL FORMULATION

Model 1 uses a minimum cost per minute [15], to make decisions on the type of vehicles and time
interval simultaneously. Model 2 chooses the time interval and size of vehicle that has maximum
fuzzy degree.
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3.1 Model 1

Decision of vehicle size B and time interval 𝛿 at time state 𝑡 is as follows:

𝛿𝑡 = argmin{C𝑡
B (𝛿)} (3)

where

C𝑡
B𝑏𝑖𝑔

(𝛿) =
∑

𝑗∈J\{𝐽 }

(
1
2𝑐1 × 𝑏𝑘𝑗 × 𝛿2 + 𝑐2 × N 𝑡 , 𝛿

𝑗 × 𝑡𝑘𝑗 + 𝑐3 × 𝑡𝑘𝑗 + 𝑐5 × 𝐷𝑖𝑠
)

𝛿
(4a)

C𝑡
B𝑠𝑚𝑎𝑙𝑙

(𝛿) =
∑

𝑗∈J\{𝐽 }

(
1
2𝑐1 × 𝑏𝑘𝑗 × 𝛿2 + 𝑐2 × N 𝑡 , 𝛿

𝑗 × 𝑡𝑘𝑗 + 𝑐4 × 𝑡𝑘𝑗 + 𝑐6 × 𝐷𝑖𝑠
)

𝛿
(4b)

subject to:

𝑘 = ⌈𝑡/𝜏⌉, 𝜏 ∈ [5, 30] (5a)

N 𝑡 , 𝛿
𝑗 ≤ B, 𝑗 = 1, . . . ,J − 1 (5b)

𝛿 ∈ Δ = {𝛿1, 𝛿2, . . . , 𝛿Q} (5c)
B ∈ {B𝑏𝑖𝑔,B𝑠𝑚𝑎𝑙𝑙} (5d)

FlagB (𝑡) =
{

0 if C𝑡
B𝑠𝑚𝑎𝑙𝑙

(𝛿) <= C𝑡
B𝑏𝑖𝑔

(𝛿) at 𝑡
1 if C𝑡

B𝑏𝑖𝑔
(𝛿) < C𝑡

B𝑠𝑚𝑎𝑙𝑙
(𝛿) at 𝑡 (5e)

Cost per minute for big and small vehicle are calculated respectively at each time state 𝑡, as shown
in Eq. (4a) and Eq. (4b). The optimal time interval 𝛿𝑡 at time state 𝑡 is decided by the minimum
C𝑡
B (𝛿), as shown in Eq. (3). The flag of vehicle size which brings the minimum C𝑡

B (𝛿) is recorded
in vector FlagB (𝑡), as shown in Eq. (5e).

3.2 Model 2

Vehicle size in Model 2 is decided randomly, then time interval is chosen by maximizing decision
value of fuzzy sets, which associate with on-board passenger, vehicle size and time interval between
two successive buses, shown as follows:

FlagB (𝑡) = 𝑟𝑜𝑢𝑛𝑑 (𝑟𝑎𝑛𝑑)

FlagB (𝑡) =
{
B = B𝑠𝑚𝑎𝑙𝑙 if FlagB (𝑡) == 0
B = B𝑏𝑖𝑔 if FlagB (𝑡) == 1

𝛿𝑡 = argmax
𝛿

{𝜇𝑡D,B (𝛿)}

(6)
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where

𝜇𝑡D,B (𝛿) = 𝜇𝑡𝑢,B (𝛿) ∧ 𝜇𝑡𝑠,B (𝛿) (7a)

𝜇𝑡𝑠,B (𝛿) =
J−1∑
𝑗=1

𝑤𝑘
𝑗 × 𝜇𝑠,B (N 𝑡 , 𝛿

𝑗 ) (7b)

𝜇𝑡𝑢,B (𝛿) =
J−1∑
𝑗=1

𝑤𝑘
𝑗 × 𝜇𝑢,B (N 𝑡 , 𝛿

𝑗 , 𝑛) (7c)

subject to:

𝑘 = ⌈𝑡/𝜏⌉, 𝜏 ∈ [5, 30] (8a)

N 𝑡 , 𝛿
𝑗 ≤ B, 𝑗 = 1, . . . ,J − 1 (8b)

𝛿 ∈ {𝛿1, 𝛿2, . . . , 𝛿Q} (8c)
B ∈ {B𝑠𝑚𝑎𝑙𝑙 ,B𝑏𝑖𝑔} (8d)
J∑
𝑗=1

𝑤𝑘
𝑗 = 1 (8e)

𝑤𝑘
𝑗 =

𝑏𝑘𝑗 +
∑ 𝑗−1

𝑖=1 𝑏𝑘𝑖 × 𝑎𝑘𝑖 𝑗∑J
𝑗=1(𝑏𝑘𝑗 +

∑ 𝑗−1
𝑖=1 𝑏𝑘𝑖 × 𝑎𝑘𝑖 𝑗)

(8f)

In models 1 and 2, the number of onboard passengers at time state 𝑡, bus stop 𝑗 with time interval
𝛿, N 𝑡 , 𝛿

𝑗 , which is calculated in Eq. (2), can not exceed the maximum capacity of the vehicle B, as
shown in Eq. (5b) for Model 1 and Eq. (8b ) for Model 2.

In Model 2, vehicle size at time state 𝑡 is decided randomly by 𝑟𝑜𝑢𝑛𝑑 (𝑟𝑎𝑛𝑑), and if FlagB (𝑡)
equal to 0, B = B𝑠𝑚𝑎𝑙𝑙; otherwise B = B𝑏𝑖𝑔; after this the optimal time interval 𝛿 at time state
𝑡, with vehicle size B is decided by maximizing the decision value, as shown in Eq. in (6). Where
𝜇𝑡𝑠,B (𝛿) and 𝜇𝑡𝑢,B (𝛿) reflect the satisfaction degree of passengers and usage degree of the bus
capacity at time state 𝑡 with time interval, 𝛿, as shown in Eq. (7b) and Eq. (7c) . 𝜇𝑡𝑥,B (𝛿), 𝑥 ∈ {𝑠, 𝑢}
is obtained by the aggregation of 𝜇𝑥,B (N 𝑡 , 𝛿

𝑗 ), 𝑥 ∈ {𝑠, 𝑢} at stop 𝑗 , 𝑗 = 1, 2, . . . ,J − 1, weighted
by 𝑤𝑘

𝑗 at time stage 𝑘 . 𝑤
𝑘
𝑗 is calculated by boarding and alighting number of passengers, as shown

in Eq. (8f) with constraint Eq. (8e). 𝜇𝑡D,B (𝛿) is the fuzzy set intersection of the satisfaction and
capacity usage degree, as shown in Eq. (7a).

3.3 Evaluation of Timetable

In Model 1, timetable S is evaluated by total cost, 𝐶𝑜𝑠𝑡S , shown in Eq. (9). For Model 1, consider
cost of passengers and cost of bus company (with big and small size vehicle) in total. Where 𝑐1 is
the waiting time cost per hour, T𝑤 is the passenger waiting time shown in Eq. (10a); 𝑐2 is the travel
time cost per hour, T𝑡 is the passenger travel time shown in Eq. (10b); 𝑐3 and 𝑐4 are the operation
costs for big and small vehicle per hour respectively, T𝑏 and T𝑠, stand for total service time of big
and small vehicle respectively, shown in Eq. (10c) and Eq. (10d); 𝑐5 and 𝑐6 are the distance costs
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for big and small vehicle per kilometer, D𝑏 and D𝑠, stand for total drive distance of big and small
vehicle respectively, calculate by Eq. (10e) and Eq. (10f).

𝐶𝑜𝑠𝑡S = 𝑐1T𝑤 + 𝑐2T𝑡 + 𝑐3T𝑏 + 𝑐4T𝑠 + 𝑐5D𝑏 + 𝑐6D𝑠 . (9)

Where:

T𝑤 =
∑
𝑡∈T

©«𝐹𝑙𝑎𝑔S (𝑡) ×
∑

𝑗∈J\{𝐽 }

1
2
× 𝑏𝑘𝑗 × (𝛿𝑡 )2ª®¬ (10a)

T𝑡 =
∑
𝑡∈T

©«𝐹𝑙𝑎𝑔S (𝑡) ×
∑

𝑗∈J\{𝐽 }
N 𝑡 , 𝛿

𝑗 × 𝑡𝑘𝑗
ª®¬ (10b)

T𝑏 =
∑
𝑡∈T

©«𝐹𝑙𝑎𝑔S (𝑡) × 𝐹𝑙𝑎𝑔B (𝑡) ×
∑

𝑗∈J\{𝐽 }
𝑡𝑘𝑗
ª®¬ (10c)

T𝑠 =
∑
𝑡∈T

©«𝐹𝑙𝑎𝑔S (𝑡) × (1 − 𝐹𝑙𝑎𝑔B (𝑡)) ×
∑

𝑗∈J\{𝐽 }
𝑡𝑘𝑗
ª®¬ (10d)

D𝑏 =
∑
𝑡∈T

(𝐹𝑙𝑎𝑔S (𝑡) × 𝐹𝑙𝑎𝑔B (𝑡)) × 𝐷𝑖𝑠 (10e)

D𝑠 =
∑
𝑡∈T

(𝐹𝑙𝑎𝑔S (𝑡) × (1 − 𝐹𝑙𝑎𝑔B (𝑡))) × 𝐷𝑖𝑠 (10f)

FlagS (𝑡) =
{

1 there is a bus service 𝑡
0 there is no bus service 𝑡 (10g)

FlagB (𝑡) =
{

1 if B = B𝑏𝑖𝑔 at 𝑡
0 if B = B𝑠𝑚𝑎𝑙𝑙 at 𝑡

(10h)

In Model 2, the average vehicle loads N , shown in Eq. (11a), average vehicle usage degree 𝜇𝑠,
shown in Eq. (11b), and average passenger satisfaction degree 𝜇𝑠, shown in Eq. (11c), are used to
evaluate timetable S.

N =
𝑠M∑
𝑡=𝑠2

©«
∑

𝑗∈J\{𝐽 }
N 𝑡 , 𝛿𝑡

𝑗
ª®¬ /((J − 1) × (M − 1)) (11a)

𝜇𝑠 =
𝑠M∑
𝑡=𝑠2

(
𝜇𝑡𝑠,B (𝛿)

)
/(M − 1) (11b)

𝜇𝑢 =
𝑠M∑
𝑡=𝑠2

(
𝜇𝑡𝑢,B (𝛿)

)
/(M − 1) (11c)
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3.4 Timetable Design and Performance Evaluation

The timetable of service timeS is generated based on the decision spaceD. Suppose two successive
bus services depart at 𝑡 and 𝑡 + 𝛿𝑡 respectively, where 𝛿𝑡 ∈ Δ is time interval calculated based on
𝑡. If the 𝑚th bus service departs at time state 𝑡, i.e. 𝑠𝑚 = 𝑡, then the next bus service 𝑠𝑚+1 will
depart at time state 𝑡 + 𝛿𝑡 . The time interval 𝛿𝑠𝑚 between 𝑠𝑚 and 𝑠𝑚+1 is obtained fromD(𝑠𝑚). The
performance of timetable is evaluated with respect to: (1) service time of vehicles T𝑠, (2) waiting
time of passengers T𝑤 , (3) travel time of passengers T𝑡 , (4) mean on-board passengersN , (5) mean
satisfaction degree of passengers 𝜇𝑠, (6) mean capacity usage degree of vehicles 𝜇𝑢.

4. CASE STUDY

4.1 Parameters

In this section, timetables are designed separately in models 1 and 2 under a group of cases, the
service time covers from 6:00 am to 10:00 pm, and each period last 2 hours and has 120 time states;
the adjacent two cases have no time overlap, and the whole system has 960 time states. From cases
1 to 8 the time span are: 6:00 ∼ 8:00, 8:00 ∼ 10:00, . . . , 20:00 ∼ 22:00. The number of boarding
passengers vary at different bus stops, FIGURE 1, bus stops 1 and 2 have a higher amount passenger
flow in the morning, bus stops 10 − 12 have more passenger boarding in the afternoon. very a few
passenger boarding after bus stop 20.

Table 1: Value of parameters in case study

Parameters value
service time 6:00 am to 10:00 pm
T {1,2, …, 960}
K {1,2, …, 96 }
𝜏 10 (minutes)
{𝛿1, 𝛿2, . . . , 𝛿Q} {2, 3, . . . , 15}(minutes)
B𝑠𝑚𝑎𝑙𝑙 / B𝑏𝑖𝑔 60 / 90
J 24
𝐷𝑖𝑠 13 (kilometers)
𝑏𝑘𝑗 , 𝑎

𝑘
𝑖 𝑗 , 𝑡

𝑘
𝑗 , 𝑤

𝑘
𝑗 obtained by average value at 𝑘

[𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6] [8.6, 8.6, 20, 20, 15, 10] Figure 1: Passenger Flow.

The parameters: length of time stage 𝜏 = 10 (minutes), which divides 960 time states into 96 time
stages. Time interval 𝛿 ∈ 2, 3, . . . , 15. Suppose that the passenger flow extracted from history data
is not located in ShiJiaZhuang but in ShangHai, the coefficients in paper [15], can be used in this
study to compare timetable produced from models 1 and 2. Coefficients are decided based on the
bus line in city Shanghai[15], where the capacity of big size vehicle is B𝑏𝑖𝑔 = 90, and capacity of
small vehicle B𝑠𝑚𝑎𝑙𝑙 = 60. Value of [𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6] = [8.6, 8.6, 20, 20, 15, 10], as shown in
TABLE 1.
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Multiple vehicle size is used to reach the even loads and even headway, and the capacity constraint
is to reach desired usage rate [14, 30]. The relationship between the value of objective function
and usage rate of vehicle capacity are studied as follows: Set 𝜃 denotes the capacity usage rate, and
𝜃 = 0.4 : 0.05 : 1.0 with step 0.05. The 𝐶𝑜𝑠𝑡S for cases 1-8 under vary of 𝜃 are shown in left part
of FIGURE ??. It can be seen that the 𝐶𝑜𝑠𝑡S reduce when the capacity usage rate increase, and the
minimum cost of each case corresponds to 𝜃 ≥ 0.7; take Case 2 as an example, shown in right part
of FIGURE ??, the minimum cost of objective function in Case 2 is when capacity usage rate reach
to 𝜃 = 0.9.

The membership functions for the fuzzy goal 𝜇𝑠 given by Eq. (12). The fuzzy constraint, 𝜇𝑢, in
Model 2 are designed similar to the capacity usage degree in Model 1, as shown in Eq. (13). where
N denotes the number of on-board passengers, and B denotes the maximum bus capacity.

𝜇𝑠,B (N) =


1 0 ≤ N ≤ 𝐵/3
−9N/14𝐵 + 17/14 𝐵/3 < N ≤ 4𝐵/5
−7N/2𝐵 + 7/2 4𝐵/5 < N ≤ 𝐵
0 otherwise

(12)

𝜇𝑢,B (N , 𝑛) =

N/𝑛 0 ≤ N ≤ 𝑚𝑖𝑛(𝑛,B)
1 𝑛 < N ≤ B
0 otherwise

(13)

(a) Objective value under 𝜃 . (b) Fuzzy degree with loads of passengers.

𝜇𝑠,B (N) is the satisfaction degree of on-board passengers; when few passengers are on the bus
(everyone has a seat), the satisfaction degree is equal to 1 as everyone is comfortable; when the
number of passengers varies from B/3 to 4B/5, the satisfaction degree slowly reduces to 0.7 as the
recent passengers who have no seat are uncomfortable; however, the comfort degree of passengers
will reduce sharply, when there are more than 4B/5 (and up to B) passengers, in this situation not
only standing passengers feel uncomfortable about crowd, also those seated have less space and
have difficulty in alighting. The blue line in FIGURE ?? shows the shape of 𝜇𝑠.

𝜇𝑢,B (N , 𝑛) is the usage degree of the bus. When the number of on-board passengers is between 𝑛
and B, the usage degree is equal to 1, When number of on-board passengers less than the threshold
𝑚𝑖𝑛(𝑛,B), the capacity usage degree isN/𝑛. 𝑛 is the threshold to adjust the shape of capacity usage
degree to produce certain number of bus services. In practice, the shape of fuzzy goal and fuzzy
constraints capture the preference of scheduler. 𝜇𝑢,B (N , 𝑛) is shown as red line in FIGURE ??
when 𝑛 = 84.

The black line with triangle in FIGURE ?? is the intersection of 𝜇𝑢,B (N , 𝑛) and 𝜇𝑢, it can be seen
that the fuzzy goal limits the usage degree goes up in time interval decision making.
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All the experiments were conducted on a laptop with an Intel core i7 2.40 GHz with 8GB RAM.
The proposed Models 1 and 2 are coded in MATLAB R2012b.

4.2 Model Compare

4.2.1 Hybrid vehicle

(a) T𝑤 (b) T𝑡

(c) 𝐶𝑜𝑠𝑡S (d) N

(e) 𝜇𝑠 (f) 𝜇𝑢

Figure 2: Timetable difference of models 1 and 2 with hybrid

Figures 2(𝑎) to 2( 𝑓 ) show the timetable difference in models 1 and 2 with hybrid vehicles. The
total service number of model 1 and 2 are same in all cases (but vehicle size is different). FIGURE
2(𝑎) shows Model 2 has much shorter waiting than Model 1, and the last two cases are closed to
Model 1. FIGURE 2(𝑏) shows Model 2 has much lower travel time in all cases. FIGURE 2(𝑐)
shows Model 2 has a smaller cost in most cases except last two case (but the costs are very close,
and the last two case in Model 1 use small vehicle mainly). FIGURE 2(𝑑) shows Model 2 has a
more lower average loads than Model 1 in all cases, this is very important evidence that under the
same number of bus services, Model 2 can be adjust to varying passenger flow better than Model
1. FIGURE 2(𝑒),2( 𝑓 ) shows that passenger in Model 2 have a higher satisfaction degree and lower
capacity usage, this means that under the same traffic condition, on-board passenger in Model 2
have more space than in Model 1 .

TABLES ?? and ?? show the values of objection function 𝐶𝑜𝑠𝑡S , the waiting time T𝑤 , the travel
time T𝑡 , the total service number M, service number of big vehicle M𝑏, service number of small
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Table 2: Comparison between Model 1 and Model 2 with Case 1-8

𝐶𝑎𝑠𝑒 M Model 1 Model 2
𝐶𝑜𝑠𝑡S T𝑤 T𝑡 M𝑏 M𝑠 N 𝜇𝑠 𝜇𝑢 𝐶𝑜𝑠𝑡S T𝑤 T𝑡 M𝑏 M𝑠 N 𝜇𝑠 𝜇𝑢

1 14 8025 117 517 6 8 44 0.77 0.76 7637 98 468 3 11 41 0.84 0.74
2 16 10797 140 726 1 15 51 0.76 0.82 10494 127 704 1 15 50 0.79 0.81
3 16 12105 149 867 1 15 56 0.69 0.78 11821 143 840 1 15 53 0.74 0.75
4 15 9965 152 667 4 11 51 0.70 0.86 9454 135 601 1 14 47 0.81 0.84
5 17 12494 152 898 3 14 52 0.69 0.71 12494 152 898 3 14 52 0.69 0.71
6 15 11098 137 786 1 14 52 0.70 0.80 11098 137 786 1 14 52 0.70 0.80
7 13 7213 103 474 8 5 44 0.67 0.82 7213 103 474 8 5 44 0.67 0.82
8 12 5294 91 299 9 3 35 0.71 0.80 5294 91 299 9 3 35 0.71 0.80

vehicleM𝑠, average satisfaction degree of passengers 𝜇𝑠 and average usage degree of vehicles 𝜇𝑢.
From TABLES ?? and ??, it can be seen that under the same environment, Models 2 has lower
cost, lower waiting time and lower travel time in most of the cases. For the same service number,
Model 2 has higher satisfaction degree of passengers and lower capacity usage degree of vehicles
compared with Model 1. The FIGURE 2 shown the difference more clearly.

Form the case study, it can be seen that models 1 and 2 produce similar timetable when adjusting
Model 2 produce the same service number with Model 1, and Model 2 works better than Model
1 in most cases. Decision making in Model 1 depending on the objective function, which choose
longer time interval to have a higher vehicle usage degree that leads to lower cost. Decision making
in Model 2 rely on both fuzzy goal and fuzzy constraint, first make sure that passenger has a
higher satisfaction degree then choose the time interval that has a higher vehicle usage degree.
The membership function of fuzzy goal and fuzzy constraint show the preference of decision maker
and more flexible and adjustable.

5. CONCLUSION

Two strategies, cost minimum per minute (Model 1), random selection of vehicle size followed
by maximizing the degree of fuzzy constraints (Model 2), are discussed in this for the problem of
deciding the time interval and vehicle size to build a mixed vehicle size timetable. The experimental
results show that adjustment of the membership functions in Model 2 yields a similar timetable and
cost with the timetable proceed by Model 1. The timetable in Model 2 works better than Model
1 as it has lower loads, shorter waiting time, and higher passenger satisfaction. Model 1 is very
sensitive to the objective function that it does produce small cost but unbalanced satisfaction degree
of passengers and usage degree of vehicles. The decision-making in model 1 can be simulated by a
fuzzy set based on the value of the objective function change with the capacity usage of the vehicle.
The membership function of fuzzy goal and fuzzy constraint reflects the preference of timetable
scheduler and is more robust in balancing the needs of passengers and the scheduling of vehicles.
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