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Abstract
Background: Certain patients with diabetes and COVID-19 are at high risk of severe out-
comes. Identification of risk factors among this group is required to risk-stratify those who
may benefit from further surveillance. We aimed to develop machine learning (ML) models
predicting severe outcomes among individuals with diabetes and COVID-19 in Alberta,
Canada.

Methods: Patients with diabetes and COVID-19 determined by PCR test administered in
community and/or emergency department (ED) settings (March 2020-March 2021) were
included. Outcomes were ED visit, hospitalization or death for those tested in the community
(“Community cohort”) and hospitalization or death for those tested in ED (“ED cohort”),
and in the combined cohorts (“Community+ED cohort”). Outcomes and features (socio-
demographics, drug/healthcare utilization, health history) were identified using healthcare
administrative data (2008-2021). Calibration plots, areas under the receiver operating curve,
precision-recall curves (AUC, AUPRC), and threshold analyses were used to assess the
models.

Results: The Community cohort included 11,247 individuals (1,665 ED visits; 756 hospital-
izations; 421 deaths). AUCs formodels predicting ED/hospitalization/deathwere 0.65/0.70/0.93.
The AUCs for predicting death in ED (1,495 individuals; 169 deaths) and Community+ED
(12,410 individuals; 582 deaths) cohorts were 0.82 and 0.93. Models predicting hospitaliza-
tion in these cohorts performed poorly and are not reported. Of all models, that predicting
death from the Community performed best (sensitivity 0.77, specificity 0.91, positive pre-
dictive value 0.26, negative predictive value 0.99), and improved the prediction of death at
a 10% risk threshold (compared to the pre-test probability, positive likelihood ratio 9.06 and
negative likelihood ratio 0.25).

Conclusion: Identifying diabetes patients at the highest risk of the worst outcomes would
assist in triaging patients to ensure appropriate resource use in times of high demand. Overall,
the model predicting death among patients with diabetes and COVID-19 in the community
could be useful in identifying who requires additional care.

Keywords: COVID-19, Diabetes, Machine learning

Abbreviations:

ATC: Anatomical Therapeutic Classification
AUC: Area Under the Receiver Operating Characteristic Curve
AUPRC: Area Under the Precision Recall Curve
CatBoost: Categorical Boosting
DM: Diabetes Mellitus
ED: Emergency Department
ICD: International Statistical Classification of Diseases and Related Health Problems
LGBoost: Light Gradient Boost
LR-: Negative Likelihood Ratio
LR+: Positive Likelihood Ratio
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ML: Machine Learning
NACRS: National Ambulatory Care Reporting System
NPV: Negative Predictive Value
PIN: Pharmaceutical Information Network
PPV: Positive Predictive Value
SHAP: Shapley Additive Explanation
XGBoost: Extreme Gradient Boosting

1. INTRODUCTION

The COVID-19 pandemic placed a considerable burden on the Alberta healthcare system [1]. Even
in the current endemic state, COVID-19 remains an important respiratory virus in Canada [2] and
Alberta, a province in Canada [3]. There is a continued need to triage high-risk patients presenting
with COVID-19 and efficiently allocate limited healthcare resources. One such high-risk group
includes individuals with diabetes mellitus who are at greater risk of severe outcomes related to
COVID-19 (e.g. hospitalization or death) compared to individuals without diabetes [4]. Individuals
with diabetes accounted for 45% of the COVID-19 related deaths in Alberta as of May 2021 [5].
However, what characteristics of diabetes patients put them at high risk is uncertain as not all
diabetes patients are seen at risk of severe COVID-19 outcomes. Indeed, simply knowing someone
with COVID-19 has diabetes is insufficient. There were 370,535 individuals with prevalent diabetes
in Alberta as of May 2021 (∼8% of the total population) [6], yet only a subset experienced severe
COVID-19 outcomes. Additional approaches are required to risk-stratify diabetes patients whomay
be at elevated risk and, therefore, may benefit from further surveillance or acute care referral upon
testing positive for COVID-19.

Supervised machine learning (ML) uses a subset of outcome-labelled data on which to train mod-
els (i.e., generate algorithms that predict a specified outcome by uncovering patterns in the data)
[7–9]. In order to avoid over-fitting, the generated algorithms of interest are then tested by predicting
the outcome in the remaining portion of the study data and assessing the performance [7, 8]. ML
techniques have the capacity to incorporate large numbers of predictors (“features”) into prediction
algorithms, such as many of those that are routinely collected by Alberta Health [7, 8]. Models
such as these have the potential to be published for use by physicians to aid in triaging patients and
resources [10, 11].

ML is becoming more common in health sciences research, including COVID-19 and diabetes
research. For instance, several studies have predicted the risk of developing COVID-19 [12], dia-
betes [13] and diabetes-related complications [14, 15]. We conducted a review of relevant literature
predicting COVID-19 outcomes (see Supplemental Appendix 1). Of the 30 studies identified, there
was only one based on Canadian (Ontario) data, and two specific to diabetes. More than half of the
studies were conducted in COVID-19 patients who would likely be considered high-risk and already
having a relevant outcome on interest (i.e. already admitted to hospital or ED). A wide range of
models (including but not limited toXGBoost, RandomForest, Gradient BoostingModels, etc) were
used and resulted in a wide range of AUC’s (0.50-1.00) and positive predictive values (0.03-0.99)
(See supplemental Appendix 1). Although other studies have used ML to predict adverse COVID-
19 outcomes in populations with and without diabetes who have already contracted COVID-19,
none have been within the context of Alberta’s universal access healthcare system without user fees
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at the point of service, or within the context of the routine administrative health data collection
specific to Alberta Health [12, 16, 17]. Therefore, the objective of this study was to generate ML
models to predict the risk of severe health outcomes in Albertans with diabetes who tested positive
for COVID-19.

2. MATERIALS AND METHODS

2.1 Design, Setting and Participants

Data from January 1, 2008 to March 31, 2021 were used to generate a classifier identifying the
risk of severe negative COVID-19 related outcomes among Albertans with Diabetes Mellitus (DM)
and a positive SARS-CoV-2 PCR test, using supervised ML. Participants residing in Alberta were
included if they were over 18 years of age, had a DM diagnosis (identified by a modified ver-
sion of the National Diabetes Surveillance System definition including any drug dispense for anti-
hyperglycemic medication from Alberta’s Pharmaceutical Information Network (PIN) dataset,
Anatomical Therapeutic Classification (ATC) code A10), and tested positive for SARS-CoV-2 by
PCR test between March 1, 2020 and March 1, 2021 [18–20]. This time period, the first year of the
COVID-19 pandemic in Alberta, was chosen to avoid secular changes/heterogeneity in outcomes
risk, since the COVID-19 vaccine was not yet available, population testing was offered universally
and there were no home testing kits, and almost all COVID-19 cases in Alberta were with one
(Wuhan wild-type) strain. In the second year of the pandemic, at-home rapid tests for COVID-19
were introduced, likely leading to a substantial number of missed COVID-19 cases and thus, the
data was restricted to the first year of the pandemic.

The study population was stratified into three sub-cohorts based on where COVID-19 tests were
administered (community vs Emergency Department (ED)) as these settings are clinically relevant
use-case scenarios for the derived models. Tests performed in the community setting (“Community
cohort”) were defined as any tests not performed in ED or hospital settings, where a test performed
in the ED or hospital was defined as a COVID-19 test occurring between the start and end date of
an ED or hospitalization record. Tests performed in the ED formed the “ED cohort”, and the third
cohort (“Community + ED cohort”) was a combination of the previous two. The Community cohort
and ED cohort are both important with regards to identifying patients to refer or admit to hospital.
The Community+ED cohort is additionally important since, particularly in rural areas, the ED can
act as a secondary source of primary care. Of note, cohorts were not mutually exclusive, and repeat
positive COVID-19 tests in the same individual were treated as separate cases if they occurred 3
months or more apart in accordance with Alberta Health’s case definition of re-infection.

2.2 Outcome Variables

The outcomes of interest in this study for the Community cohort were COVID-19 related ED visits,
hospitalization or death. For Community + ED and ED cohorts, the outcomes of interest were
COVID-19 related hospitalization or death. In each cohort setting, the prediction of these outcomes
could potentially allow derived models to be used, in addition to clinical judgement, to identify indi-
viduals in need of closer observation (e.g.: via referral to a virtual hospital or remote telemonitoring
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program) or acute care referral. COVID-19 related ED, hospitalization and death outcomes were
identified as ED (National Ambulatory Care Reporting System [NACRS]), discharge abstracts, and
vital statistics records within 5 days prior or 30 days after a COVID-19 positive test in any of the
three cohorts of interest, bearing an International Statistical Classification of Diseases and Related
Health Problems (ICD)-10 diagnostic code of U071 or U072 [21, 22]. We accepted ED visits or
hospital admissions for COVID-19 within 5 days prior to the COVID-19 positive test since the
confirmatory diagnostic lab testing may be delayed until part-way through an individual’s acute
care stay; in any event, all outcomes were ultimately diagnosed as COVID-19 as per validated ICD-
10-based case definitions, as above.

With respect to the prediction of hospitalization from the ED and Community + ED cohorts, all
models performed poorly and would not be beneficial in any clinical scenarios and are therefore not
further reported. Outcomes such as ICU admission or need for ventilation were also not included,
as initial modelling performed poorly in all cohorts due to insufficient data (e.g.: vital signs).

2.3 Feature Selection

Based on previous literature, we selected 345 features (SUPPLEMENTAL TABLE S1 and SUP-
PLEMENTAL FIGURE S1) to include in our models, which included social-demographic infor-
mation, drug and healthcare utilization history and health history to account for both clinical and
socio-demographic factors that could contribute to COVID-19 outcomes [10, 11, 15, 16, 23]. SUP-
PLEMENTAL TABLE S2 contains additional feature definitions, including administrative data
definitions for health history.

Socio-demographic features were extracted from the Alberta Health Population Registry (April 1,
2019-March 31, 2021) and included census-derived neighborhood income levels, age, sex, and
geographical location (urban vs rural). Additionally, the Pampalon Deprivation Index was used
to derive estimated social and material factors which summarize high-level aspects of individuals’
living arrangements and means of livelihood [24].

Physician claims, ED and hospital data, which record each interaction with a physician, ED or
hospital, respectively, were used to extract features such as the number/type of healthcare visits and
the number of healthcare providers 1 year before the positive COVID-19 test date using ICD-9 and
ICD-10 codes. Similarly, flags for specific drugs and total drugs dispensed 6 months before the
positive COVID-19 test date were identified in the PIN data, using level 4 ATC codes to identify
drug classes, except anti-hyperglycemic agents, which used ATC level 5 codes. Alberta benefits
from the capture of all drug dispensations at the point-of-sale, regardless of insurance status or age,
in its Pharmaceutical Information Network (PIN) dataset.

Biomarkers consistent with COVID-19 and diabetes-related clinical history were also selected as
features. Laboratory values were extracted fromAlberta Precision Laboratories data betweenMarch
1, 2019 and February 29 2020, which maintains records of biological specimen test results in both
community and acute settings. Only individuals with more severe health conditions are likely to
have extensive lab tests as they progress through the health system. Therefore, laboratory data was
only considered up to February 29 2020 in order to avoid selection bias of individuals with the most
severe (potentially COVID-19 related) health status. In the case of multiple identical tests, values
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closest to the COVID-19 test date were used. Prior occurrence of diabetes events (from physician,
ED or hospital data), comorbidities (including Elixhauser conditions [25] and frailty [26] indicators)
and ambulatory care sensitive conditions (ACSC) were extracted up to 5 years before an individual’s
positive COVID-19 test date. Data Pre-Processing

Categorical features were one-hot encoded to transform them into a suitable format for machine
learning. Missing values in the income data from the Alberta Health Population Registry were
imputed using the average income, providing a reasonable estimate for incomplete records. Addi-
tionally, lab data was reviewed by clinicians and related lab test categories (such as WBC EST, Instr
WBC and WBC) were grouped into a single feature after clinicians reviewed statistical measures
like mean and standard deviation This merging of tests eliminated redundant features, enhancing
the dataset’s clarity and reliability.

2.4 Machine Learning Methods

The likelihood of ED visit, hospitalization, and death in the respective cohorts of interest was
predicted using aML approach as described by Sharma et al, 2021 [10] (scikit-learn package, version
1.2.2) [27]. We utilized the PyCaret library (version 3.0.4) [28] to build, train and compare models,
and select the best at the end of this pipeline. The training sets for the PyCaret experiments consisted
of 80% of the cohort, with 20% held for validation (FIGURE 1).

Figure 1: Participant selection and analysis.
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Fifteen ML algorithms were evaluated, including tree classifiers, gradient boost machine learning
models such as CatBoost classifier, Light Gradient Boosting Model, AdaBoost classifier, Extreme
Gradient Boostmodel, RandomForest, etc. Eachmodel was trained and cross validated on 5 random
splits of the training data. Out of the 5 random subsets, 4 of them were used during training while
the last was saved for cross-validation, which delivers more robust results than if this process was
performed on a single combination of training and tuning sets. Hyperparameters (e.g. learning rate,
maximum depth, number of estimators, etc) were optimized through an iterative process of tuning.
PyCaret’s “tune_model” function and “Randomized Search” function from the scikit_learn package
were utilized to iteratively search over a predefined grid of potential values, progressively adjusting
hyperparameters to identify the best configuration for each model.

Top performing models were selected based on the value of the area under the receiver operating
characteristic curve (AUC) (SUPPLEMENTAL TABLE S3). AUC was selected as it provides
a robust measure of overall model performance. For predicting ED, hospitalization and death
outcomes in the Community cohort, these included Extreme Gradient Boosting (XGBoost) [29],
Light Gradient Boost (LGBoost) [30], and Categorical Boosting (CatBoost) [31, 32] models re-
spectively. As a sensitivity analysis, the base XGBoost and LGBoost models for predicting ED and
hospitalization were calibrated using Spline [33] and Sigmoid calibration techniques in an attempt
to improve performance. Results were not greatly affected despite improved calibration, therefore
only results from base models are presented. LGBM and CatBoost were chosen for predicting death
in ED and Community + ED cohorts, respectively.

2.5 Statistical Analysis

Participant characteristics were reported descriptively as means (SD) and counts (%) and compared
between training and validation sets using t-tests and two-sample tests of proportion for continuous
and categorical variables, respectively (STATA/IC, version 15.1). ML models were assessed using
AUC and area under the precision recall curve (AUPRC). Shapley Additive Explanation (SHAP)
values represent each feature’s responsibility for a given predicted risk, compared to a baseline
level of that feature, and can be used to characterize the importance of a given feature for a given
prediction. The sum of SHAP values is equal to the model-predicted risk [34]. SHAP values were
visualized, in aggregate, using plots of absolute values, and beeswarm plots. Model calibration
was assessed visually through plots of actual vs predicted risk, and the clinical utility of the most
discriminative models was assessed using a threshold analysis for different risk levels of the speci-
fied outcome. For the threshold analysis, we chose relatively low thresholds (e.g.: individuals with
model-predicted outcome risk >= 10% as “test positive”) to assess the clinical utility of models, to
ensure we classified as many people as possible with a severe outcome as “positive”.

3. RESULTS

3.1 Participant Characteristics

Of 372,055 individuals with DM, 140,511 received at least one PCR test betweenMarch 1, 2020 and
March 1, 2021. The total study population included 13,097 unique individuals among these who
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had a positive COVID-19 test result, and were therefore eligible for inclusion in one or more of the
three cohorts (FIGURE 1). In all cohorts, individuals in the training and validation sets generally
had similar characteristics, as expected. Small differences were observed in proportions of several
Elixhauser comorbidities in each of the cohorts, and in the average minimum drug dispense quantity,
for the ED cohort (SUPPLEMENTAL TABLE S4a and SUPPLEMENTAL TABLE S4b).

3.2 Community Cohort Model Performances

The Community cohort consisted of 11,255 positive COVID-19 cases (11,247 individuals) leading
to 1,665 ED visits (mean 10.09 ± 7.63 days from testing), 756 hospitalizations (mean 9.33 ± 6.66
days from testing) and 421 deaths (mean 12.10 ± 7.12 days from testing) (FIGURE 1).

Figure 2: Test receiver operating characteristic curves for all models. A) Predicting ED visits in the
Community cohort B) Predicting hospitalization in the Community cohort; C) Predicting death in the
Community cohort; D) Predicting death in the ED cohort; E) Predicting death in the Community+ED
cohort.

The model predicting ED visits had only moderate discriminatory ability (AUC 0.65) (FIGURE 2a).
The precision (positive predictive value) of the model at the 0.1 risk threshold remained relatively
constant as recall (sensitivity) increased, leading to a low AUPRC value (0.25) (SUPPLEMENTAL
FIGURE S2a). This is expected in datasets with imbalanced data due to rare outcomes like ours,
highlighting the trade-off between sensitivity and specificity. However, the model was not well-
calibrated based on visual inspection (SUPPLEMENTAL FIGURE S3a) and did not merit further
threshold or feature importance analysis.

The model predicting hospitalization also had moderate discriminatory ability (AUC 0.70) (FIG-
URE 2b) and small AUPRC (0.14, again due to the small number of outcomes) (SUPPLEMENTAL
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FIGURE S2b). Based on visual inspection, the model was moderately calibrated to a risk threshold
of about 0.2 (SUPPLEMENTAL FIGURE S3b), indicating that for most individuals in this cohort
the models were moderately accurate, since the risk of COVID-related hospitalization in community
cases was below this 0.2 threshold in almost all cases. At the 0.1 risk threshold, the model had low
sensitivity (0.27, indicating accurate prediction of only 27% of all hospitalizations that occurred)
and positive predictive value (PPV 0.19; only 19% of hospitalizations predicted actually occurred).
The model also had high specificity (0.92; accurate prediction of 92% of all those who were not
hospitalized) and negative predictive value (NPV 0.95; 95% of those predicted to not be hospitalized
turned out to be true). The post-test probability was minimally changed as indicated by small
likelihood ratios (LR+ 3.35; LR- 0.79) (TABLE 1) and it therefore provides minimal prognostic
utility. Age, historical number of drug dispenses and average drug dispense quantity had the greatest
impact on model performance (SUPPLEMENTAL FIGURE S4a). Higher values were associated
with higher risk of hospitalization except for historical number of drug dispenses where very high
or low values were associated with increased risk (SUPPLEMENTAL FIGURE S5a).

FN, false negative; FNR, false negative rate; FP, false positive; FPR, false positive rate; inf, infinite;
LR+, positive likelihood ratio; LR-, negative likelihood ratio; NaN, undefined result; NPV, negative
predictive value; PPV, positive predictive value; TN, true negative; TNR, true negative rate; TP, true
positive; TPR, true positive rate.

The AUC for the model predicting death indicated good discriminatory ability (0.93) (FIGURE 2c),
and, similar to other models, a small AUPRC (0.28) (SUPPLEMENTAL FIGURE S2c). The
model showed good calibration for risk levels of death up to approximately 0.4-0.5, while generally
overestimating risk at higher thresholds (SUPPLEMENTAL FIGURE S3c). This means that for
most individuals in this cohort, the models were accurate, since the risk of COVID-related death
in community cases was generally below 0.2. The sensitivity of the model at the 0.1 risk threshold
was moderate (0.77) and the specificity was high (0.91). The model had high PPV (0.26) and NPV
(0.99) and positive likelihood ratio (LR+, 9.06). The LR+ indicates that the post-test probability was
substantially increased (from 3.74% to approximately 84%) while the small LR- (0.25) indicates no
substantial decrease in post-test probability (TABLE 1) when tests are negative. Estimated material
factor was the most important feature, followed by age and historical number of drug dispenses
(SUPPLEMENTAL FIGURE S4b). Greater values of age and lower values of estimated material
factor (i.e. less deprived) and historical drug dispenses were generally associated with a greater
likelihood of death (SUPPLEMENTAL FIGURE S5b).

3.3 ED Cohort Model Performance

The ED cohort consisted of 1,497 COVID-19 cases (1,495 individuals), and 169 deaths (FIGURE 1)
occurred (mean 11.50±7.48 days from testing). Themodel exhibited good discriminatory ability for
predicting death (AUC 0.82) (FIGURE 2d), lowAUPRC (0.36) (SUPPLEMENTAL FIGURE S2d),
and moderate performance. The model was well-calibrated to a risk threshold of approximately 0.4,
indicating accurate predictions for the majority of the study cohort which had risk levels below this
threshold (SUPPLEMENTAL FIGURE S3d). Sensitivity (0.74) and specificity (0.76) were lower
in this model at the 0.1 threshold than in the model predicting death in the Community cohort, and
the PPV and NPV were similar (0.28 and 0.96 respectively). The LR+ and LR- showed minimal
changes in post-test probabilities, with LR+ at 3.06 and LR- at 0.35 (TABLE 1), and it therefore
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Table 1: Threshold analysis for all models

Threshold TP FN FP TN TPR TNR FNR FPR PPV NPV Sensitivity Specificity LR+ LR-

Predicting hospitalization in Community cohort

0 151 0 2100 0 1.00 0.00 0.00 1.00 0.07 NaN 1.00 0.00 1.00 NaN
0.05 128 23 1358 742 0.85 0.35 0.15 0.65 0.09 0.97 0.85 0.35 1.31 0.43
0.1 41 110 170 1930 0.27 0.92 0.73 0.08 0.19 0.95 0.27 0.92 3.35 0.79
0.15 4 147 37 2063 0.03 0.98 0.97 0.02 0.10 0.93 0.03 0.98 1.50 0.99
0.2 0 151 1 2099 0.00 1.00 1.00 0.00 0.00 0.93 0.00 1.00 0.00 1.00
0.3 0 151 0 2100 0.00 1.00 1.00 0.00 NaN 0.93 0.00 1.00 NaN 1.00
0.4 0 151 0 2100 0.00 1.00 1.00 0.00 NaN 0.93 0.00 1.00 NaN 1.00
0.5 0 151 0 2100 0.00 1.00 1.00 0.00 NaN 0.93 0.00 1.00 NaN 1.00
0.6 0 151 0 2100 0.00 1.00 1.00 0.00 NaN 0.93 0.00 1.00 NaN 1.00
0.7 0 151 0 2100 0.00 1.00 1.00 0.00 NaN 0.93 0.00 1.00 NaN 1.00
0.8 0 151 0 2100 0.00 1.00 1.00 0.00 NaN 0.93 0.00 1.00 NaN 1.00
0.9 0 151 0 2100 0.00 1.00 1.00 0.00 NaN 0.93 0.00 1.00 NaN 1.00
0.99 0 151 0 2100 0.00 1.00 1.00 0.00 NaN 0.93 0.00 1.00 NaN 1.00

Predicting death in Community cohort

0 84 0 2167 0 1.00 0.00 0.00 1.00 0.04 NaN 1.00 0.00 1.00 NaN
0.05 74 10 269 1898 0.88 0.88 0.12 0.12 0.22 0.99 0.88 0.88 7.10 0.14
0.1 65 19 185 1982 0.77 0.91 0.23 0.09 0.26 0.99 0.77 0.91 9.06 0.25
0.15 55 29 143 2024 0.65 0.93 0.35 0.07 0.28 0.99 0.65 0.93 9.92 0.37
0.2 43 41 110 2057 0.51 0.95 0.49 0.05 0.28 0.98 0.51 0.95 10.08 0.51
0.3 25 59 61 2106 0.30 0.97 0.70 0.03 0.29 0.97 0.30 0.97 10.57 0.72
0.4 14 70 27 2140 0.17 0.99 0.83 0.01 0.34 0.97 0.17 0.99 13.38 0.84
0.5 6 78 9 2158 0.07 1.00 0.93 0.00 0.40 0.97 0.07 1.00 17.20 0.93
0.6 1 83 5 2162 0.01 1.00 0.99 0.00 0.17 0.96 0.01 1.00 5.16 0.99
0.7 0 84 3 2164 0.00 1.00 1.00 0.00 0.00 0.96 0.00 1.00 0.00 1.00
0.8 0 84 0 2167 0.00 1.00 1.00 0 NaN 0.96 0.00 1.00 NaN 1.00
0.9 0 84 0 2167 0.00 1.00 1.00 0 NaN 0.96 0.00 1.00 NaN 1.00
0.99 0 84 0 2167 0.00 1.00 1.00 0 NaN 0.96 0.00 1.00 NaN 1.00

Predicting death in ED cohort

0 34 0 266 0 1.00 0.00 0.00 1.00 0.11 NaN 1.00 0.00 1.00 NaN
0.05 27 7 85 181 0.79 0.68 0.21 0.32 0.24 0.96 0.79 0.68 2.49 0.30
0.1 25 9 64 202 0.74 0.76 0.26 0.24 0.28 0.96 0.74 0.76 3.06 0.35
0.15 19 15 47 219 0.56 0.82 0.44 0.18 0.29 0.94 0.56 0.82 3.16 0.54
0.2 17 17 42 224 0.50 0.84 0.50 0.16 0.29 0.93 0.50 0.84 3.17 0.59
0.3 14 20 26 240 0.41 0.90 0.59 0.10 0.35 0.92 0.41 0.90 4.21 0.65
0.4 11 23 15 251 0.32 0.94 0.68 0.06 0.42 0.92 0.32 0.94 5.74 0.72
0.5 7 27 9 257 0.21 0.97 0.79 0.03 0.44 0.90 0.21 0.97 6.08 0.82
0.6 5 29 5 261 0.15 0.98 0.85 0.02 0.50 0.90 0.15 0.98 7.82 0.87
0.7 2 32 2 264 0.06 0.99 0.94 0.01 0.50 0.89 0.06 0.99 7.82 0.95
0.8 1 33 1 265 0.03 1.00 0.97 0.00 0.50 0.89 0.03 1.00 7.82 0.97
0.9 0 34 0 266 0.00 1.00 1.00 0.00 NaN 0.89 0.00 1.00 NaN 1.00
0.99 0 34 0 266 0.00 1.00 1.00 0.00 NaN 0.89 0.00 1.00 NaN 1.00

continued..

provides minimal clinical utility. Age, sex and average drug dispense quantity were the primary
features contributing to model performance, with higher values of age and drug dispense quantity,
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Table 1: Continued..

Threshold TP FN FP TN TPR TNR FNR FPR PPV NPV Sensitivity Specificity LR+ LR-

Predicting death in Community + ED cohort

0 116 0 2369 0 1.00 0.00 0.00 1.00 0.05 NaN 1.00 0.00 1.00 NaN
0.05 100 16 351 2018 0.86 0.85 0.14 0.15 0.22 0.99 0.86 0.85 5.82 0.16
0.1 92 24 247 2122 0.79 0.90 0.21 0.10 0.27 0.99 0.79 0.90 7.61 0.23
0.15 76 40 184 2185 0.66 0.92 0.34 0.08 0.29 0.98 0.66 0.92 8.44 0.37
0.2 66 50 139 2230 0.57 0.94 0.43 0.06 0.32 0.98 0.57 0.94 9.70 0.46
0.3 46 70 75 2294 0.40 0.97 0.60 0.03 0.38 0.97 0.40 0.97 12.53 0.62
0.4 24 92 34 2335 0.21 0.99 0.79 0.01 0.41 0.96 0.21 0.99 14.42 0.80
0.5 14 102 12 2357 0.12 0.99 0.88 0.01 0.54 0.96 0.12 0.99 23.83 0.88
0.6 6 110 4 2365 0.05 1.00 0.95 0.00 0.60 0.96 0.05 1.00 30.63 0.95
0.7 3 113 0 2369 0.03 1.00 0.97 0.00 1.00 0.95 0.03 1.00 inf 0.97
0.8 2 114 0 2369 0.02 1.00 0.98 0.00 1.00 0.95 0.02 1.00 inf 0.98
0.9 0 116 0 2369 0.00 1.00 1.00 0.00 NaN 0.95 0.00 1.00 NaN 1.00
0.99 0 116 0 2369 0.00 1.00 1.00 0.00 NaN 0.95 0.00 1.00 NaN 1.00

and female sex, being associated with greater risk of death (SUPPLEMENTAL FIGURE S4c and
SUPPLEMENTAL FIGURE S5c).

3.4 Community + ED Cohort Model Performance

Lastly, there were 12,421 positive COVID-19 cases (12,410 individuals) in the Community + ED
cohort. The cohort experienced 582 COVID-related deaths (mean 11.80 ± 7.21 days from testing)
(FIGURE 1). The AUC for this model predicting death showed strong discriminatory ability at 0.93
and had a low AUPRC (0.37), similar to the other models (FIGURE 2e and SUPPLEMENTAL
FIGURE S2e). Similar to the model predicting death in the Community cohort, this model also
had good calibration to a risk level of 0.4 (SUPPLEMENTAL FIGURE S3e) and performed well,
exhibiting moderate sensitivity at 0.79 and high specificity at 0.90, with similar PPV and NPV (PPV
0.27; NPV 0.99). The LR+ showed favorable shifts in post-test probabilities (7.61) while the LR-
indicated no change (0.23) (TABLE 1). Notably, these values derived from the Community + ED
cohort were likely driven by the proportionally larger Community cohort. Age, sex, and number
of physician visits contributed the most to this model, with higher values of age and physician
visits, and male sex, contributing to higher risk of death (SUPPLEMENTAL FIGURE S4d and
SUPPLEMENTAL FIGURE S5d).

4. DISCUSSION

We trained and validated a suite of ML models to predict the risk of severe outcomes (ED, hos-
pitalization and death) in adults with diabetes testing positive for COVID-19 in the community
or in the ED. Most models showed good discrimination and were moderately predictive with the
exception of the prediction of hospitalization in the ED and Community + ED cohorts where models
performed poorly and were not further reported. In this case, it is likely that by the time someone
with COVID-19 was sick enough to present to ED, the decision to admit to hospital was largely
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based on hypoxemia and other vital signs or functional / clinical status indicators, for which we did
not have data. Our models are better oriented towards understanding an individual’s underlying risk
of poor clinical outcomes based on their pre-morbid characteristics or laboratory parameters.

In contrast, the model for predicting death following a community case of COVID-19 was highly
predictive. At a 10% risk threshold, this model’s positive likelihood ratio was substantial, and it
correctly predicted over 3 quarters of death-cases (sensitivity 77%), with high negative predictive
value (99%). With a positive predictive value of 26%, this model can identify (i.e.: “rule in”) a
group of individuals in which a quarter will die in hospital without additional intervention, based
solely on pre-morbid characteristics. The high negative predictive value is re-assuring, but, given
the dire consequences of missing an individual at high risk of dying (false negatives in 19 of 2,001
individuals), our suggested use of this model is not to rule out severe illness.

The predictive ability of models in the Community cohort was much lower for ED visits and hos-
pitalization outcomes, than for death. Unlike death, ED visits and hospital admission are ulti-
mately determined by the availability of hospital services and capacity, and the behaviour and
decision-making of patients and healthcare professionals. This decision-making process may be
more subjective and rely heavily on features unavailable to us, e.g.: hypoxemia in the ED, or
patient/family concerns about COVID-19. Alternatively, due to the disruption to health services
during the pandemic, it is possible that rapidly shifting care practices translated to features with too
inconsistent a relationship with ED visits and hospital admissions for these models to be accurate.

Previously, two studies developedMLmodels predicting deaths among patients with COVID-19 and
diabetes who were admitted to hospital [16, 35]. All models assessed had high accuracy (80-87%)
and sensitivity (75-88%), and moderate-high specificity (55-95%). These models used features
from the time of hospital admission and/or duration of the hospital stay which are not available at
the time of community or ED assessments., Relatively small sample sizes and lack of assessment
of model calibration additionally makes it difficult to discern how these models would perform
in a real-world clinical setting. While these models are intended for patients already admitted to
hospital, ours have the benefit of catching patients at an earlierpoint in the COVID-19 trajectory,
where anticipatory interventions maymake a bigger difference on outcomes. Among studies of non-
hospitalized COVID-19 patients (none specific to adults with diabetes), AUC’s range from 0.62 to
0.84 for predicting hospitalization (compared to 0.70 in our own study) and from 0.61 to 0.91 for
predicting death (compared to 0.93 in the present study) (supplemental appendix 1).

We specifically envision implementing our model predicting death among community adults with
diabetes and COVID-19 positivity at community practitioners’ offices, urgent care centres, rapid
screening sites, and in rural or remote centres. Positive COVID results in these settings could be
accompanied by an automated report of model-predicted risk where a sufficiently integrated data
environment exists. Alternatively, in less integrative data environments, providers may refer to
an online repository of ML models and enter data manually for the salient features, just as most
prediction algorithms are accessed presently (e.g.: https://www.mdcalc.com). If predicted risk is
>= 10%, the following recommendations would be provided: refer the individual to the ED if in a
non-acute community setting; transfer the individual to a tertiary care hospital if in a rural or remote
acute or urgent care environment; consider hospital admission and close observation contingent on
clinical parameters for individuals transferred to or being seen in a tertiary acute care ED; prioritize
this patient for receipt of COVID-19-targeted therapies. For those predicted to be at low (< 10%)
risk, routine clinical judgement and follow-up should apply.
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The challenges of implementing such amodel primarily relate to the integration of predictionmodels
in busy clinical workflows. An integrative data environment, where running the prediction model
can be automated, would be ideal. Prediction models would need to be updated continuously and
rapidly, to maintain value in the face of viral evolution. Finally, the practical points of rolling
out decision support tools such as this, in diverse environments, would need to be considered,
including processes for enlisting providers and evaluating their responses to the predictions and
recommendations. While we have shown that good predictions are technically possible and may
have a marked impact for adults with diabetes and incident COVID-19 positivity, the challenge for
health systems in the digital era will be to translate complex and powerful machine learning models
to actual practice change.Our application of a more proactive approach to prognostication is one
of the strengths of the present study, along with the use of routinely collected administrative data
which does not impose any additional burden of data collection on physicians to use these models.
This study does have limitations. There was a small number of participants and outcomes in the
ED cohort relative to the Community cohort which likely biased results to be more favorable for
the combined cohort. We were also limited to data that is routinely collected by Alberta Health,
and while extensive and generally accurate, may not include relevant clinical or functional / frailty-
related variables, such as vital signs in the ED. Results from this study may not be generalizable to
other countries or Canadian provinces with different healthcare systems, and are specific to adults
with diabetes. Other health systems may collect different routine administrative health data than
the variables used in our models. Models for other jurisdictions would need to be validated in other
populations. Finally, we only had data for Wuhan virulence COVID-19. Other strains may have
different risks of severe outcomes and the model therefore may not translate into other time periods
or be applicable to the endemic phase of predominantly Omicron variants, therefore also impacting
the generalizability of the model and requiring further validation.

5. CONCLUSION

In conclusion, ourMLmodel predicting COVID-19 related death among individuals testing positive
for COVID-19 in the community setting appears to be clinically useful, as a supplement to clinical
assessment, for identifying a subset of individuals with diabetes in whom over a quarter will die
without intervention. Such individuals would benefit from acute care referral, prioritization for
prophylactic COVID-19-targetted therapies, and other enhanced observation / preventive measures
to mitigate their high mortality risk. These models can also be used on an anticipatory basis, to
assist with risk counselling, e.g.: regarding COVID-19 vaccinations. Future research could expand
upon cohorts tested in other settings such as in-hospital, and validating the current models in other
populations and with other strains of COVID-19 variants. While good predictions are technically
possible and may have a marked impact for adults with diabetes and COVID-19, the translation of
complex and powerful machine learning models to actual practice change remains a health system
challenge.
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Supplemental Table S1: List of features

Feature Category Description

Demographics Age, sex, income, estimated material factor, estimated social factor
Drug utilization Polypharmacy, number of dispenses, total quantity of historical dispenses, maximum quantity of

historical dispenses, minimum quantity of historical dispenses, average quantity of historical
dispenses, historical number of dispenses, individual drugs including: N02B, A10BA, A10B,
M05B, C08C, C09A, A11C, H03A, N05C, A02B, C03B, C10A, N06A, A10AE, A10A,
A10AB, C03C, C08D, R03B, A10BB, R03A, C09C, B03B, N03A, L04A, J07B, N05B,
R06A, R01A, G03C, A10BK, M03A, A10BJ, M01A, J05A, M04A, G04C, S01E, S01B,
A02A, N02A, A10BD, N05A, A12A, A03B, S01F, G04B, C09B, C07A, J01X, J01D, J01A,
J01M, D06B, A10AD, D08A, B03A, A01A, D07A, S02C, D01A, D06A, A06A, C09D,
A10AC, A11D, A05A, J01C, J01F, L02A, L02B, N04B, A10BH, J02A, A04A, A03A, J01E,
N07C, D10A, P01A, C03A, D03B, G03A, N07B, C01C, V03A, A12C, G03B, C03D, M03B,
C05A, R03D, S01X, H02B, D02A, M02A, A10BX, H02A, N02C, P03A, D01B, S01A, P01B,
H05A, H01C, A10BG, C03E, R05D, D11A, A09A, A07D, N06D, C01D, N07A, A07A, J07A,
R05F, N01B, B05C, L01X, G03D, A07E, N06B, G01A, A12B, C01A, H03B, H04A, A03F,
G02B, D07C, R05C, S01C, C02C, C02A, L01B, D05B, D05A, S01G, B02A, B03X, A11G,
G03F, D04A, S03A, C04A, C02D, S01, L01C, G03H, H01B, L03A, N04A, P02C, D02B,
G02C, R05X, V04C, C02K, N01A, C01B, A08A, B05X, S02D, S02B, S01L, G03G, J04B,
J04A, L01A, L01D, A16A, H05B, C01E, A07B, G03X, A11H, A07C, D10B, A11J, A10BF,
A03C, S03C, V07A, R03C, D07X, R01B, A11E, R02A, A11A, N07X, H01A, C07C, M09A,
V06D, B01A

Healthcare
utilization

Number of physician visits, number of physicians, number of emergency department visits,
number of hospitalizations, number of days in acute care

Historic diabetes
events

Hypoglycemia, cardiovascular diseases, retinopathy, amputation, debridement, advanced foot
infection, mild foot infection, tissue infection

Ambulatory Care
Sensitive
Conditions

Hypertension, diabetes, angina, chronic obstructive pulmonary disease, asthma, heart
failure/pulmonary edema, grand mal status and other epileptic convulsions,

Elixhauser
comorbidities

Neurologic disorders, hypertension, diabetes, hypothyroidism, obesity, drug abuse, arrhythmia,
chronic pulmonary disease, rheumatoid arthritis, deficiency anemia, alcohol abuse, depression,
psychoses, renal failure, peptic ulcer disease, fluid and electrolyte disorders, solid tumor
cancer, liver disease, peripheral vascular disorders, valvular disease, weight loss,
coagulopathy, blood loss anemia, pulmonary circulation disorders, paralysis, HIV/AIDS,
lymphoma, congestive heart failure

Frailty indicators Falls, malaise & fatigue/debility, delirium, dementia, stroke, senility without mention of
psychosis, pressure ulcer, vascular dementia, dementia in other diseases classified elsewhere,
urinary incontinence, other cerebral degenerations incl. Alzheimer’s, abnormal weight loss,
gait abnormality, dementia in Alzheimer’s, muscle weakness, muscular wasting and disuse
atrophy, difficulty walking, fecal incontinence, cerebral generations usually manifest in
childhood

Clinical history eGFR, creatinine, Hemoglobin A1C, lymphocyte, alanine transferase, hematocrit, white blood
count, platelet count, neutrophil, red blood count, hemoglobin, potassium, sodium,
high-density lipoprotein cholesterol, thyroid stimulating hormone, urate, calcium, low-density
lipoprotein cholesterol, fasting glucose, alkaline phosphatase, albumin:creatinine, total
cholesterol, albumin, total bilirubin, gamma-glutamyl transferase, triglycerides, aspartate
aminotransferase, non-high-density lipoprotein cholesterol, chloride, triiodothyronine,
thyroxine, prothrombin time international normalized ratio, urea, activated partial
thromboplastin time, lactate dehydrogenase, anion gap, bicarbon, magnesium, reticulocytes,
ferritin, total iron-binding capacity, B-type natriuretic peptide, creatine kinase, vitamin B12,
iron, polymerase chain reaction, C-reactive protein, N-terminal prohormone of brain
natriuretic peptide, D-dimer, arterial partial pressure of O2, partial pressure of CO2, ionized
calcium, arterial blood pH, fibrinogen, lactate, folate, erythrocyte sedimentation rate,
PaO2:FiO2, arterial saturation of O2

Other Hyperlipidemia, smoking, prior ischemic heart disease, injury, poison,
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Supplemental Table S2: Administrative codes for feature extraction

Features Source ICD 9, ICD 10, CCI or HSC codes

Historic Diabetes Events

Hypoglycemia CLAIMS,
ED,
HOSP,
VS

ICD-9: 250.3, 250.8, 251, 270.3, 775, 962.3; ICD 10: E100-E101,
E110-E111, E130-E131, E140-E141, E160-E162, E0865, E0801,
E08641, E13641, E1165, E1065, E11641, E10641

Retinopathy ICD-9: 362.01-362.07; ICD-10: E1031-E1036, E1131-E1136,
E1331-E1336, E08311, E08319, E0836, E0839

Cardiovascular
diseases

ICD-9: 410-414, 428, 433, 435-436, 362.3 ICD-10: I20-I22, I61,
I63-I64, I50, G450, G453, G458-G459

Amputation ICD-9: 84.11-84.17, V49.71-V49.77; CCI: 1.VC.93, 1.VG.93,
1.VQ.93, 1.WA.93, 1.WE.93, 1.WI.93, 1.WJ.93, 1.WK.93,
1.WL.93, 1.WM.93, 1.WN.93; HSC: 96.1; ICD-10: 1VC, 1VG,
IVQ, 1WA, 1WE, 1WI, 1WJ, 1WK, 1WL, 1WM, 1WN

Advanced foot
infection

ICD-9: 040, 785.4, 250.7, 440.2-440.24, 730.07, 730.17, 730.27,
730.97, 707.14-707.15, 707.1, 680.7, 682.7, 681.1; ICD-10: I96,
I70.26, I70.36, I70.46, I70.56, I70.66, I70.76, A48.0, E08.51,
E09.51, E10.51, E11.51, E13.51, E08.71, E09.71, E10.71, E11.71,
E13.71, M86.8X6, M86.8X7, M72.5, M72.6, M86.09, M86.19,
M86.29, M86.39, M86.49, M86.59, M86.69, M86.89,
I70.23-I70.24, I70.33-I70.34, I70.43-I70.44, I70.53-I70.54,
I70.63-I70.64, I70.73-I70.74, L97.2-L97.5, L97.8-L97.9, E08.70,
E09.70, E10.70, E11.70, E13.70

Tissue infection ED,
HOSP,
VS

ICD-10: L00-L05, L08, M725-M726, A480, E1051, E1151, E1351,
E1451, R02, E1061, E1161, E1361, E1461, E1070, E1171, E1371,
E1471, E08620-E08622, E08628, E09620, E09622, E09628

Mild foot
infection

ICD-10: L03.01-L03.12, M14.2, M14.6

Debridement CLAIMS CCI: 1.VQ.87, 1.VS.52.LA, 1.VX.59, 1.VZ.70.LA, 1.WA.52.WJ,
1.WA.52.WK, 1.WA.87, 1.WE.52.WJ, 1.WE.52.WK, 1.WE.87,
1.WI.52.WJ, 1.WI.52.WK, 1.WI.87, 1.WJ.52.WJ, 1.WJ.52.JK,
1.WJ.87, 1.WM.52.WJ, 1.WM.52.WK, 1.WN.52.WJ,
1.WN.52.WK, 1.WV.52.LA, 1.WV.59; HSC: 98.11

ACSC Conditions

Angina NACRS ICD-10: I20, I2382, I240, I248-I249
Chronic
obstructive
pulmonary
disease

ICD-10: J41-J44, J47

Asthma ICD-10: J45
Hypertension ICD-10: I100, I101, I11
Diabetes ICD-10: E100-E101, E1063, E109-E111, E1163, E119, E130-E131,

E1363, E139-E141, E1463, E149
continued..
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Supplemental Table S2: Continued..

Features Source ICD 9, ICD 10, CCI or HSC codes

Grand mal
status and
other
epileptic
convulsions

ICD-10: G40, G41

Heart fail-
ure/pulmonary
edema

ICD-10: I50 and J81

Elixhauser conditions

Alcohol abuse DAD,
CLAIMS,
NACRS

ICD-9: 265, 291, 303, 305, 357, 425, 535, 571, 265.2, V11.3, 980;
ICD-10: G621, I426, K292, K700, K703, K709, Z502, Z714,
Z721, F10, E52, T51

Arrhythmia ICD-9: 426-427, 785, 996, V45.0, V53.3; ICD-10: I441-I443, I456,
I459, R000-R001, R008, T821, Z450, Z950, I47-I49

Blood loss
anemia

ICD-9: 280; ICD-10: D500

Congestive
heart failure

ICD-9: 398, 402, 404, 425, 398.9, 428; ICD-10: I099, I110, I130,
I132, I255, I420, I425-I429, P290, I43, I50

Coagulopathy ICD-9: 286-287; ICD-10: D691, D693-D696, D65-D68
Deficiency
anemia

ICD-9: 280-281

Depression ICD-9: 300, 296.2-296.3, 296.5 309, 311; ICD-10: F204,
F313-F315, F341, F412, F432, F32-F33

Diabetes ICD-9: 250; ICD-10: E10-E14
Drug abuse ICD-9: 304-305, V65.4, 292; ICD-10: Z715, Z722, F11-F16, F18,

F19
Fluid &
electrolyte
disorders

ICD-9: 253; ICD-10: E222, E86-E87

Hypertension ICD-9: 401-405; ICD-10: I10-I13, I15
Hypothyroidism ICD-9: 240, 246, 243-244; ICD-10: E890, E00-E03
Liver disease ICD-9: 070, 456, 572-573, V42.7, 570-571; ICD-10: I864, I982,

K711, K713-K715, K717, K760, K762-K769, Z944, B18, I85,
K70, K72-K74

Lymphoma ICD-9: 203, 238, 200-202; ICD-10: C900, C902, C81-C85, C88,
C96

Neurologic
disorders

ICD-9: 331-336, 340-341, 345, 348, 780, 784, 348.1, 348.3;
ICD-10: G254-G255, G312, G318, G319, G931, G934, R470,
G10-G13, G20-G22, G32, G35-G37, G40-G41, R56

Obesity ICD-9: 278; ICD-10: E66
Psychoses ICD-9: 293, 295-298; ICD-10: F302, F312, F315, F20, F22-F25,

F28-F29
continued..
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Supplemental Table S2: Continued..

Features Source ICD 9, ICD 10, CCI or HSC codes

Renal failure ICD-9: 403-404, 588, V42.0, V45.1, 585-586, V56; ICD-10:
I120, I131, N250, Z490-Z492, Z940, Z992, N18-N19

Rheumatoid
arthritis

ICD-9: 701, 710-711, 719, 728-729, 446, 714, 720, 725;
ICD-10: L940, L941, L943, M120, M123, M310-M313,
M461, M468-M469, M05-M06, M08, M30, M32-M35, M45

Solid tumor cancer ICD-9: 140-172, 174-199; ICD-10: C00-C26, C30-C34,
C37-C41, C43, C45-C58, C60-C80, C97

HIV/AIDS ICD-9: 042-044; ICD-10: B20-B22, B24
Paralysis ICD-9: 334, 342-344; ICD-10: G041, G114, G801-G802,

G830-G834, G839, G81-G82
Peptic ulcer disease ICD-9: 531-534; ICD-10: K257, K259, K267, K269, K277,

K279, K287, K289
Pulmonary
circulation
disorders

ICD-9: 415-417; ICD-10: I280, I288-I289, I26-I27

Chronic pulmonary
disease

ICD-9: 416, 506, 508, 499-505, 490-498; ICD-10: I278-I279,
J684, J701, J703, J40-J47, J60-J63

Peripheral vascular
disorders

ICD-9: 093, 437, 443, 447, 557, V43.4, 440-441; ICD-10:
I731, I738-I739, I771, I790, I792, K551, K558-K559,
Z958-Z959, I70-I71

Valvular disease ICD-9: 093, 746, V42.2, V43.3, 394-397, 424; ICD-10: A520,
I091, I098, Q230-Q233, Z952-Z954, I05-I08, I34-I39

Weight loss ICD-9: 783, 799, 260-263; ICD-10: R634, E40-E46, R64

Frailty conditions

Other cerebral
degenerations
including
Alzheimer’s

DAD,
CLAIMS,
NACRS

ICD-9: 336.0-336.2, 331-335; ICD-10: G31-G32

Cerebral
generations
usually manifest
in childhood

ICD-9: 330; ICD-10: G94

Delirium ICD-9: 293; ICD-10: F05
Dementia ICD-9: 290; ICD-10: F03.90
Difficulty walking ICD-9: 719.7; ICD-10: R26.2
Falls ICD-9: E91.77-E91.78, E92.93; ICD-10: W01, W05-W19
Fecal incontinence ICD-9: 787.6; ICD-10: R15
Gait abnormality ICD-9: 781.2; ICD-10: R26
Senility without
mention of
psychosis

ICD-9: 797; ICD-10: R54

Urinary
incontinence

ICD-9: 788.3; ICD-10: R32

continued..
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Supplemental Table S2: Continued..

Features Source ICD 9, ICD 10, CCI or HSC codes

Vascular dementia ICD-9: 290.4; ICD-10: F01
Pressure ulcer ICD-9: 707; ICD-10: L89
Dementia in other diseases
classified elsewhere

ICD-9: 294.1; ICD-10: F02, F03

Malaise & fatigue/debility ICD-9: 780.7, 799.3; ICD-10: G93.3, R53
Dementia in Alzheimer’s ICD-9: 331; ICD-10: G30.0
Abnormal weight loss ICD-9: 783.0, 783.21-783.22, 783.3, 783.9;

ICD-10: R63.0, R63.3-R63.4, R63.6, R63.8
Muscle weakness ICD-9: 728.87; ICD-10: M62.81
Muscular wasting and disuse
atrophy

ICD-9: 728.2; ICD-10: M62.50

Sroke ICD-9: 430-434; ICD-10: I60-I64

Other

Injury DAD,
CLAIMS,
NACRS

ICD-9: 800 <= icd of length 3 ≤ 999; ICD-10:
start with either S or T

Poison ICD-9: 960 ≤ icd of length 3 ≤ 989; ICD-10:
36 ≤ icd[1 : 3] ≤ 65

Smoking ICD-9: 989.84, V15.82, 305.1, 649.00-649.04;
ICD-10: F17, Z71.6, Z72.0, O99.33, T65.2,
Z86.43

Hyperlipidemia ICD-9: 272; ICD-10: E78
Prior ischemic heart disease ICD-9: 410-414; ICD-10: I20-I25
CCI, Canadian Classification of Health Interventions; CLAIMS, physician claims; DAD,
discharge abstract data; ED, emergency department; HOSP, hospital; HSC, Health Service Codes;
ICD, International Statistical Classification of Diseases and Related Health Problems; NACRS,
National Ambulatory Care Reporting System; VS, vital statistics.

Supplemental Table S3: Table of AUC’s prior to model selection

Model Outcomes in Community cohort
Outcomes in
ED cohort

Outcomes in Community
+ ED cohort

Hospitalization ED visit Death Death Death

CatBoost Classifier 0.6777 0.6471 0.9309 0.8553 0.918
Extreme Gradient Boosting 0.6836 0.6557 0.9271 0.8541 0.915
Ada Boost Classifier 0.6685 0.6407 0.9263 0.8406 0.9123
Light Gradient Boosting Machine 0.6898 0.6521 0.9253 0.8572 0.9139
Gradient Boosting Classifier 0.685 0.6551 0.9238 0.845 0.916
Random Forest Classifier 0.6741 0.6504 0.9226 0.8354 0.9021
Extra Trees Classifier 0.6767 0.6503 0.9216 0.8322 0.9069
Logistic Regression 0.6689 0.6342 0.9214 0.824 0.9056
Decision Tree Classifier 0.6282 0.6063 0.9088 0.7555 0.8814
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Supplemental Table S4: Categorical Variables

(a) Participant Comparisons

Community (n=11,247) ED (n=1,495) Community + ED (n=12,410)

Train
(n=8,999)

Validation
(n=2,250) p-value Train

(n=1,195)
Validation
(n=300) p-value Train

(n=9,931)
Validation
(2,485) p-value

n percent n percent n percent n percent n percent n percent

Sex

Males 4086 45.41 1002 44.53 0.45 535 44.77 146 48.67 0.23 4578 46.10 1118 44.99 0.32
Females 4906 54.52 1244 55.29 0.51 656 54.90 154 51.33 0.27 5341 53.78 1366 54.97 0.29

Elixhauser comorbidities

Cardiac
arrhythmias

2834 31.49 693 30.80 0.53 458 38.33 116 38.67 0.91 3194 32.16 762 30.66 0.15

Diabetes 7353 81.71 1849 82.18 0.61 1042 87.20 252 84.00 0.15 8141 81.98 2060 82.90 0.28
Hypertension 5789 64.33 1476 65.60 0.26 899 75.23 217 72.33 0.3 6480 65.25 1624 65.35 0.93
Other Neurological
disorders

5790 64.34 1441 64.04 0.79 818 68.45 233 77.67 0.002 6441 64.86 1614 64.95 0.93

Liver Disease 812 9.02 204 9.07 0.94 134 11.21 37 12.33 0.59 920 9.26 217 8.73 0.41
Rheumatoid
arthritis

2118 23.54 549 24.40 0.39 361 30.21 95 31.67 0.62 2396 24.13 625 25.15 0.29

Fluid & electrolyte
disorders

1421 15.79 391 17.38 0.07 387 32.38 108 36.00 0.23 1736 17.48 435 17.51 0.97

Deficiency anemia 1317 14.63 336 14.93 0.72 198 16.57 60 20.00 0.16 1504 15.14 351 14.12 0.20
Renal Failure 861 9.57 206 9.16 0.55 221 18.49 48 16.00 0.32 966 9.73 284 11.43 0.01
Congestive heart
failure

829 9.21 234 10.40 0.08 201 16.82 60 20.00 0.19 988 9.95 268 10.78 0.22

Depression 3356 37.29 869 38.62 0.24 523 43.77 124 41.33 0.45 3769 37.95 958 38.55 0.58
Hypothyroidism 1486 16.51 327 14.53 0.02 198 16.57 43 14.33 0.35 1609 16.20 393 15.81 0.64
Peripheral vascular
disorders

518 5.76 149 6.62 0.12 135 11.30 31 10.33 0.63 630 6.34 163 6.56 0.69

Chronic pulmonary
disease

2014 22.38 503 22.36 0.98 400 33.47 113 37.67 0.17 2351 23.67 567 22.82 0.37

Obesity 2768 30.76 691 30.71 0.96 382 31.97 100 33.33 0.65 3062 30.83 786 31.63 0.44
Psychoses 904 10.05 230 10.22 0.81 152 12.72 53 17.67 0.03 1030 10.37 252 10.14 0.74
Alcohol abuse 1313 14.59 310 13.78 0.33 256 21.42 61 20.33 0.68 1502 15.12 368 14.81 0.70
Drug abuse 1707 18.97 446 19.82 0.36 270 22.59 64 21.33 0.64 1928 19.41 469 18.87 0.54
Solid Tumor
Cancer

942 10.47 237 10.53 0.93 158 13.22 55 18.33 0.02 1083 10.91 250 10.06 0.22

Valvular disease 234 2.60 77 3.42 0.03 58 4.85 10 3.33 0.26 287 2.89 79 3.18 0.44
Pulmonary
circulation
disorders

293 3.26 64 2.84 0.31 68 5.69 20 6.67 0.52 331 3.33 91 3.66 0.42

Coagulopathy 232 2.58 59 2.62 0.91 57 4.77 9 3.00 0.18 276 2.78 64 2.58 0.58
Weight loss 623 6.92 179 7.96 0.09 121 10.13 39 13.00 0.15 744 7.49 171 6.88 0.30
Peptic Ulcer
Disease*

212 2.36 48 2.13 0.52 55 4.60 9 3.00 0.22 223 2.25 79 3.18 0.007

Paralysis 141 1.57 38 1.69 0.68 38 3.18 3 1.00 0.04 158 1.59 44 1.77 0.53
Lymphoma 105 1.17 24 1.07 0.69 30 2.51 7 2.33 0.86 124 1.25 31 1.25 1.00
HIV/AIDS 30 0.33 3 0.13 0.11 6 0.50 1 0.33 0.7 29 0.29 9 0.36 0.57
Blood loss anemia 45 0.50 6 0.27 0.15 12 1.00 4 1.33 0.62 54 0.54 5 0.20 0.03
*excluding bleeding
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Supplemental Table S5: Model Specification

CatBoost classifier for predicting death in the community cohort:
CatBoostClassifier(nan_mode=’Min’, gpu_ram_part=0.95, eval_metric= ’Logloss’ iterations=
130, leaf_estimation_method= ’Newton’, grow_policy= ’SymmetricTree’, boosting_type=
’Plain’, feature_border_type= ’GreedyLogSum’, devices= ’-1’, l2_leaf_reg= 3,
random_strength= 0.10000000149011612, rsm= 1, boost_from_average= False,
model_size_reg= 0.5, use_best_model= False, class_names= [0, 1], random_seed= 123, depth=
3, border_count= 32, data_partition= ’DocParallel’, bagging_temperature= 1, classes_count= 0,
auto_class_weights= None, leaf_estimation_backtracking= ’AnyImprovement’,
best_model_min_trees= 1, min_data_in_leaf= 1, loss_function= ’Logloss’, learning_rate=
0.10000000149011612, score_function= ’Cosine’, task_type= ’GPU’,
leaf_estimation_iterations= 10, bootstrap_type= ’Bayesian’, max_leaves= 8)

CatBoost classifier for predicting death in the community + ER cohort:
CatBoostClassifier(nan_mode=None, gpu_ram_part=0.95, eval_metric= ’Logloss’,iterations=
130, leaf_estimation_method= ’Newton’, grow_policy= ’SymmetricTree’,boosting_type=
’Plain’, feature_border_type= ’GreedyLogSum’, devices= ’-1’, l2_leaf_reg=
3,random_strength= 0.1000000015, rsm= 1, boost_from_average= False, model_size_reg= 0.5,
use_best_model= False, class_names= [0, 1], random_seed= 123, depth= 3, border_count= 32,
data_partition= ’DocParallel’, bagging_temperature= 1, classes_count= 0,auto_class_weights=
None, leaf_estimation_backtracking= ’AnyImprovement’, best_model_min_trees= 1,
min_data_in_leaf= 1, loss_function= ’Logloss’, learning_rate= 0.1000000015, score_function=
’Cosine’, task_type= ’GPU’, leaf_estimation_iterations= 10, bootstrap_type= ’Bayesian’,
max_leaves= 8)

LGBM model for predicting hospitalization in the ER cohort:
LGBMClassifier(bagging_fraction=0.6, bagging_freq=2, boosting_type=’gbdt’,
class_weight=None, colsample_bytree=1.0, feature_fraction=0.4, importance_type=’split’,
learning_rate=0.1, max_depth=-1, min_child_samples=41, min_child_weight=0.001,
min_split_gain=0.9, n_estimators=260, n_jobs=10, num_leaves=70, objective=None,
random_state=123, reg_alpha=2, reg_lambda=3, silent=’warn’, subsample=1.0,
subsample_for_bin=200000, subsample_freq=0)

LGBM model for predicting hospitalization in the community cohort:
LGBMClassifier(bagging_fraction=1.0, bagging_freq=7, boosting_type=’gbdt’,
class_weight=None, colsample_bytree=1.0, feature_fraction=0.7, importance_type=’split’,
learning_rate=0.01, max_depth=-1, min_child_samples=11, min_child_weight=0.001,
min_split_gain=0.2, n_estimators=80, n_jobs=10, num_leaves=60, objective=None,
random_state=123, reg_alpha=0.0005, reg_lambda=0.4, silent=’warn’, subsample=1.0,
subsample_for_bin=200000, subsample_freq=0)

XGBM model for predicting ER in the community cohort:
XGBClassifier(base_score=0.5, booster=’gbtree’, colsample_bylevel=1, colsample_bynode=1,
colsample_bytree=1, enable_categorical=False, gamma=0, gpu_id=0, importance_type=None,
interaction_constraints=”, learning_rate=0.0005, max_delta_step=0, max_depth=10,
min_child_weight=1, missing=nan, monotone_constraints=’()’, n_estimators=300, n_jobs=10,
num_parallel_tree=1, objective=’binary:logistic’, predictor=’auto’, random_state=123,
reg_alpha=0.05, reg_lambda=5, scale_pos_weight=2.1, subsample=0.5,
tree_method=’gpu_hist’, use_label_encoder=True, validate_parameters=1, verbosity=0)
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Supplemental Figure S1: Feature collection timeline. ACSC, ambulatory care sensitive conditions.

Supplemental Figure S2: Area under the precision-recall curve for all models. A) Predicting ED
visit in Community cohort

SHAP bar plots present the overall rank of each features. Each bar in the mean summary plot
of SHAP values illustrates the extent to which the corresponding feature influences the predicted
primary outcome (death) among 3 subcohorts. The plot begins with features possessing the highest
SHAP values and continues to delineate features with lower influence on the overall predictions.
For example, according to A) the features with the most significant marginal effect on the high-
est importance outcome predictions in the Community cohort were age, followed by number of
physician visits and history of dementia.

Beeswarm plots displays each individual instance of a feature value. With each dot representing an
instance in the dataset, the distribution of dots offers insight into how a feature’s value contributes
positively or negatively to the prediction. Red dots signify higher feature values, and blue dots
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Supplemental Figure S2: B) Predicting hospitalization in the Community cohort

Supplemental Figure S2: C) Predicting death in the Community cohort

denote lower values. For example, in A) the beeswarm plot indicates that older age, larger numbers
of physician visits and larger values for history of dementia contribute to amore likely death outcome
in the Community cohort.
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Supplemental Figure S2: D) Predicting death in ED cohort

Supplemental Figure S2: E) Predicting death in the Community+ED cohort. PRAUC, Area under
the precision-recall curve
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Supplemental Figure S3: Calibration plots for all models. A) Predicting ED visit in Community
cohort
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Supplemental Figure S3: B) Predicting hospitalization in Community cohort
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Supplemental Figure S3: C) Predicting death in Community cohort
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Supplemental Figure S3: D) Predicting death in ED cohort
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Supplemental Figure S3: E) Predicting death in Community+ED cohort
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Supplemental Figure S4: SHAP values for models of interest. A) Absolute SHAP values for model
predicting hospitalization in Community cohort

Supplemental Figure S4: B) Absolute SHAP values for model predicting death in Community
cohort
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Supplemental Figure S4: C) Absolute SHAP values for model predicting death in ED cohort

Supplemental Figure S4: D) Absolute SHAP values for model predicting death in Community +
ED cohort
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Supplemental Figure S5: Beeswarm plots of SHAP values for models of interest. A) For model
predicting hospitalization in Community cohort

Supplemental Figure S5: B) For model predicting death in Community cohort
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Supplemental Figure S5: C) For model predicting death in ED cohort

Supplemental Figure S5: D) For model predicting death in Community + ED cohort
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Appendix 1.

Methods: Weconducted a search inMedline to review relevant literature predicting adverse COVID-
19 outcomes: [exp *Machine Learning] AND [*COVID-19/ or *SARS-CoV-2/] AND [Hospital-
ization/ or “hospital visit”.mp. or “emergency department visit”.mp. or Emergency Room Visits/
or Death/ or Mortality/]. After review, this returned 49 results, and 23 were excluded due to ML
models not being used for predictive modelling, or were based on populations, outcomes or features
that were not of interest to us. Four additional studies were identified by review of references and
were also included resulting in 30 included articles.

Results: Review of relevant literature predicting COVID-19 outcomes.
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Author
(Year)

Population of
COVID-19

patients at BL

Outcome of
interest ML model

Test AUC
(external
validation
AUC)

Model PPV/
precision

Ramalho-Pinto
et al
(2025)[1]

Hospitalized or
non-hospitalized,
Brazil

Hospitalization Decision tree N/A N/A

Nirmalarajah
et al
(2025)[2]

Hospitalized or
non-hospitalized,
Canada

Hospitalization Logistic regression 0.83 0.86
Stacking (GBoost + Logistic
regression-LASSO)

0.80 0.82

GBoost 0.78 0.80
Logistic regression-LASSO 0.77 0.89
XGBoost 0.80 0.84

Delgado et al
(2024)[3]

Hospitalized, Spain Death Multi-thresholding
meta-algorithm

N/A N/A

Mesinovic et al
(2024)[4]

Hospitalized, global Death Logistic regression 0.73 N/A
Linear discriminant analysis 0.73 N/A
Naïve Bayes 0.71 N/A
Random forest 0.74 N/A
Stacking Ensemble 0.74 N/A
XGBoost 0.74 N/A
Ensemble (AdaBoost) 0.73 N/A
Ensemble (XGBoost) 0.74 N/A

Benny et al
(2024)[5]

Non-hospitalized,
Italy

Hospitalization AdaGrad 0.62-0.80* 0.62-0.85*

Govindan et al
(2024)[6]

Hospitalized, USA Death XGBoost 0.88 0.03-0.35**
(0.86) (0.03-0.23)**

Alie et al
(2024)[7]

Hospitalized,
Ethiopia

Death J48 Decision tree 0.50 0.95
Random forest 0.55 0.95
K-nearest neighbor 0.97 0.93
Multi-layer perceptron 0.76 0.99
Naïve Bayes 0.75 0.91
XGBoost 0.71 0.95
Logistic regression 0.58 0.91

Wei et al
(2024)[8]

Non-hospitalized,
USA

Combined
hospitalization/
death/
ventilation

Logistic regression 0.70-0.71* N/A
XGBoost 0.78 N/A
AdaBoost 0.69-0.71* N/A
K-nearest neighbor 0.64-0.65* N/A
Support vector machine 0.70 N/A

Combined
ventilation/
death

Logistic regression 0.78-0.81* N/A
XGBoost 0.86-0.88* N/A
AdaBoost 0.77-0.79* N/A
K-nearest neighbor 0.61-0.70* N/A
Support vector machine 0.70-0.78* N/A

Death Logistic regression 0.79-0.84* N/A
XGBoost 0.89-0.91* N/A
AdaBoost 0.80-0.84* N/A
K-nearest neighbor 0.63-0.72* N/A
Support vector machine 0.73-0.81* N/A

continued..
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Author
(Year)

Population of
COVID-19

patients at BL

Outcome of
interest ML model

Test AUC
(external
validation
AUC)

Model PPV/
precision

Cogill et al
(2024)[9]

Non-hospitalized,
USA

Hospitalization GBoost 0.82 0.74
Death GBoost 0.90 0.83

Dipaola et al
(2023)[10]

Emergency
department,
Italy

Death TensorFlow 0.87-0.88* 0.49-0.53*
Fastai 0.84 0.43-0.46*
XGBoost 0.84 0.43

Yu et al
(2022)[11]

Hospitalized,
Europe

Death Cox regression 0.64 N/A
Logistic regression 0.72 N/A
Random forest 0.78 N/A

Jung et al
(2022)[12]

Hospitalized,
France

Combined death/
ICU/ adult
respiratory
distress
syndrome/
unspecified
coma

XGBoost 0.62-0.66* N/A

Kamran et al
(2022)[13]

Hospitalized,
USA

Combined death/
ventilation/
nasal cannula/
vasopressors

Ensemble (logistic
regression)

0.80(0.77-0.84)* N/AN/A

Prieto
(2022)[14]

Hospitalized or
non-
hospitalized,
Mexico

Hospitalization,
death

Logistic regression N/A N/A
Decision tree N/A N/A
K-Neighbors N/A N/A
Bayes (Bernoulli) N/A N/A
XGBoost N/A N/A
Random forest N/A N/A

Marcos et al
(2021)[15]

Hospitalized,
Spain

Death Random forest 0.85 (0.81) N/A
XGBoost 0.84 (0.82) N/A
Logistic regression 0.83 (0.83) 0.55-0.78**

Yan et al
(2021)[16]

Non-hospitalized,
USA

Hospitalization CatBoost 0.79-0.80* N/A
ExtraTreesClassifier 0.73-0.74* N/A
Logistic regression 0.67-0.70* N/A
Ensemble models 0.74 N/A

Baqui et al
(2021)[17]

Hospitalized,
Brazil

Death XGBoost 0.80-0.81* N/A
Logistic regression 0.76-0.77* N/A
K-nearest neighbor 0.75-0.76* N/A
Neural Network 0.78-0.80* N/A
Random forest 0.78-0.80* N/A
Support vector
machine

0.76-0.77* N/A

Pyrros et al
(2021)[18]

Non-hospitalized,
USA

Hospitalization Ensemble XGBoost 0.84 N/A

Vaid et al
(2021)[19]

Hospitalized,
USA

Combined death/
dialysis

Logistic regression 0.84-0.87* (0.71-0.81)* 0.07-0.24* (0.04-0.33)*

LASSO 0.92-0.95* (0.73-0.86)* 0.19-0.40* (0.05-0.38)*
Random forest 0.92-0.94* (0.83-0.84)* 0.16-0.36* (0.10-0.31)*
XGBoost 0.93-0.98* (0.85-0.87)* 0.37-0.45* (0.10-0.37)*
XGBoost + imputation 0.92-0.96* (0.82-0.86)* 0.19-0.40* (0.06-0.34)*

continued..3603
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Author
(Year)

Population of
COVID-19

patients at BL

Outcome of
interest ML model

Test AUC
(external
validation
AUC)

Model PPV/
precision

Estiri et al
(2021)[20]

Non-hospitalized,
USA

Hospitalization Gboost, XGBoost DART 0.74-0.80* N/A
Death Gboost, XGBoost DART 0.87-0.91* N/A

Heldt et al
(2021)[21]

Hospitalized,
England

Death Logistic regression 0.70 N/A
Random forest 0.77 N/A
XGBoost 0.76 N/A

Jimenez-
Solem et al
(2021)[22]

Hospitalized or
non-hospitalized,
Europe

Hospitalization Random forest 0.82 (0.65-0.66)* N/A

Death Random forest 0.72-0.91* (0.62-0.74)* N/A

Sang et al
(2021)[23]

Hospitalized, USA Death XGBoost 0.93 0.29

Guan et al
(2021)[24]

Hospitalized, China Death Multi-tree XGBoost 0.98 (0.98) N/A
Simple-tree XGBoost 1.00 (1.00) 1.00 (1.00)
Logistic regression 0.88-0.94* (0.94-1.00)* N/A

Hu et al
(2021)[25]

Hospitalized, China Death Logistic regression 0.90 (0.88) N/A
Random forest 0.92 N/A
Bagged flexible
discriminant analysis

0.90 N/A

Partial least squares 0.89 N/A
Elastic net 0.88 N/A

Rechtman
et al
(2020)[26]

Hospitalized or
non-hospitalized,
USA

Death XGBoost 0.86 N/A

Willette et al
(2022)[27]

Hospitalized or
non-hospitalized,
England

Hospitalization Linear discriminant
analysis

0.52-0.93* N/A

Khadem et al
(2022)[28]

Hospitalized, UK,
with diabetes

Death Random Forest 0.80 N/A

Hospitalized, UK,
without diabetes

Death Random Forest 0.84 N/A

Gao et al
(2020)[29]

Hospitalized, China Death Logistic regression 0.96 (0.92-0.97)* 0.83 (0.70-0.87)*
Support vector machine 0.96 (0.91-0.98)* 0.82 (0.69-0.88)*
K-nearest neighbor 0.91 (0.82-0.90)* 0.92 (0.56-0.81)*
Random Forest 0.91 (0.79-0.91)* 0.82 (0.71-0.82)*
GBoost decision tree 0.95 (0.90-0.95)* 0.75 (0.73-0.86)*
Neural network 0.96 (0.92-0.98)* 0.89 (0.75-0.90)*
Ensemble (logistic
regression, support
vector machine,
GBoost decision tree,
neural network)

0.96 (0.92-0.98)* 0.85 (0.73-0.90)*

Khodabakhsh
et al
(2023)[30]

Hospitalized, Iran,
with diabetes

Death Decision Tree 0.87 0.96

Logistic Regression 0.83 N/A

AdaBoost, Adaptive Boostig; AdaGrad, adaptive gradient; GBoost, gradient boosting machine; LASSO, least absolute
shrinkage and selection operator; XGBoost, eXtreme gradient boosting; N/A, not applicable ie not reported; *varies by
strata (i.e.age, sex, time period, feature type, cohort); **depends on threshold used
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