
Advances in Artificial Intelligence and Machine Learning; Research 3 (3) 1352-1368 Received 11-06-2023; Accepted 23-08-2023; Published 30-08-2023

Dialogue Possibilities between a Human Supervisor and UAM Air
Traffic Management: Route Alteration

Jeongseok Kim jeongseok.kim@sk.com
AIX
SK Telecom
Seoul, 04539, Republic of Korea

Kangjin Kim kangjinkim@cdu.ac.kr
Department of Drone Systems
Chodang University
Jeollanam-do, 58530, Republic of Korea

Corresponding Author: Kangjin Kim

Copyright © This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper introduces a novel approach to detour management in Urban Air Traffic Man-
agement (UATM) using knowledge representation and reasoning. It aims to understand the
complexities and requirements of UAM detours, enabling a method that quickly identifies
safe and efficient routes in a carefully sampled environment. This method implemented in
Answer Set Programming uses non-monotonic reasoning and a two-phase conversation be-
tween a human manager and the UATM system, considering factors like safety and potential
impacts. The robustness and efficacy of the proposed method were validated through several
queries from two simulation scenarios, contributing to the symbiosis of human knowledge
and advanced AI techniques. The paper provides an introduction, citing relevant studies,
problem formulation, solution, discussions, and concluding comments.

Keywords: UAM, UATM, KRR, Answer set programming, Articulating agent

1. INTRODUCTION

Urban Air Mobility (UAM) has become a hot topic in the aviation industry due to technology
and novel mobility options. However, the aviation industry’s infrastructure is unprepared for this
paradigm shift. The Korean Urban Air Mobility Concept of Operations [1], by MOLIT describes it
as a paradigm with unprecedented challenges, such as integrating low-altitude flights into dense
urban environments, high-density air traffic management, and a transition to fully autonomous
operations by 2035. This mobility transition necessitates the participation of numerous stakeholders
from diverse industries, resulting in a complex landscape devoid of defined data sharing mecha-
nisms. The absence of standardization impedes UAM operations. Never before has it been more
crucial to have an air traffic management system that can adapt to a heterogeneous environment and
scale to accommodate growing data volume and complexity.

1352
Citation: JeongseokKim, et al. Dialogue Possibilities between aHuman Supervisor andUAMAir TrafficManagement: Route Alteration.
Advances in Artificial Intelligence and Machine Learning. 2023;3(3):80.



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

This investigation employs UAM Air Traffic Management (UATM) solutions to address these ob-
stacles. We create a graph model of the UAM airway network. Each node in this concept is a
”vertiport” — a vertical airport — and each connection represents a route between two adjacent
vertiports. A human traffic manager supervises landing and departure operations at each vertiport
and notifies the UATM system of any traffic issues.

The research presented in this paper offers an in-depth scenario illustrating the communication
process of route change instructions to the relevant agents, consequently causing a modification in
their currently charted routes. It is crucial to understand that the operational scope of each UATM
system is not determined by its physical proximity to a vertiport, but is autonomously determined by
the UATM itself. Given the constraints of communication range, this level of autonomy becomes
increasingly significant. In some circumstances, a UATM might need to transmit instructions to
certain agents via the UATM Network [2], as highlighted by our research.

This investigation aims to unravel the operational complexities inherent to the rapidly evolving
UAM field. By doing so, our hope is to contribute to the development of a more robust, flexible,
and scalable future urban air traffic management system. This system would be capable of ac-
commodating a broad spectrum of stakeholders while addressing their specific data transfer needs,
ultimately advancing the progress and reliability of Urban Air Mobility.

Combining with [3], and [4], partly, this paper makes three contributions: first, a detour scenario;
second, a theoretical enhancement to our method; and third, a newly introduced extra inquiry for an
addition scenario.

We will begin with a review of the relevant literature, followed by a discussion of the problem
formulation, a continuation of the primary solution, potential discussions, and a conclusion.

2. RELATEDWORKS

The papers [1, 5–7], provide a comprehensive overview and challenges of UAM technology, regula-
tory context, potential benefits, and barriers. The article [8], proposes a layered system approach in
order to organize airspace for UAM vehicles, depending on the vehicle type, level of autonomy, and
altitude. Various ATM programs within German Aerospace Center (DLR) initiatives are discussed
by the authors in [9]. The authors in [10], propose an assessmentmodel for vehicle-obstacle collision
hazards. In detail, the authors of the paper [11], discuss cutting-edge Deep Learning techniques for
ATM.

Even though previous investigations and foundations provided some solutions, including collision
avoidances, it is clear that none of these works can be universally adapted due to the complexity of
UATM systems, the diversity of stakeholders, the actions of massive agents, and the occurrence of
unexpected aerial accidents. In order to satisfy the needs of multiple stakeholders, we began our first
step in [3], by developing a scenario for the detour of a particular corridor. Since non-monotonic
reasoning is a type of logical reasoning concerned with the process of deriving conclusions from
incomplete information, this paper employs non-monotonic reasoning to characterize route detours
involving multiple UATMs.. In contrast to monotonic reasoning, in which the addition of new
information to a knowledge base does not reduce the set of propositions that can be derived from

1353



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

that knowledge base, non-monotonic reasoning can result in the rejection of previous conclusions
based on new information [12–14]. In the following paper [4], we showed an example scenario for
changing the destination. Considering the circumstances when a vertiport is momentarily closed,
this paper illustrates the interactional procedures to reroute, expressing in Ontology relationships
and rules as the predicates.

The research paper [15], is an excellent resource for the explanation of complex systems, also
known as explainable AI (or XAI for short). Their proposed epistemological model relies on
knowledge representation and reasoning in particular to validate the complex system. The article
[16], investigates a method for developing automatic classifiers capable of providing explanations
based on an ontology. This paper [17], describes how to construct descriptive logic (DL) ontologies
using five approaches based on association rule mining, formal concept analysis, inductive logic
programming, computational learning theory, and neural networks. Despite the fact that these
studies give a theoretical basis, using their ideas in our system has not proven to be a practical
answer. On the other side, the study [18], proposes an ASP-based paradigm for intra-logistics
difficulties. The articles [19, 20], suggest using ASP to accomplish job assignment and vehicle
routing for automated guided vehicles (AGVs). While they focus on demonstrating how to compute
their route and provide a series of subtasks, we focus on the logic used in the process of interaction
between a human manager and the system, as well as between systems. There is a study[21], for
analyzing uncertainty in space object tracking by the Uncertainty Representation and Reasoning
Evaluation Framework (URREF). URREF is an ontology that provides a common vocabulary for
representing and reasoning about uncertainty. This shows how URREF can be used to model the
uncertainty in the tracking process, and how this uncertainty can be used to assess the veracity,
precision, and recall of the tracking results.

3. PROBLEM FORMULATION

Let us explore a network of vertiports, with some of these vertiports being adjacent and intercon-
nected to form a corridor, as depicted in Fig. 1.

Vertiports are linked by corridors. UAM Air Traffic Management (UATM) systems manage the
extensive circuits of these vertiports. Agents in this network migrate between vertiports via these
corridors. UATMs can communicate directly with agents in their region. The ”UATM Network” is
a communication relaying mechanism that enables UATMs to exchange messages for this investi-
gation. When the agent leaves the UATM service region, however, a direct connection cannot be
established.

The itinerary for an agent’s trip follows: Initially, it is positioned in a vertiport, preparing for takeoff.
This agent asks permission to take off from the vertiport’s traffic manager. As soon as he or she
allows the agent to take the desired action, the aircraft ascends into the airspace.

Before flying, we presume that the destination is already configured and that the route has been
computed. In order arrive at the destination vertiport, the agent communicates with UATMs to
share its status, including its current velocity, GPS coordinates, and other important information.
Then, UATMs are able to track the agent while taking into account the total traffic situation.

1354



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

Figure 1: UATMNetwork, which consists of four vertiports, 𝑣𝑝1, 𝑣𝑝2, 𝑣𝑝3, and 𝑣𝑝7, bidirectionally
connecting corridors between adjacent vertiports, three UATMs of𝑈𝐴𝑇𝑀1,𝑈𝐴𝑇𝑀2, and
𝑈𝐴𝑇𝑀3, and their coverage represented with outer circles.

The agent requests the vertiport’s traffic management to land the aircraft as it approaches. After
approval, the traffic supervisor leads it to the vertipad.

This traffic system operates without human intervention. There is a human traffic manager at each
vertiport. In addition to observing traffic and the vertiport environment, they interact with legacy
traffic systems. Therefore, human managers increase the system’s adaptability.

3.1 Scenario 1: Reroute the Corridor

During the process of monitoring vehicles landing and taking off for a while, the human manager
in vertiport 3 (𝑣𝑝3 for short) detected delays. It is anticipated that some collisions will occur if
these delays are aggregated and transmitted to the corridors. Consequently, he or she reported this
incident to the UATM (in this case,𝑈𝐴𝑇𝑀1). In particular, the corridor between 𝑣𝑝2 and 𝑣𝑝3 is so
congested that agents are required to avoid using it. This results in agents who are en route to 𝑣𝑝3
having to detour. Alternative route consists of 𝑣𝑝1, 𝑣𝑝2, 𝑣𝑝7, and 𝑣𝑝3 vertiports.

From the perspective of 𝑈𝐴𝑇𝑀1, this request from the manager demands extended effort. Once it
gets a detour request from the manager of 𝑣𝑝3, it must locate all forthcoming agents for 𝑣𝑝3. Then,
it picks 𝑣𝑝2-bound agents and delivers them a new route consisting of vertiports 𝑣𝑝1, 𝑣𝑝2, 𝑣𝑝7, and
𝑣𝑝3. Additionally,𝑈𝐴𝑇𝑀1 should determine if any agents are not covered. If such agents are there,
they should query the entire UATMs to locate the appropriate UATMs. Suppose, for instance, that
agent 3 is present at waypoint 1 (𝑤𝑝1). Then, 𝑈𝐴𝑇𝑀2 will reply via the network to the query. In

1355



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

Figure 2: Re-route corridor scenario among human manager, UATMs, and agents

this instance,𝑈𝐴𝑇𝑀1 will request that𝑈𝐴𝑇𝑀2 relay the new route to agent 3. After requesting that
this detour message be relayed,𝑈𝐴𝑇𝑀1 will await𝑈𝐴𝑇𝑀2’s response regarding agent 3’s revised
plan. Once𝑈𝐴𝑇𝑀1 determines that its plan has been updated, it can answer 𝑣𝑝3’s manager. Fig. 2
depicts the scenario to facilitate comprehension.

3.2 Scenario 2: Clearing the Corridor

Now we consider a special case. While communicating with the uncovered agents and sending the
detour request, a manager in 𝑣𝑝2 found that an agent was missed. That is, agent 7 was supposed
to be detoured before getting into the corridor from 𝑣𝑝2 to 𝑣𝑝3. However, the 𝑣𝑝2 manager found
agent 7 at waypoint 2 (or 𝑤𝑝2 for short) which is in that corridor, just before changing its route.
In this case, agent 7 may be unable to reduce its velocity in time, colliding with agents ahead of it.
Hence, he or she immediately reported this status to 𝑈𝐴𝑇𝑀2. A manager in 𝑣𝑝3 requests clearing
that corridor, adding to these approaching agents a round trip which is a sequence of vertiports: 𝑣𝑝3,
𝑣𝑝7, and 𝑣𝑝3.

4. SOLUTION

In this section, we use Answer Set Programming to declare the problem [22–24]. ASP is comprised
of a collection of logical principles that define the relationships between objects and their properties.
In this context, a ”answer set” is a collection of logical statements that satisfies all the program’s
principles and constraints [25]. These answer sets, which represent solutions to the modeled prob-
lem, are discovered by ASP solvers [26]. We do this by breaking the problem down into a series
of smaller questions, and then using non-monotonic reasoning to answer these questions. Once we
have specified the problem, we can check if a given mission is satisfiable. If it is not, we can use
the results of the non-monotonic reasoning to identify the factors that will cause the mission to fail.

1356



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

4.1 A Common Setting

There is a shared setting for the entire solution. Due to page limitations, the Code 6 ∼ 8 are included
as an appendix. This code will be executed before any other code.

4.2 Basic Queries

4.2.1 Find all covered agents by𝑈𝐴𝑇𝑀1

Here, we identify all agents covered by 𝑈𝐴𝑇𝑀1. It is important to note that in Code 1, we omit-
ted codes for agents traveling through the step on purpose1. The code consists of two heads of
rules. The first is covered_agent and the second is covered_by_uatm1. In the second head
covered_by_uatm1, we can pick the agents who are only covered by 𝑈𝐴𝑇𝑀1. As shown in
Result 1,𝑈𝐴𝑇𝑀1 covers agents 1, 2, 4, and 5.

Code 1 Find all agents that are covered by𝑈𝐴𝑇𝑀1
covered_agent(A, TM) :- loc(A, T, U, V, WP), covered_wp(U, V, TM, WP).
covered_by_uatm1(A) :- covered_agent(A, 1).

#show loc/5.
#show covered_by_uatm1/1.

4.2.2 Change the route for covered, 𝑣𝑝3 heading agents

The purpose of this query is to modify the route for the subsequent agents:

• they are within the𝑈𝐴𝑇𝑀1’s coverage,

• their original plan was to pass the exclusive edge,

1 These agents will be covered by the following advanced queries.

Result 1 All agents covered by𝑈𝐴𝑇𝑀1
$ clingo env_info.lp agent_info1.lp query01.lp
clingo version 5.6.2
Reading from env_info.lp ...
Solving...
Answer: 1
loc(3,1,1,2,19) loc(4,1,1,2,16) loc(1,1,1,2,1) loc(5,1,1,2,4) loc(6,1,1,2,2) loc(2,1,1,2,11)

covered_by_uatm1(1) covered_by_uatm1(2) covered_by_uatm1(5) covered_by_uatm1(6)↩→
SATISFIABLE

Models : 1+
Calls : 1
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

1357



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

• their target is the 𝑣𝑝3, and

• they are currently on the edge between 𝑣𝑝1 and 𝑣𝑝2, which indicates that they have not yet
visited the exclusive edge.

Related to this query, we presume six agents exist. We provide the initial plan, plan, for these
six agents, which consists of a sequence of vertiports 𝑣𝑝1, 𝑣𝑝2, and 𝑣𝑝3. This is shown in the
two lines of Code 7 for plan. Then, we provide a new plan, new_plan, which consists of the
vertiports 𝑣𝑝1, 𝑣𝑝2, 𝑣𝑝7, and 𝑣𝑝3. The first value 2 of new_plan in Code 2 does not specify an
agent id, but rather a step number. It indicates that in step 2, the new plan should be adapted for a
subset of agents. Prior to entering the corridor between 𝑣𝑝2 and 𝑣𝑝3, the head detour_request
verifies that the covered agents’ target is 𝑣𝑝3 after locating them. Then, for the specific agent, the
detour_request is created for the one-time step forward. Once one step of time has passed, agents
with the detour_request replace their plan with the new_plan. According to Result 2, four agents
have the detour request, and they have all altered their routes. Since SATISFIABLE is returned, we
know that detour_request is executed.

Code 2 Change the route for covered, 𝑣𝑝3 heading agents
new_plan(2, 1, 2).
new_plan(2, 2, 7).
new_plan(2, 7, 3).

plan(A, T+1, U, V) :- plan(A, T, U, V), step(T+1), not detour_request(A, T+1).
plan(A, T+1, U1, V1) :- plan(A, T, U, V), step(T+1), new_plan(T+1, U1, V1), detour_request(A, T+1).

covered_agent(A, TM) :- loc(A, T, U, V, WP), covered_wp(U, V, TM, WP).
covered_by_uatm1(A) :- covered_agent(A, 1).

detour_request(A, T+1) :- covered_by_uatm1(A), plan(A, T, U, V), plan(A, T, 2, 3), target(A, 1, 3),
edge_range(1, 2, P), loc(A, T, 1, 2, P), not step(T-1).↩→

change_route(A, T) :- new_plan(T, U, V), plan(A, T, U, V), detour_request(A, T).
:- not change_route(A, T), new_plan(T, U, V), detour_request(A, T).

#show detour_request/2.
#show change_route/2.
#show loc/5.

4.3 Advanced Queries

4.3.1 Find all the unreachable with𝑈𝐴𝑇𝑀1, but 𝑣𝑝3 heading agents

According to Code 3, we are able to search covered agents by 𝑈𝐴𝑇𝑀1 using the rules’ head
covered_by_uatm1. We can gather the covered agents from this head. We can identify agents
that have been uncovered by comparing these agents to all agents located in the corridor between
𝑣𝑝1 and 𝑣𝑝2 The remaining agents for the head of rule uncovered_by_uatm1 are listed in 3. The
Result 3 shows that three agents have been uncovered: agent 3, agent 5, and agent 6.

1358



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

Result 2 All covered agents’ plans are renewed
$ clingo env_info.lp agent_info1.lp query02.lp
clingo version 5.6.2
Reading from env_info.lp ...
Solving...
Answer: 1
loc(1,1,1,2,1) loc(3,1,1,2,3) loc(5,1,1,2,5) loc(2,1,1,2,10) loc(6,1,1,2,18) loc(4,1,1,2,19)

detour_request(5,2) detour_request(3,2) detour_request(2,2) detour_request(1,2) change_route(5,2)
change_route(3,2) change_route(2,2) change_route(1,2)

↩→
↩→
SATISFIABLE

Models : 1+
Calls : 1
Time : 0.015s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

Code 3 Find all unreachable agents by𝑈𝐴𝑇𝑀1
covered_agent(A, TM) :- loc(A, T, U, V, WP), covered_wp(U, V, TM, WP).
uncovered_by_uatm1(A) :- not covered_agent(A, 1), loc(A, T, 1, 2, _), plan(A, T, 2, 3), target(A, T,

3).↩→

#show loc/5.
#show uncovered_by_uatm1/1.

Result 3 All unreachable agents by𝑈𝐴𝑇𝑀1
$ clingo env_info.lp agent_info1.lp query03.lp
clingo version 5.6.2
Reading from env_info.lp ...
Solving...
Answer: 1
loc(1,1,1,2,1) loc(2,1,1,2,8) loc(3,1,1,2,16) loc(4,1,1,2,2) loc(5,1,1,2,19) loc(6,1,1,2,17)

uncovered_by_uatm1(3) uncovered_by_uatm1(5) uncovered_by_uatm1(6)↩→
SATISFIABLE

Models : 1+
Calls : 1
Time : 0.007s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

1359



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

4.3.2 Change the route for all 𝑣𝑝3 heading agents

Code 4 contains two distinct heads of the rules for detour_request. One is for agents covered
by 𝑈𝐴𝑇𝑀1 and the other is for agents unreachable by 𝑈𝐴𝑇𝑀1. As demonstrated in Result 4,
all covered and uncovered agents are specified, followed by their detour requests and their route
modifications at time step 2.

Code 4 Change the route for all 𝑣𝑝3 heading agents
new_plan(2, 1, 2).
new_plan(2, 2, 7).
new_plan(2, 7, 3).

plan(A, T+1, U, V) :- plan(A, T, U, V), step(T+1), not detour_request(A, T+1).
plan(A, T+1, U1, V1) :- plan(A, T, U, V), step(T+1), new_plan(T+1, U1, V1), detour_request(A, T+1).

covered_agent(A, TM) :- loc(A, T, U, V, WP), covered_wp(U, V, TM, WP).
covered_by_uatm1(A) :- covered_agent(A, 1).
uncovered_by_uatm1(A) :- not covered_agent(A, 1), loc(A, T, 1, 2, _), plan(A, T, 2, 3), target(A, 1,

3).↩→
covered(A, T, TM) :- loc(A, T, U, V, WP), uncovered_by_uatm1(A), covered_wp(U, V, TM, WP).

detour_request(A, T+1) :- covered_by_uatm1(A), plan(A, T, U, V), plan(A, T, 2, 3), target(A, 1, 3),
edge_range(1, 2, P), loc(A, T, 1, 2, P), not step(T-1).↩→

detour_request(A, T+1) :- covered(A, T, TM), plan(A, T, U, V), plan(A, T, 2, 3), target(A, 1, 3),
edge_range(1, 2, P), loc(A, T, 1, 2, P), not step(T-1).↩→

change_route(A, T) :- new_plan(T, U, V), plan(A, T, U, V), detour_request(A, T).
:- not change_route(A, T), new_plan(T, U, V), detour_request(A, T).

#show covered_by_uatm1/1.
#show uncovered_by_uatm1/1.
#show detour_request/2.
#show change_route/2.
#show loc/5.

4.3.3 Append a round detour for agents ahead of agent 7

Code 5 gathers ahead_agents. Then, it categorizes these agents to covered_by_uatm2 and to
covered_by_other. For each category, it sends round_request for adding a round trip to the end
of these agents’ plan. Once the new plan is added, it can complete the round_route mission. The
Result 5 shows that agent 8∼12 had round_request, and then finally made round_route.

5. DISCUSSION

In this section, we discuss present progress, limitations, and future directions.

1360



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

Result 4 All 𝑣𝑝3 heading agents’ plans are renewed
$ clingo env_info.lp agent_info1.lp query04.lp
clingo version 5.6.2
Reading from env_info.lp ...
Solving...
Answer: 1
loc(3,1,1,2,1) loc(5,1,1,2,5) loc(1,1,1,2,6) loc(2,1,1,2,9) loc(4,1,1,2,18) loc(6,1,1,2,19)

covered_by_uatm1(1) covered_by_uatm1(2) covered_by_uatm1(3) covered_by_uatm1(5)
detour_request(6,2) detour_request(5,2) detour_request(4,2) detour_request(3,2)
detour_request(2,2) detour_request(1,2) uncovered_by_uatm1(4) uncovered_by_uatm1(6)
change_route(6,2) change_route(5,2) change_route(4,2) change_route(3,2) change_route(2,2)
change_route(1,2)

↩→
↩→
↩→
↩→
↩→
SATISFIABLE

Models : 1+
Calls : 1
Time : 0.016s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

Code 5 Append a round detour for agents ahead of agent 7
new_plan(3, 3, 7).
new_plan(3, 7, 3).

ahead_agents(A, T) :- loc(A, T, U, V, WP), loc(7, T, U, V, WP2), WP > WP2.

covered_agent(A, TM) :- ahead_agents(A, T), loc(A, T, U, V, WP), covered_wp(U, V, TM, WP).
covered_by_uatm2(A) :- covered_agent(A, 2).
covered_by_other(A) :- not covered_agent(A, 2), ahead_agents(A, T), covered_agent(A, TM).

round_request(A, V, T+1) :- covered_by_uatm2(A), ahead_agents(A, T), target(A, T, V), step(T+1).
round_request(A, V, T+1) :- covered_by_other(A), ahead_agents(A, T), target(A, T, V), step(T+1).

plan(A, T+1, U, V) :- ahead_agents(A, T), plan(A, T, U, V), step(T+1).

plan(A, T, U, V) :- round_request(A, V, T), new_plan(T, U, V).
plan(A, T, V, U) :- round_request(A, V, T), new_plan(T, V, U).
target(A, T, V) :- round_request(A, V, T), plan(A, T, U, V).

round_route(A, V, T) :- round_request(A, V, T), plan(A, T, U, V), plan(A, T, V, U).
:- not round_route(A, V, T+1), ahead_agents(A, T), round_request(A, V, T+1), step(T+1).

#show covered_by_uatm2/1.
#show covered_by_other/1.
#show round_request/3.
#show round_route/3.

1361



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

Result 5 Plans for all agents ahead of agent 7 are renewed
$ clingo env_info.lp agent_info2.lp query05.lp
clingo version 5.6.2
Reading from env_info.lp ...
Solving...
Answer: 1
covered_by_other(9) covered_by_other(10) covered_by_other(11) covered_by_other(12) covered_by_uatm2(8)

loc(7,2,2,3,2) loc(8,2,2,3,8) loc(9,2,2,3,9) loc(10,2,2,3,10) loc(11,2,2,3,11) loc(12,2,2,3,12)
round_request(9,3,3) round_request(10,3,3) round_request(11,3,3) round_request(12,3,3)
round_request(8,3,3) round_route(9,3,3) round_route(10,3,3) round_route(11,3,3)
round_route(12,3,3) round_route(8,3,3)

↩→
↩→
↩→
↩→
SATISFIABLE

Models : 1
Calls : 1
Time : 0.025s (Solving: 0.01s 1st Model: 0.00s Unsat: 0.01s)
CPU Time : 0.000s

5.1 Nonmonotonicity

Through the program for the first scenario, the initial background knowledge given is that the
corridor from 𝑣𝑝2 to 𝑣𝑝3 is crowded, and the focused agents are in the corridor from 𝑣𝑝1 to 𝑣𝑝2. In
order to illustrate the nature of nonmonotony, agents’ locations can vary. We modeled the various
locations for these agents so that without considering the coverage of each UATM, they could be
properly handled. Code 7 declares the agent’s location through the choice rule for the loc and
its following rules. These rules allow agents to be aligned evenly in different situations. With this
arrangement of the agents’ locations, all the corresponding rules in the queries are properly declared
in order to cover general situations.

5.2 Explainability

The query asking that ‘Change the route for all 𝑣𝑝3 heading agents’ is successful is expressed
as the predicate change_route and its supporting rule just followed by the predicate. The answer
demonstrates that change_route is true when it is satisfiable. In this query, the validation of the
explanation is checked by the combination of the predicate, change_route, which is regarded as
a fact when the body of the rule is true, and the safe rule, which ensures the fact’s consistency.
Assuming that all the derived rules and relationships lead to the body of the rule as true, the logical
consequence makes the predicate change_route by also being connected, and this justifies the
answer to the query.

We observe that the explanation is somewhat abstract based on the predicates we declared. In
the second scenario, we only considered the given rules and facts, omitting the process by which
the 𝑣𝑝2 could miss the agent. In this regard, additional research must be conducted, and a more
comprehensive explanation is desired. We note that in order to validate our technique, a theoretical
foundation must be addressed. Due to page constraints, we included this in the appendix.

1362



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

6. CONCLUSIONS

We have enumerated two UATM-related scenarios. We have implemented knowledge represen-
tation and reasoning within the framework of Answer Set Programming by employing it as an
instrument for articulating system explanations. The paper then examines our current progress,
prospective ambitions, and ultimate goals in this context.

7. ACKNOWLEDGMENTS

This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA)
grant funded by the Ministry of Land, Infrastructure and Transport (Grant RS-2022-00143965).

References

[1] https://en.kuam-gc.kr/35/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&
bmode=view&idx=10439947

[2] Kim J, Kim K. Decentralized 4DT Monitoring Architecture for Trajectory-Based
Operations(Tbo) In the Presence of Multiple UATMsps. 2022 Autumn Conference of The
Korean Society for Aeronautical and Space Sciences.2022:1116-1118.

[3] Kim JS, Kim K. 3, Change Your Route: Possible Conversation Between a Human Manager
and UAM Air Traffic Management (UATM);2023:14216.

[4] Woo S, Kim J, Kim K, We V. 6, are temporarily closed: Interactional Ontological Methods for
Changing the Destination. https://arxiv.org/abs/2307.03558.2023.

[5] Reiche C, Goyal R, Cohen A, Serrao J, Kimmel S,et al. Urban Air Mobility Market Study.
National Aeronautics and Space Administration (NASA).2018.

[6] Garrow LA, German BJ, Leonard CE. Urban Air Mobility: A Com- Prehensive Review and
Comparative Analysis With Autonomous and Electric Ground Transporta- Tion for Informing
Future Research. Transp Res C. 2021;132:103377.

[7] Marzouk OA. Urban Air Mobility and Flying Cars: Overview, Examples, Prospects,
Drawbacks, and Solutions. Open Eng. 2022;12:662-679.

[8] https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%
29%20Concept%20of%20Operations%202.0_0.pdf.

[9] Schuchardt BI,Dagi G, Lüken T, Knabe F, Metz IC,.et al. Air Traffic Management as a Vital
Part of UrbanAirMobility – AReview of Dlr’s ResearchWork From 1995 to 2022. Aerospace.
2023;10:81.

[10] Kim D, Lee K. Surveillance-Based Risk Assessment Model Between Urban Air Mobility and
Obstacles. J Korean Soc Aviat Aeronaut. 2022;30:19-27.

1363

https://en.kuam-gc.kr/35/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=10439947
https://en.kuam-gc.kr/35/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=10439947
https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf
https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf


https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

[11] Pinto Neto EC, Baum DM, Almeida J, Camargo JB, Cugnasca PS. Deep Learning in Air
Traffic Management (ATM): A Survey on Applications, Opportunities, and Open Challenges.
Aerospace. 2023;10:358.

[12] R. Reiter. Nonmonotonic Reasoning, page. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.1988:439–481.

[13] https://plato.stanford.edu/entries/logic-nonmonotonic/

[14] Koons R. Defeasible reasoning. In: Zalta EN, editor. The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab. first edition. Stanford University.2022.

[15] Borrego-Díaz J, Galán Páez J. Knowledge Representation for Explainable Ar- Tificial
Intelligence:Complex Intell Syst. 2022;8:1579-1601.

[16] Bourguin G, Lewandowski A, Bouneffa M, Ahmad A. Towards Ontologically Explainable
Classifiers. In: Artificial neural networks and machine learning – ICANN..2021;472-484.

[17] Ozaki A. Learning Description Logic Ontologies: Five Approaches. Where Do They Stand?
KI Künstliche Intell. 2020;34:317-327.

[18] Gebser M, Obermeier P, Otto T, Schaub T,C s Tran,et al. Experimenting With Robotic Intra-
Logistics Domains. TPLP. 2018;18:502-519.

[19] Gebser M, Obermeier P, Schaub T, Ratsch-Heitmann M, Runge M. Routing Driverless
Transport Vehicles in Car Assembly With Answer Set Programming. TPLP. 2018;18:520-534.

[20] N Van, Schaub T, Yeoh W. Gen-Eralized Target Assignment and Path Finding Using Answer
Set Programming. In Proceedings of the International Symposium on Combinatorial Search.
2019;10:194-195.

[21] Blasch E, Shen D, Genshe C, Sheaff C, Pham K. Space Object Tracking Uncertainty Analysis
With the Urref Ontology. In: IEEE Aerospace Conference.2021:1-9.

[22] Lifschitz V. Answer Set Planning. Logic Program Nonmonotonic Reason.1999:373-374.

[23] Baral C. Knowledge representation, Reasoning and Declarative Problem Solving.first edition.
Cam bridge university press.2003.

[24] Vladimir Lifschitz. What is answer set programming? In Proceedings of the 23rd National
Conference on Artificial Intelligence - Volume 3, AAAI’08, Chicago, Illinois.AAAI Press.
2008:1594–1597.

[25] Gelfond M, Lifschitz V, Kowalski B. The Stable Model Semantics for Logic Program- Ming.
In: Robert, Kenneth, Proceedings of the international logic programming conference and
symposium.1988;88:1070-1080.

[26] Gebser M, Kaminski R, Kaufmann B, Schaub T. Multi-Shot Asp Solving With
Clingo.CORR.2019;19:27-82.

[27] Davis M, Putnam H. A Computing Procedure for Quantification Theory. JACM.1960.;7:201-
215

1364

https://plato.stanford.edu/entries/logic-nonmonotonic/


https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

[28] Davis M, Logemann G, Loveland D. A Machine Program for Theorem-Proving. Commun
ACM.1962;5:394-397.

[29] Bayardo R, Schrag R. Using Csp Look-Back Techniques to Solve Real-World Sat Instances.
Proc Natl Conf Artif Intell. 1998;03.

[30] Gomes CP, Selman B, Crato N, Kautz HA. Heavy-Tailed Phenomena in Satisfiability and
Constraint Satisfaction Problems. J Autom Reason. 2000;24:67-100.

Appendix A. Common Settings

A.1 Information about the Environment

Code 6 Information about the Environment
% common settings
% initial information for environment

uatm(1..3). agent(1..20). vp(1..7).

% edge(VP_u, VP_v) :
% there is a corridor from VP_u to VP_v
edge(1, 2). edge(2, 3). edge(2, 7). edge(7, 3).

% cover(UATM_i, VP_u) :
% UATM_i coveres VP_u
cover(1, 1). cover(1, 3).
cover(2, 2).
cover(3, 7).

% edge_range(VP_i, VP_j, P) :
% corridor from VP_i to VP_j has range P.
edge_range(1, 2, 1..20).
edge_range(2, 3, 1..13).
edge_range(2, 7, 1..22).

% covered_wp(VP_u, VP_v, UATM_i, P) :
% UATM_i covers a corridor from VP_u to VP _v within the range P.
covered_wp(1, 2, 1, P) :- edge_range(1, 2, P), P < 16.
covered_wp(1, 2, 2, P) :- edge_range(1, 2, P), 7 <= P.
covered_wp(2, 3, 1, P) :- edge_range(2, 3, P), 9 <= P.
covered_wp(2, 3, 2, P) :- edge_range(2, 3, P), P < 9.
covered_wp(2, 7, 2, P) :- edge_range(2, 7, P), P < 8.
covered_wp(2, 7, 3, P) :- edge_range(2, 7, P), 20 <= P.

step(1..3).

1365



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

A.2 Information about the Agents for the first four queries

Code 7 Information about the Agents for the first four queries
% common settings :
% initial information for agents

% loc(AGENT_a, STEP_t, VP_i, VP_j, WP_p) :
% At STEP_t, AGENT_a locates at WP_p on the corridor between VP_i and VP_j.
1{loc(A, 1, 1, 2, WP): edge_range(1, 2, WP)}1 :- agent(A), A <= 6.
:- loc(A1, 1, 1, 2, WP), loc(A2, 1, 1, 2, WP), A1 != A2.

% uatm1_wps(WP_p) :
% WP_p is the waypoint in the corridor from vp1 to vp2, and uatm1 covers the waypoint.
uatm1_wps(WP) :- covered_wp(1, 2, 1, WP1), covered_wp(1, 2, 2, WP2), edge_range(1, 2, WP), WP != WP2,

WP == WP1.↩→

% uatm2_wps(WP_p) :
% WP_p is the waypoint in the corridor from vp1 to vp2, and uatm2 covers the waypoint.
uatm2_wps(WP) :- covered_wp(1, 2, 1, WP1), covered_wp(1, 2, 2, WP2), edge_range(1, 2, WP), WP != WP1,

WP == WP2.↩→

% uatm1_2_both(WP_p) :
% WP_p is the waypoint in the corridor from vp1 to vp2, and both uatm1 and uatm2 cover the

waypoint.↩→
uatm1_2_both(WP) :- covered_wp(1, 2, 1, WP1), covered_wp(1, 2, 2, WP2), edge_range(1, 2, WP), WP ==

WP1, WP == WP2.↩→

% u1_only(N):
% N is the number of waypoints in uatm1_wps(WP).
u1_only(N) :- N = #count{A:uatm1_wps(WP), not uatm2_wps(WP), loc(A, 1, 1, 2, WP), agent(A)}.

% u2_only(N):
% N is the number of waypoints in uatm2_wps(WP).
u2_only(N) :- N = #count{A:uatm2_wps(WP), not uatm1_wps(WP), loc(A, 1, 1, 2, WP), agent(A)}.

% u1_2_both(N):
% N is the number of waypoints in both uatm1_wps(WP) and uatm2_wps(WP).
u1_2_both(N) :- N = #count{A:uatm1_wps(WP), uatm2_wps(WP), loc(A, 1, 1, 2, WP), agent(A)}.

% focused_agent_number(N):
% N is the number of agents that locate at the corridor from vp1 to vp2.
focused_agent_number(N) :- N = #count{A: loc(A, 1, 1, 2, WP), agent(A), edge_range(1, 2, WP)}.
:- u1_only(N), focused_agent_number(N).
:- u2_only(N), focused_agent_number(N).
:- u1_2_both(N), focused_agent_number(N).
:- u1_2_both(N), N == 0.
:- u1_only(N), N = 0.
:- u2_only(N), N = 0.

% plan(AGENT_a, STEP_t, VP_i, VP_j) :
% At STEP_t, AGENT_a has a part of plan to move from VP_i to VP_j.
plan(A, 1, 1, 2) :- agent(A), 1 <= A, A <= 6.
plan(A, 1, 2, 3) :- agent(A), 1 <= A, A <= 6.

% we assume that every plan is acyclic.
source(A, 1, U) :- agent(A), plan(A, 1, U, V), not plan(A, 1, _, U).
target(A, 1, V) :- agent(A), plan(A, 1, U, V), not plan(A, 1, V, _).

1366



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

A.3 Information about the Agents for the last query

Code 8 Information about the Agents for the last query
% common settings :
% initial information for a missed agent and agents that locate at the condensed corridor

% loc(AGENT_a, STEP_t, VP_i, VP_j, WP_p) :
% At STEP_t, AGENT_a locates at WP_p on the corridor between VP_i and VP_j.
loc(7, 2, 2, 3, 2).
loc(8, 2, 2, 3, 8).
loc(9, 2, 2, 3, 9).
loc(10, 2, 2, 3, 10).
loc(11, 2, 2, 3, 11).
loc(12, 2, 2, 3, 12).

% plan(AGENT_a, STEP_t, VP_i, VP_j) :
% At STEP_t, AGENT_a has a part of plan to move from VP_i to VP_j.
plan(A, 2, 1, 2) :- agent(A), 7 <= A, A <= 12.
plan(A, 2, 2, 3) :- agent(A), 7 <= A, A <= 12.

source(A, 2, U) :- agent(A), plan(A, 2, U, V), not plan(A, 2, _, U).
target(A, 2, V) :- agent(A), plan(A, 2, U, V), not plan(A, 2, V, _).

Appendix B. Validation Analysis

B.1 Validating the answer using graph reachability

In this section, we provide a theoretical foundation for our approach. Particularly, we prove that the
answer returned from ASP is valid using the graph reachability technique.

Proposition 1 Every answer returned from ASP is valid.

Proof Without loss of generality, define 𝐺, 𝑆, and 𝑇 as follows:

• Let 𝐺 be the graph of reachable states in ASP,

• Let 𝑆 be the set of states that satisfy the goal, and

• Let 𝑇 be the set of states that are returned by the ASP solver.

We want to show that 𝑇 ⊂ 𝑆.

• For any state 𝑠 ∈ 𝑇 , there exists a path 𝑝 from the initial state to 𝑠 ∈ 𝐺.

• Since 𝑠 ∈ 𝑇 , it must satisfy the goal.

• Therefore, if any state 𝑠 that is reachable from the initial state in 𝐺 and satisfies the goal, then
𝑠 ∈ 𝑇 .

1367



https://www.oajaiml.com/ | August 2023 Jeongseok Kim, et al.

This shows that 𝑇 ⊂ 𝑆. In other words, all of the states that are returned by the ASP solver are valid
solutions to the problem.

We remark that our desired solutions are in a subset of 𝑇 . In addition, it is worth noting that this
technique is similar to proving the validation in model checking. Both involve the construction
of a graph of all possible states that the system can reach and then searching the graph for a state
that satisfies the goal. Despite the fact that we used graph reachability analysis, the computational
technique used in the building of many answer set solvers is an improvement to the DPLL algorithm
[27–30].

1368


	INTRODUCTION
	RELATED WORKS
	PROBLEM FORMULATION
	Scenario 1: Reroute the Corridor
	Scenario 2: Clearing the Corridor

	SOLUTION
	A Common Setting
	Basic Queries
	Find all covered agents by UATM1
	Change the route for covered, vp3 heading agents

	Advanced Queries
	Find all the unreachable with UATM1, but vp3 heading agents
	Change the route for all vp3 heading agents
	Append a round detour for agents ahead of agent 7


	DISCUSSION
	Nonmonotonicity
	Explainability

	CONCLUSIONS
	ACKNOWLEDGMENTS
	Common Settings
	Information about the Environment
	Information about the Agents for the first four queries
	Information about the Agents for the last query

	Validation Analysis
	Validating the answer using graph reachability


