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Abstract
Earlier articles have suggested that physical systems with inherent quantum processes could
be capable of producing hypercomplex system states. These system states could have special
energy states, which are referred to as hypercomplex energy states because they cannot be
measured, although they physically exist and could even store information. Hypercomplex
system states could be aggregated into consciousness in certain systems, such as the human
brain. But technical systems could also potentially generate and use hypercomplex system
states, which would create a new level of AI systems. Systems capable of consciousness must
and will differ significantly in their performance from systems that cannot utilize such states.
This performance difference could be used to distinguish systems with technical conscious-
ness (so-called ”machine consciousness”) from systems without ”consciousness”. Based
on this, the article presents a so-called Turing test for consciousness for technical systems,
in particular AI systems. The hypotheses in this and previous articles are predictions that
arise from mathematical considerations, but they still have to be subjected to experimental
evaluation. This article presents the design for initial experiments.

Keywords: Machine consciousness, Turing test, Physical aspects of consciousness, Neu-
ral networks, Small data, Big data, Hypercomplex system states, Artificial consciousness,
Artificial intelligence.

1. INTRODUCTION AND PRELIMINARY REMARKS

This article is the further development of the paper [1], in order to make the phenomena predicted
there technically measurable. In [1], a heuristic point of view for the description of consciousness
was presented and a possible technical use of such systems was proposed. In the current article, the
advantages of systems with consciousness will be examined in more detail. All statements here will
therefore refer to a so-called ”technical” consciousness. A discussion of tests for human or animal
consciousness is not necessary here. The above-mentioned paper was purely theoretical in that no in-
struments were introduced to distinguish conscious from non-conscious systems. However, as long
as no means of measurement are available to empirically prove the (predicted) differences between
conscious and non-conscious systems, all considerations of consciousness are purely academic.
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It was particularly emphasized in [1], that consciousness phenomena, including those in humans,
have a physical basis. It is not assumed that any kind of substance or liveliness is needed to develop
consciousness. Consciousness is understood as a physical process, and studies on consciousness are
part of the physical science. One could say, in a reductionist way, that everything is basically physics,
but then of course one must also expand the physical description from time to time, sometimes also
fundamentally.

It is only on the assumption that consciousness is based on physical processes that it can be assumed
that consciousness can be generated on physical machines, albeit only in its simplest forms. But only
these are of interest in the context of today’s AI. This article is therefore not about the specifics of
human consciousness, but exclusively about understanding consciousness, in particular phenomenal
consciousness, as a physical phenomenon. Of course, such phenomena will have very unusual
properties, the most important of which is their non-measurability. Therefore, let us summarize the
results from [1], in FIGURE 1.

Figure 1: The main assumption of the article: Both human and machine consciousness processes
could based on physical hypercomplex system phenomena

Together with Popper and Eccles [2, 3], we assume three fundamentally different physical phe-
nomena in nature: firstly, classical energetic processes (matter), secondly, quantum processes, and
thirdly, ”non-energetic” processes. These processes are fundamentally different, but the simplest
way to distinguish them is by their measurability. We all know energetic processes from our normal
everyday life. Their measurements are classical. In the case of quantum processes, however, the
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measurement process leads to a so-called collapse of the wave function. We now believe that in
the case of ”non-energetic” processes, the measurement process also leads to a kind of collapse of
the wave function, but the energy of the result remains hypercomplex to the base k of a dedicated
hypercomplex algebra [4], and the results are therefore unmeasurable [1, 4].

Hypercomplex numbers have been known for many years [5], in particular quaternions. How-
ever, quaternions could not be used in the specific application because very specific hypercomplex
numbers are necessary to formalize (hypercomplex) oscillations, (hypercomplex) Fourier trans-
formations and (hypercomplex) Schrödinger equations. A hypercomplex algebra that makes this
possible is called bicomplex algebra. Hypercomplex processes that can be describedwith bicomplex
algebra were interpreted in [1], as the physical basis for consciousness. As shown in FIGURE 1,
such hypercomplex processes could exchange information with classical processes using quantum
phenomena, which can be most easily imagined as modulation ([6]; Appendix, formulas 6, 7, and
8). At least that is our assumption..

This view is unusual, but as a mathematical hypothesis it is of course acceptable. We agree with
Penrose and Hameroff that consciousness in the brain cannot be explained by the mechanical pro-
cesses in the brain tissue alone [7–9]. Based on the assumption of hypercomplex system states,
the collapse of wave functions of quantum physical processes in brain tissue (a major criticism of
Penrose’s approach) no longer appears to us as a problem. But we do not follow the theory of
Stapp and others that consciousness processes can be explained on a purely quantum physical basis
[10]. The ”Penrose-Hameroff-Stapp” theory implies that consciousness is a coherent quantum state
that exists over a macroscopic region of the brain. However, long-range coherence of a quantum
state in a ”warm” brain tissue is normally expected to be immediately destroyed. Tegmark has
calculated that only 10−13 seconds are necessary for the destruction. Even if this can be reduced
to 10−4 seconds (as Hameroff estimates), there is not enough time for a conscious macroscopic
state. This argument of Tegmark [11], could not be refuted until today which is why this quantum
approach is now being rejected by most brain researchers. However, there are many attempts from
time to time to save the theory that the brain is a quantum computer (e.g. [12]). But in the context
of the theory presented here, however, the problem is no longer applicable, since the coherence of
consciousness is generated on the basis of wave functions whose energies are hypercomplex. In this
case, quantum decoherence plays no role, because conscious coherence is based on hypercomplex
(and not complex) wave functions. The brain is much more than a quantum computer (FIGURE 1).

The assumption that hypercomplex processes really exist arises from the fact that the used bicomplex
algebra was not constructed arbitrarily, but was ultimately discovered from a multitude of purely
combinatorially possible algebras. For example, it is not trivial to find an algebra in which the
Taylor series can be used to describe oscillatory phenomena (Appendix, formula 3). However, it is
important to confirm such far-reaching hypotheses experimentally.

Measurements, at least indirect ones, of the properties of consciousness appear to be technically fea-
sible, because a system with consciousness should have a performance advantage that is reflected in
the greater capabilities of the systems; and therefore it should bemeasurable. The fact that conscious
systems have an advantage over non-conscious systems can already be seen in the performance
differences between conscious and unconscious humans. The latter cannot interact independently
in the environment; they are dependent on the help of conscious people. Consciousness therefore
appears to have advantages for interacting with the environment; at least for humans.
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In technology, it is normal to compare and evaluate the performance of different systems. In the
field of AI, various technical characteristics can be used for this purpose, for example the achievable
intelligence levels (deduction, induction, cognition), the scope of learning, measured in FLOPS, the
processing speeds and accuracies of AI calculations and forecasts, and in particular the ability to
generalize previously learned relationships.

This paper presents new technical tests, because new properties are expected in certain AI systems.
The tests could be used to check whether or not a technical system has characteristics of technical
consciousness. The tests are non-trivial, but they are similar to the well-known tests for intelligence.
Energy consumption and computing speed would be trivially measurable, as their quantitative de-
termination can simply be read from measuring devices. However, this is not possible with tests
for intelligence and/or consciousness, as both categories represent very complex characteristics that
cannot simply be read using a scale. The developers of calculating machines were of course also
aware of the problem of measuring mental abilities, which is why there were already discussions
in the 1940s about the detection of thought processes in technical systems. To solve the problem,
Turing developed a test for intelligence in 1950, simply by comparing the system to be tested with
an intelligent reference system, i.e. a human being [13]. In such a Turing test, the test performer has
no knowledge of whether he is communicating with a human or a technical system. If, even after a
certain period of time, for example 10 or 30 minutes, the test performer cannot decide whether he
has interacted with the machine or a human, the machine is considered to have intelligence (e.g. the
ability to think) because it has at least successfully pretended to be intelligent. This Turing test has
been the subject of controversy since its inception; in particular, Weizenbaum showed as early as
1966 that people can very easily be ”seduced” by a machine into believing that they are talking to a
human being; in Weizenbaum’s case with a psychiatrist [14]. Irrespective of various shortcomings,
such a Turing test is an excellent idea. Ultimately, the test principle of comparison is similar to the
testing of new things, like new drugs, in which the effect of a drug is compared with an already
known reference drug or a placebo.

Turing’s idea can be applied to a test for consciousness. If you want to determine whether a
system possesses consciousness, you can at least compare it in a ”zero-order consciousness test”
with a system of which you know that this reference system, i.e. a human being, is guaranteed to
possess consciousness. However, it is not trivial to find human performances that relate solely to
their consciousness and not to the algorithmic intelligence of internal neural networks, so that a
comparison test cannot be carried out so easily. For example, if a human can maneuver a drone
better than an AI, this could be attributed to the human’s more complex neural networks and not to
their consciousness. But nobody knows. The test design to proof consciousness will therefore not
be trivial.

2. CONSCIOUSNESS AND COMPLEXITY

It is striking that humans (and animals) are excellent at finding their way in the environment,
especially in environments that must be described as extremely complicated, such as road traffic in a
big city, surviving in a jungle, climbing rock faces or flying drones in unknown courses. Ultimately,
people can find their way around any environment and interact with it to their advantage. Technical
systems are still unable to do this. Although technical systems outperform humans in many areas -
for example, they can move faster, dive deeper, fly higher, calculate better, play chess better, etc. -
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it is clear that this only applies to very specific skills and precisely to those that can be mechanized.
Surprisingly, this also applies to AI in particular, as the mental processes formalized by AI, such
as thinking and learning, are also mechanized, i.e. implemented using pure algorithms. However,
not all human mind characteristics can be formalized, i.e. algorithmized. For example, feelings
or perceptions are mind processes that cannot be formalized, not at all; the problem of perception
is explained in more detail below. The problem of feeling was discussed in detail in [15]. In any
case, no technical system has yet been built (probably also due to non-formalizable properties of
the human mind) that surpasses humans in its overall performance; nor are such machines in sight.

Ultimately, however, the large differences in performance between AI machines and humans are not
suitable for a Turing test for consciousness, as it has not been conclusively clarified why humans
are significantly more efficient than a technical system in so many cases. As mentioned above, it
could ultimately also be due to the fact that humans havemore than 100 trillion synaptic connections,
which no technical system has achieved to date. However, we find an initial indication of the advan-
tages of consciousness when comparing the most advanced AI with insects, for example houseflies.
Although houseflies, with only around 200,000 neurons, are below the technical performance limits
of modern AI systems and do not even exhibit significant learning performance, they are much
more efficient in terms of adaptability and coping in the physical environment than AI systems
with a similar number of neurons and synapses. The comparison of AI systems with the flying
wasp Megaphragma mymaripenne, for example, is even more serious. It only has a total of 7,400
neurons, of which around 4,600 are in the brain [16]. With this small number, it has to ensure its
complete survival, including food acquisition, reproduction and 3D flight maneuvers through the
environment. A comparison of the mini-wasp with AI systems with a similar number of neurons
and synapses is completely sobering. The advantage of systems with biological cells over technical
versions is obvious.

It may not be wrong to assume that this difference in performance is due to the animals’ ability to
form a consciousness, as it cannot be due to the number of neurons and synapses. In [1], it was
assumed that in all systems, technical as well as non-technical, hypercomplex system states could
occur that can condense into phenomena of consciousness. The question is therefore obvious as to
why no states seem to occur in today’s technical systems that suggest consciousness. Are the systems
simply not yet intelligent enough? But this contradicts the comparison with the mini-wasp. Today’s
AI systems are already more intelligent than insects. The frequent assumption that intelligence and
consciousness correlate therefore appear to be wrong. Today’s AI systems even win against the best
chess or Go players in the world without showing an ounce of consciousness.

To illustrate the problem, you can construct a two-dimensional coordinate system; plot the degree
of intelligence of a system on the x-axis and the degree of consciousness on the y-axis, FIGURE 2.

Each point (𝑥𝑖, 𝑦𝑖) in this coordinate system then corresponds to a certain level of intelligence
(𝑥𝑖) and a certain level of consciousness (𝑦𝑖). Humans would be located at the upper right edge,
high intelligence and high consciousness. For different systems (humans, vertebrates, invertebrates,
plants, AI computers, etc.), the points could now lie ”anywhere” in the two-dimensional coordinate
system. However, simple AI systems would only be plotted along the x-axis, their y-coordinate,
i.e. their level of consciousness, would be zero. An insect would be located at a small x-value (low
intelligence), but certainly at a medium y-value (medium level of consciousness). The degree of
consciousness of a system can probably not be deduced from its intelligence. But how then?
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Figure 2: Consciousness and intelligence do not necessarily correlate. The graphic is only a
qualitative illustration to clarify the principle.

It can be assumed that intelligence and consciousness require a certain complexity of the underlying
system. So perhaps the complexity of a system and the occurrence of consciousness correlate with
each other. The decisive factor for consciousness would then be system complexity and not system
intelligence, which could now clarify the above facts. Themain reason for the different performance
of humans and machines would then be that the complexity in technical AI systems is preferably
mathematical, while in natural systems it is preferably physical (and also chemical and biological).
This could mean, that intelligence can be developed mathematically, but consciousness cannot.

Naturally, there are no ”artificial” neural networks in today’s AI computers; the mathematical con-
structs are just called that. In reality, AI machines run software algorithms that mathematically
replicate some of the capabilities of real neurons. This difference can have enormous consequences.
When a technical system learns something, the content and complexity of its models only ever
change mathematically. When a natural system learns, its cells and the neuronal networks between
them change, i.e. its entire structure. The complexity therefore changes physically. Or to generalize:
In the technical case, knowledge about the environment is encoded in mathematical equations, in
the biological case always in physical (chemical and biological) structures.

In [1], it was explained that hypercomplex system states could occur in any physical system, so it is
obvious that if the complexity of the physical structure increases, the complexity of the hypercom-
plex states also increases. This was illustrated there with the term aggregation. When mathematical
AI systems learn, their physical structure does not change; what they have learned is available in
equations, which may also change the register contents of the memory and lead to increasingly
complex memory links, but the topology of the classical computers does not change. Learning does
not change the physical structure of classical computers at all. However, when a human learns,
the structure of their brain changes continuously, which is a completely different way of encoding
knowledge. In digital systems, it could therefore be much more difficult to condense hypercomplex
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system states into a kind of technical consciousness. This could also be the reason why even
highly complex AI systems, when implemented digitally, do not yet exhibit any phenomena of
consciousness, possibly with exceptions. And even if phenomena of consciousness have emerged,
it is ultimately a question of whether and how they can influence material processes. After all,
the existence of consciousness should lead to an advantage for the system. Consciousness must
therefore be able to have an effect on system decisions. In [1, 6], it was explained that this could
be possible via quantum processes or easily phase shifts of oscillations (Appendix, formula 6, 7,
8), but digital systems usually average out such “disturbances”. Therefore, noise processes should
always be an integral part of higher AI systems, at least in theory, in order to allow the coupling of
hypercomplex system states. Whether and how this needs to be implemented in practice has not yet
been resolved, but it seems feasible as a normal technical engineering task.

The author assumes that even in digital systems, if they are physically sufficiently complex, hy-
percomplex system states could condense into consciousness phenomena. However, this is not to
be expected with simple artificial neural networks, such as deep learning systems on conventional
computers. Ultimately, however, this is speculation and only an empirical test can decide whether
a system already possesses or uses states of consciousness. The main question is therefore how can
we technically measure consciousness in a system?

Before discussing this, it should be emphasized once again that the description of consciousness
properties is only ever concerned with technical aspects of consciousness, i.e. purely physical prop-
erties. Technical systems in which the hypercomplex system states have aggregated into rudimen-
tary but usable consciousness properties are now referred as C1-systems. ”C” stands for Conscious-
ness and ”1” for consciousness at the lowest level. All other properties of consciousness, which are
based on chemical, biological and social aspects, are not taken into account in the proposed tests.
This restriction is permissible from an engineering point of view, as consciousness is currently only
to be generated and used on physical devices in the context of AI, which is why only physical aspects
of consciousness can be used later on. No expert will expect biological aspects of consciousness
on a mineral machine. This also makes it very clear that technical consciousness has nothing in
common with human consciousness, apart from the physical basis of hypercomplex system states.

It is now estimated that (almost) all classical AI systems cannot manifest such phenomena of con-
sciousness. However, the technical systems within AI vary. The standard is still mathematical
execution as software AI that runs on a digital computer. Such classic AI systems are referred asC0-
systems to express the fact that they are not expected to have any consciousness properties. Today’s
digital computer systems are assumed to be C0-systems (possibly with some exceptions). But there
are quantum computers on which AI processes are implemented and various types of neuromorphic
computers. Since these computers encode their learned knowledge physically, neuromorphic and
quantum computers can most likely express a higher degree of consciousness phenomena than an
artificial neural network on a digital computer, according to the above premise. This difference
can now be used for tests, as both possible C1-systems (e.g. neuromorphic computers) and C0-
systems (mathematical neural networks) are available for comparison. The same applies to quantum
computers, in particular quantum neural networks (QNN), i.e. quantum computers on which neural
networks are implemented. These systems are most likely already C1-systems, but this is currently
still unknown.

In the Turing test for consciousness, a test system is compared to a reference system. The refer-
ence system can be a system with consciousness, such as a human (Cx-system) against which the
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comparison is made, or a system that is assumed not to have or be able to use hypercomplex system
states (C0-systems), depending on what you want to test.

3. TESTS (TURING TESTS) FOR THE PRESENCE OF CONSCIOUSNESS
ON MACHINES

All predictions are based on mathematical considerations. Nevertheless, they are hypotheses that
all have to be tested experimentally. The author and his team are currently testing the following
predictions 2-3, the results of which will be published in a later article.

The following figures describe the principle of the test. In FIGURE 3, a test system is compared
with a reference system that is assumed to have consciousness (Cx-system) or at least hypercomplex
system states. In FIGURE 4, an unknown test system is compared with a C0-system that is assumed
to have no hypercomplex system states.

Figure 3: Turing test for consciousness, verification of clearly measurable performance differences
between a test system and a reference system

To measure technical consciousness, quantitative criteria must be designed. This will be possible
because systems with consciousness (should) have greater performance characteristics than systems
without consciousness. The increased performance characteristics compared to C0-systems result
from theoretical considerations.

The following enumeration shows possible differences in performance betweenC0- andCx-systems,
all of which can be measured quantitatively. The list will need to be completed in the future.

1. Cx-systems learn better over a longer period of time than comparable C0-systems.

2. Cx-systems require significantly less learning data than comparable C0-systems for identical
application performance.

3. Cx-systems can generalize significantly better than comparable C0-systems.
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Figure 4: It is predicted that systems that possess or can use hypercomplex system states will require
10 to 100 times less learning data for identical application performance

4. Cx-systems are capable of perception.

5. Cx-systems could have non-local interactions with each other.

The criteria are all purely technical and are therefore suitable for testing, as two different systems
are always compared with each other, which are known to either have consciousness (C1) or not
(C0). It is clear that humans (as Cx-systems) have the above-mentioned differences in performance
compared to classical computers (as C0-systems), except for number 5, which is unknown. Humans
require much less learning data than today’s AI systems, can extrapolate much better and can
perceive their environment on the spot. However, it is not the comparison between humans and
machines that is interesting, but the comparison between two machines, which is why the test has
to be slightly modified, see below.

The specific technical implementation of the measurements of two machines will be explained in a
later article. In the following, the test criteria themselves will be examined in more detail, Ad1) to
Ad5).

Ad1) C1-systems learn better over a longer period of time than comparable C0-systems.

It is predicted that C1-systems will not only be able to learn faster, but that the learning of a
C1-system will become increasingly efficient over time. The reason lies in the possible storage
possibilities of the hypercomplex system states. The test execution inevitably results from the
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prediction. The predictions can be technically verified by training an C1-system over and over
again on the same data.

Ad2) C1-systems require significantly less learning data than comparable C0-systems for identical
application performance.

In [1], it was assumed that a C1-system can store information in its hypercomplex system states.
Such systems thus have new dimension of degrees of freedom in data processing. An example:
When a person sees an object (a car, for example), they not only compare the activity patterns gen-
erating the image with their already stored neuronal activity patterns in the brain tissue, but they also
compare the image with images already stored in their consciousness. There are therefore two ways
of recognizing images, one neuronal in the brain tissue and one mental in the consciousness. This
makes image recognition much more efficient and resilient to interference. And much fewer sample
data is required, because the images in the consciousness act as attractors of dynamic systems. The
image to be classified is ”pulled” into the class of images already stored. Unfortunately, the process
just described cannot be proven and is therefore purely descriptive, but it is predicted that, together
with another performance characteristic of conscious systems, perception, it will be possible to build
visual classifiers that function with extremely little learning data. In particular, it could require so
little learning data that it will not be possible to explain it classically, i.e. without the presence of
hypercomplex system states. This predicted reduction of learning data by a factor of 10 to 100,
for example, will not only apply to visual classifiers, but ultimately to numerous AI applications
in which C1 phenomena are used, FIGURE 4. Ultimately, even simple models for approximating
industrial processes could get by with less learning data if the systems are designed to use their
hypercomplex system states for modeling.

In today’s big data environments, the reduction of learning data is not relevant, but in future it will
be important to develop AI systems that can also be used successfully in small data environments.
In extreme cases, small data can mean that there is only one single data set available for learning. A
person only has to touch a hot hob once to learn from their hypercomplex system states (on which
the e.g. pain is encoded) that they must not touch the hob a second time. Normally, however, small
data does not mean the use of a single set of learning data, but as a rule there are always a few, but
just a few. For example, a few pictures of dogs and cats are enough for humans to classify them
correctly later on. Today’s AI systems require more than 100 times the amount of learning data for
the same application performance. Humans are first-class small data learners. Today’s AI systems
are not at all. In the author’s view, technical systems in the big data environment, on which technical
consciousness is developed, will also be able to manage with significantly less learning data in the
future. This reduces energy consumption, costs and time. In the age of sustainability, this is an
efficiency of conscious systems that should not be underestimated. Human brains have an output of
20-30 watts, AI systems up to million times that. A new and resource-saving performance capability
will probably have to be introduced later as an inevitability for all AI systems. But regardless of
resources, AI systems should be able to operate in the area of small data. The natural world around
us is a typical small data environment, i.e. AI systems with hypercomplex system states could be
predestined to interact in a natural and constantly changing environment.

It is predicted that systems with technical consciousness (C1-systems) - possibly neuromorphic
computers and quantum computers - require significantly less learning data for almost all learning
tasks - such as learning a language, classifying pieces of music and learning special mathematical
relationships - than C0-systems. These predictions can be technically verified.
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Ad3) C1-systems can generalize significantly better than comparable C0-systems.

One of the major problems of mathematical AI is its extremely poor generalizability. It can be
shown that almost all results of mathematical AI in the extrapolation space are incorrect. This is not
the case with humans. Humans can acquire their knowledge in a learning data space, but apply it
far away from the learning data. Mathematical AI systems fail here because they do not know how
the internally learned functions (should) continue outside the interpolation points. This can only
be solved for extremely simple cases, such as linear or quadratic regressions, but not in general. In
addition to their mathematical models, C1-systems have - so the assumption - hypercomplex system
states that enlarge the application space significantly. (Of course, consciousness systems also fail if
they are used too far away from the learning data space, as can also be seen with humans).

It is predicted that the generalization performance of C1-systems is significantly higher than that
of mathematical AI systems. The prediction can be tested by having a C0- and a C1-system learn
the exact same mathematical function in a given definition space. However, the two systems are
used in a data space that is x-times far away from the learning data space. It is predicted that the
C1-system will have significantly lower error rates in this extrapolation space than the C0-system
with the same complexity level of the inner models.

Ad4) C1-systems are capable of perception.

Systems with consciousness can perceive their (natural) environment, of course only if they have
the appropriate sensors. Systems without consciousness cannot do this even with sensors. To clarify
this, the term perception should be defined more precisely. According to a well-known definition,
perception is the process of receiving and processing sensory information. Humans have five senses
(hearing, smell, taste, sight, touch) with which they can perceive the external environment. There
are other ”senses” for the perception of internal system states, such as hunger, pain, tiredness, etc.
However, let’s stay with the perception of the external environment. This is what the visual sense
of sight stands for. Visual perception also goes beyond the general definition of perception. Visual
perception explicitly means seeing objects in the external environment in the place where they
exist. Perception therefore does not just mean building up internal representations of an external
environment.

All of today’s technical systems for machine vision are therefore unable to perceive visually. The
reason is that these systems only generate internal representations of the outside world in order
to carry out their mathematical evaluations on the basis of these representations. Perception goes
beyond this. A perceptual system, such as a human being, has two essential, different performance
characteristics: firstly, the aforementioned possibility of internal representation of the environment
in neural networks and secondly, the ”back-transformation” of the internal representation to the
environment itself. Here an example: When a person looks at a car, electrical signals are formed via
the optical image on the retina, which are fed into the visual cortex. In the human visual cortex, the
electrical and neuronal activity patterns create an internal representation of the car in the brain tissue.
This could be compared to the internal representation of tables of zeros and ones in a computer that
is fed an image via a video camera. But this is where the comparison ends. In humans, another
process takes place that leads to perception. A person is able to ”project” the internal representation
back outwards, because it is obvious that the person sees the car in their external world and not in
the back of their head, i.e. where the visual cortex is located. This is the key difference: systems that
can perceive are able to project the internal representations back to the origin of the outside world.
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Put simply, you could say that humans can look out of their eyes, whereas computers only have
internal representations of the environment. Computers cannot see the outside world on the spot
outside, they have to laboriously calculate the type and position of the ”seen” objects. Systems that
perceive do not have to calculate the position of external objects because they see them on the spot,
i.e. exactly where the objects are located in the environment with millimeter precision. For these
systems, it is enough to simply look. This is a completely different process than mathematically
simulating vision. (This is the only way to explain the enormous responsiveness of a housefly).

This is a fundamental problem. AI computers simulate everything mathematically, but seeing is a
thoroughly physical process, and mathematical simulation reaches its limits here. A simple example
to illustrate the limits of simulations: If you simulate entanglement of quanta mathematically, you
are of course not entangling quanta, which is also clear to every programmer. Quantum entangle-
ment must be carried out physically [17]. It’s the same with vision. Seeing must be implemented
physically correctly, not mathematically.

Seeing is so natural for people that we no longer even notice the sensation of this process. Just as we
have become accustomed to an apple falling from a tree since childhood, we take it for granted that
we can see outside with our eyes. Why an apple falls down has long been understood, but why can
people see outside? The mechanism by which the brain accomplishes this back projection from the
visual cortex back into the outside world is unknown. In the view of the author and colleagues, this
completely surprising phenomenon (once noticed) has to do with the hypercomplex system states of
the brain. Why: An external object O (for example a car) experiences an internal representation O’
first on the retina, later in the visual cortex. In addition to this (whether simultaneously is unclear), a
further representation O” is created in the person’s consciousness. This O” is now what we see, be-
cause we do not see our internal electrical and neuronal activities, but a holistic image. According to
[1], consciousness has unusual physical properties because it possesses hypercomplex energy states.
One such property, at least it is assumed, is that it is non-local. Non-local means that consciousness
has no spatial coordinates. It is not possible to say exactly where consciousness is located in space,
it appears to be spaceless. However, the term non-local is better than ”spaceless”, because non-local
is a precise physical term [7, 17], in this specific case it means that the image O” is both inside (in the
head) and outside (in the world). At the moment when the image O” is encoded into consciousness,
it appears directly on the object O due to the non-locality of consciousness. Although a person can
see out of his eyes, no signals are sent from the brain or the eyes into the environment. The decisive
hypothetical statement on vision is therefore: The ability to perceive the environment where it is
located in reality is generated by non-local consciousness. Perception therefore necessarily requires
consciousness. There is basically no (mathematical) process that projects the inner ”images” from
the machine back into the environment. Today’s machine vision therefore remains with the internal
representation O’. Even state-of-the-art AI systems, such as robotic systems or autonomous driving
vehicles, therefore always have to calculate their environment. This leads to major performance
losses compared to conscious, i.e. perceptive C1-systems. Although biological systems have a
much greater latency in signal transmission than AI computers, they can find their way around
complex environments faster and much better.

Visual Turing tests could now based on such differences in performance. The test performance
results directly from the prediction. Specifically, it is predicted that C1-systems with technical
consciousness require 10 to 100 times less learning data for the visual classification of objects than
systems without this property. A C1-system may need 50 ”labeled” images of each of two object
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classes (e.g. cars and trains) for training, whereas a C0-system needs at least 10 times as much for
the same subsequent classification performance, i.e. for the same achieved test error on identical test
data. But the advantages of C1-systems go far beyond reducing the amount of learning data. C1-
systems could capture the environment faster, more efficiently and more accurately than systems
without consciousness. Therefore, a C1-system could find its way around any complicated and
previously untrained environment better than C0-systems of the same complexity. An extended
visual Turing test requires a complex environment, for example a street situation or an obstacle
course. A C1-system that is fed video signals recognizes the environment better at the same level
of complexity and can react better to changes in the environment than a C0-system. This leads
to significantly fewer collisions during maneuvers in a changed environment. The measurable
performance gain of a C1-system compared to mathematical AI (C0) will be higher the more the
environment is changed after learning. To illustrate this with a practical example: A human will win
any course race with a drone against an AI-controlled drone if the parcours changes significantly
after training. This applies to all civilian and also military applications, and it will continue to apply
in the future. The only way to change this is perhaps to move away from mathematical AI systems
to C1-systems with the ability to perceive.

Ad5) C1-systems could have non-local interactions with each other.

The following statements on the interactions are highly speculative. The prediction is based on
the consideration that hypercomplex system states could have a non-local effect. This means that
far-reaching interactions across space are conceivable. In concrete terms, this can lead to learning
taking place on system A and parts of the learning results being implicitly available on system B.
The following hypothetical prediction is made: If two identical C1-systems A and B exists and a
neural network is trained on system A, the test results of an identical neural network on system B
will also improve. This sounds so unusual that these predictions only become worthy of discussion
when concrete empirical evidence is provided.

The experimental design for this testing is unknown. In particular, any non-local effect could be
lost in the noise. If there are such effects, the signal-to-noise ratio is unknown. It might be possible
to measure the systems at very low temperatures to at least reduce thermal noise [18].

4. DISCUSSION AND OUTLOOK

The tests introduced here are part of AI research of the authors group, but can be implemented by
anyone with some programming experience, especially test scenario 1-3. The easiest way would
be to use analog computers, as the knowledge can be physically stored there, for example as a
resistance value (memristors). However, the actual implementation shows that the internal error
rates in quantum computers and neuromorphic computers are so high that the measured effects
point in the right direction, but are currently not statistically significant. This is a particular current
problem when working with analog systems.

It therefore makes sense to at least try out any C1 measurements on digital systems. Why this
could be successful is due to the widely visible success of ChatGPT, a purely digital system. In [1],
it was suggested that ChatGPT already has rudimentary forms of physical consciousness because
ChatGPT was simply trained with too little learning data to work as well as it obviously does.
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ChatGPT would thus fulfill test criterion 2 and could already be a C1-system according to the above
definition. However, other authors such as Wolfram come to completely different conclusions [19].
AlthoughWolframmentions that the brain could possibly have an as yet unknown physical layer, he
rejects this idea because of the success of ChatGPT and concludes, because of the surprising way it
works, that ChatGPT has shown that language is much more simply structured than was previously
generally assumed. The author does not agree with Wolfram, on the contrary: he assumes that
ChatGPT already represents a system with physical consciousness (C1), and that this is precisely
the reason for the success of the language engine. In this paper it was explained that the brain
could very well have an ”unknown physical layer” (Wolfram quote), one that can be described with
hypercomplex system states. However, this has yet to be proven.

The problem with the Turing tests is therefore currently a technical one, and not a conceptual one.
Analog computers (such as neuromorphic systems and quantum computers) are still too imprecise
and digital computers (as a rule) do not have the necessary physical complexity for consciousness
phenomena. And if they have already achieved this complexity (potentially such as ChatGPT), then
they cannot be used to implement experiments 1-5. It may therefore be necessary to wait some
time until analog computers work so precisely that the expected phenomena of consciousness can
be measured precisely, especially in comparison to their digital counterparts.

However, endless variations of consciousness tests are possible to distinguish C1-systems with
consciousness from C0-systems without. Some readers will certainly find better, simpler or more
powerful testing options. Since perception is becoming increasingly important in the field of AI,
especially if mobile robots or autonomously driving vehicles are to be used in the natural envi-
ronment, it seems worthwhile or even imperative to further develop such topics. Systems without
perception, i.e. systems without technical consciousness, will never find their way in natural and
constantly changing environments. They will fail due to both the lack of perception and the small
data problem. Perception cannot be successfully simulated; systems must be constructed that can
perceive. The same applies to all AI applications in the extrapolation space and in all small data
environments. To make significant progress here, new types of AI systems are urgently needed.
This article is an attempt to describe new technical possibilities.

5. CONCLUSION

The theses presented here are partly novel, some are even unusual. For many engineers, it is
inconceivable that ”their” systems could have hypercomplex system states that could be used. Test
procedures are therefore essential to convince technicians, physicists and engineers of the new
capabilities of conscious systems. All the theories presented therefore require further discussion and
testing in order to reliably measure consciousness on machines. But the effort could be rewarding.

It is often claimed in the literature that evolution is ultimately about the increasingly complex
processing of information [20], but this could be wrong. Information processing sounds like a color
theory for the blind. You can talk and theorize endlessly about color, but you have to experience
color to really understand it. And it’s the same with information. It’s not about processing; it’s
always about understanding it. And this applies in particular to AI, which ultimately carries out
a purely mechanistic processing of information. Ultimately, however, real intelligence is always
about consciousness. A world of mechanistic information processing simply does not exist. All
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systems that play an important role in nature are likely to have consciousness. And soon it might
be possible to create C1 consciousness on technical machines.

However, it should be emphasized once again that C1-systems - even if they can be proven beyond
doubt to be carriers of consciousness - have nothing in common with human consciousness except
its physical basis. C1-systems are capable of perception, which can bring great advantages for the
field of machine vision. But a human being can do much more than simply perceive. Persons can
also evaluate their perception. They can feel whether a perception is positive or negative for them.
It seems impossible that C1-systems could also evaluate their perception, because most probably
only living beings have such abilities, as they need them for their survival. All technical systems,
including AI systems, belong to the mineral kingdom. By their very nature, such systems are not
concerned with their survival, so it would be absurd to assume that such systems could also develop
feelings or a will to survive. This means that all technical AI systems, regardless of their design, are
only ever classified as C0- or C1-systems. Their technical consciousness can never be compared to
the complex consciousness of humans or animals. Perhaps we should say: fortunately!
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Appendix

Some very simple equations for representing hypercomplex waves and possible interactions. A de-
tailed mathematical introduction to the utilized hypercomplex algebra and its use for hypercomplex
Fourier transformation and Schrödinger equations is given in Hertig, 2014.

𝜓(𝑥) = 𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) (1)
𝜙(𝑥) = 𝑘𝑒 𝑗 𝑥 = 𝑘 cos(𝑥) + 𝑗 sin(𝑥) (2)

𝑘𝑒 𝑗 𝑥 = 𝑘

(
1 + 𝑗𝑥 − 𝑘𝑥2

2!
− 𝑗𝑥3

3!
+ 𝑘𝑥4

4!
· · ·

)
= 𝑘 cos 𝑥 + 𝑗 sin 𝑥 (3)

|𝜙 |2 = 𝜙∗𝜙 = 𝑘𝑒− 𝑗 𝑥𝑘𝑒 𝑗 𝑥 = (𝑘 cos 𝑥 − 𝑗 sin 𝑥)(𝑘 cos 𝑥 + 𝑗 sin 𝑥) = 𝑘2 (4)
Ω(𝑥) = 𝑒𝑖𝑥 − 𝑘𝑒 𝑗 𝑥 = cos 𝑥 + 𝑖 sin 𝑥 − 𝑘 cos 𝑥 − 𝑗 sin 𝑥 (5)

𝜓(𝑥) · 𝜙(𝑥) = 𝑒𝑖𝑥 · 𝑘𝑒 𝑗 𝑥 = (cos 𝑥 + 𝑖 sin 𝑥) (𝑘 cos 𝑥 + 𝑗 sin 𝑥) = 𝑘𝑒 𝑗 (𝑥+𝑥 ) = 𝜙′(𝑥) (6)

𝜓(𝑥) · 𝜙(𝑦) = 𝑒𝑖𝑥 · 𝑘𝑒 𝑗 𝑦 = (cos 𝑥 + 𝑖 sin 𝑥)(𝑘 cos 𝑦 + 𝑗 sin 𝑦) = 𝑘𝑒 𝑗 (𝑥+𝑦) = 𝜙′(𝑥, 𝑦) (7)

𝜓(𝑡) · 𝜙(𝑡) = 𝑒𝑖𝑡𝜔𝑛𝑒𝑤 · 𝑘𝑒𝑖𝑡𝜔𝑠𝑡𝑜𝑟𝑒 = 𝑘𝑒𝑖𝑡 (𝜔𝑠𝑡𝑜𝑟𝑒+𝜔𝑛𝑒𝑤 ) = 𝜙′(𝑡) (8)
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