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Abstract
Recent advancements in deep neural networks have markedly enhanced the performance
of computer vision tasks, yet the specialized nature of these networks often necessitates
extensive data and high computational power. Addressing these requirements, this study
presents a novel neural network model adept at optical character recognition (OCR) across
diverse domains, leveraging the strengths of multi-task learning to improve efficiency and
generalization. The model is designed to achieve rapid adaptation to new domains, maintain
a compact size conducive to reduced computational resource demand, ensure high accu-
racy, retain knowledge from previous learning experiences, and allow for domain-specific
performance improvements without the need to retrain entirely. Rigorous evaluation on
open datasets has validated the model’s ability to significantly lower the number of train-
able parameters without sacrificing performance, indicating its potential as a scalable and
adaptable solution in the field of computer vision, particularly for applications in optical text
recognition.

Keywords: Deep neural network, Optical character recognition, Multi-domain adapter,
Multi-task learning, Continual learning.

1. INTRODUCTION

As deep neural networks continue to dramatically improve results for nearly all traditional computer
vision problems, the community has begun to shift its focus to more ambitious objectives [1].
One prevalent pragmatic constraint associated with deep neural networks is related to their notable
propensity for specialization towards a singular task, as well as their substantial requirements in
terms of data size and computational resources [2, 3]. This holds particularly true for the most
efficacious deep neural networks, which are commonly trained on extensive datasets comprising
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millions of images. This issue poses a challenge in numerous applications where the available data
is constrained and the computational resources are limited [4, 5]. An additional limitation of this
method is its lack of scalability, particularly when confrontedwith an increasing number of problems
to be resolved. Furthermore, this approach lacks efficiency due to the repetitive acquisition of the
same information and the inability of models to transfer knowledge across different tasks [6–10].
The concept of employing a singular model to address multiple tasks is highly attractive due to its
capacity to facilitate the transfer of acquired knowledge from one task to another. The significance
of this matter is particularly pronouncedwhen considering tasks that exhibit interrelatedness, such as
object detection and segmentation, or object detection and classification. In this particular scenario,
the acquired knowledge from one task can be effectively utilized to enhance the performance of the
other task.

The increasing focus on developing data representations that exhibit robust performance across
diverse problem domains and datasets is indeed noteworthy. The realization that such adaptable
representations are essential for developingmachine learning systems that can effectively generalize
beyond the constrictions of particular tasks and datasets is what is driving this burgeoning interest.
As the field of artificial intelligence continues to evolve, the ability to create models that can
seamlessly adapt and maintain high levels of accuracy across a variety of challenges has become
a pinnacle pursuit for researchers and practitioners alike [11, 12]. Most of the works in this area
focus on image classification [6, 7, 13–17] or text classification [16, 18–21], yet their application in
optical character recognition (OCR) remains somewhat unexplored, to the best of our knowledge.
The incorporation of multi-task learning in OCR offers substantial benefits, particularly in practical
applications. A key aspect of OCR is the unique and valuable information each entry provides,
which can significantly enhance recognition accuracy and speed [22–24]. For example, when
digitalizing a business form, recognizing an entry as a phone number immediately implies that it
contains only numerical digits. This context-specific insight is crucial for improving recognition
accuracy and efficiency. Similarly, when processing entries in foreign languages, incorporating
language-specific information can substantially reduce recognition errors. Leveraging domain-
specific knowledge further refines the accuracy of OCR systems. Therefore, a versatile OCRmodel
adept at utilizing domain-specific information is immensely beneficial for a wide array of real-world
OCR scenarios, underscoring the value of such an approach.

The innovation introduced in this research paper is a multi-domain neural network architecture
designed specifically for enhancing OCR across diverse applications. This architecture capitalizes
on the concept of dynamic adaptability, employing adapter modules that function as interstitial
components within the established neural network framework. These modules serve as vectors for
domain-specific parameters, strategically integrated within a preexisting, pre-trained model to fine-
tune its feature extraction capabilities to suit new tasks. The introduction of adapter modules into
the neural network is a strategic response to the issue of catastrophic forgetting, a problem where
sequential learning of new tasks can lead to a degradation of performance on previously learned
tasks [25–27]. By preserving the adapters corresponding to previous domains intact, the network
maintains its proficiency across all learned tasks. The architecture thus proposes a scalable solution
that promotes efficient adaptation without compromising historical knowledge. The intricacies of
the proposed methodology necessitate precise domain specification for optimal feature extraction
during data input. In instances where the domain remains ambiguous, an ancillary neural network
is suggested as a viable mechanism for domain prediction, before processing by the primary OCR-
focused architecture [28].
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The efficacy of the proposed multi-domain neural network architecture was rigorously assessed
using publicly available datasets, offering a transparent and replicable benchmark for the evaluation
process. The experiments underscored the model’s proficiency in striking a balance between model
complexity and performance. Notably, the architecture demonstrated a marked reduction in the
number of trainable parameters—indicative of an efficient parameterization—without compromis-
ing the integrity of its OCR capabilities. The results affirm the model’s potential as a scalable and
adaptable solution for OCR challenges across a multitude of domains. The remainder of this paper is
organized as follows: Section 2 provides a comprehensive review of the relevant literature, Section
3 outlines the proposed methodology, Section 4 presents the experimental results, and Section 5
concludes the paper with a discussion of the findings and future research directions. The code for
this paper is available at https://github.com/Jiayou-Chao/Multi-domain-OCR.

2. RELATEDWORK

Training a deep learning model for multi-domains or general purposes has long been the focus of
academic research. The major topics usually include multi-task learning, adapting new domains
and avoiding forgetting.

Multi-task learning (MTL) aims at learning multiple related tasks simultaneously by sharing infor-
mation and computation among them. Early work [29] in this area focuses on deep neural network
(DNN) models which share weights in the earlier layers and use specialized ones in the later layers.
This line of research focuses on learning a diverse set of tasks in the same visual domain. In this
case, the knowledge learned for one task can be used to improve the performance of the other one.
However, this approach usually requires the different tasks to be related to each other, and to share
the same input data. If the problem setting is an input distribution 𝑝(𝑋), then the goal of MTL is to
learn a single model 𝑓 (𝑋) that can be used to address multiple different tasks 𝑇1, 𝑇2, . . . , 𝑇𝑛, where
the label distribution 𝑝(𝑌𝑖 |𝑋) is different for each task. In this case, the model 𝑓 (𝑋) is a function
of the input 𝑋 and the task 𝑇𝑖, and it outputs the label 𝑌 .

Sequential Learning (Incremental Learning or Life-long Learning), is a theoretical framework that
aims to acquire a model for a substantial number of tasks sequentially, while retaining the informa-
tion acquired from previous tasks. Notably, this approach assumes that the data from previous tasks
are no longer accessible during the training of subsequent tasks. Catastrophic forgetting is possible
in sequential learning, albeit it does not usually occur [11, 30]. There is no guarantee that it can
retain prior knowledge. If sometimes one is interested in maximizing the performance on a specific
new task, sequential learning can be used as a form of initialization for the new task. In this case,
the model is trained on the old tasks, and then it is fine-tuned on the new task. This approach is
called Transfer Learning (TL).

Progressive Learning is yet another concept to solve complex sequences of tasks. This approach
excels in leveraging knowledge transfer while avoiding catastrophic forgetting, distinguishing it
from traditional methods. As elucidated by [31], Progressive Learning models are uniquely de-
signed to be immune to forgetting and efficiently utilize prior knowledge through lateral connections
to previously learned features. The general procedure of a Progressive Learning model begins with
training a deep learning model on an initial task. Upon completion, the model’s weights are frozen
to preserve the learned knowledge. Subsequently, a new model is trained on a second task, with
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its weights also being frozen post-training. Critically, the weights of this second model are inter-
connected with the first model’s weights via lateral connections, facilitating knowledge transfer and
feature integration. This process is iteratively applied to each subsequent task, culminating in a final
model that amalgamates the knowledge acquired from all tasks. [32] highlights the effectiveness of
this method in maintaining a robust knowledge base across multiple tasks. However, the scalability
of Progressive Networks presents a significant challenge. As the number of tasks increases, the
model’s parameters grow exponentially, which poses limitations for practical applications. This
issue, highlighted in recent studies, suggests a need for innovative approaches to manage parameter
growth efficiently. Moreover, the implementation of Progressive Learning models, particularly in
learning from a sequence of tasks, demands intricate design and execution strategies. The efficacy
of these models is highly contingent on the optimal sequencing of task execution, a challenge that
remains an active area of research.

Adapters serve as a lightweight alternative to complete model fine-tuning, as they involve the
introduction of a small collection of parameters specifically at each backbone layer. Adapters
address many constraints commonly encountered in the process of complete model fine-tuning.
They exhibit advantages such as parameter efficiency, accelerated training iterations, and the ability
to be shared and combined owing to their modular and compact nature. In addition, it is worth noting
that adapters typically provide comparable performance to the current leading approach of full fine-
tuning [30, 33–36].

3. METHOD

The proposed framework delineates an innovative Convolutional Recurrent Neural Network (CRNN)
architecture that is holistically trainable and comprises a sophisticated feature extraction network
augmented with adapter modules, in addition to a sequential network. The fundamental component
of the feature extraction network is a convolutional neural network that draws inspiration from the
ResNet architecture introduced by [37], specifically engineered to distill features from the input
imagery. This network diverges from the quintessential ResNet by the incorporation of residual
adapters after each stacked residual block within the feature extraction network. These residual
adapters, inspired by the work of [38], are constituted by a vector of 1×1 convolutional filter banks
functioning in concert with an identity skip connection, and are tailored to fine-tune the extracted
features to various tasks.

The sequential aspect of the network employs a transformer model, a construct that excels in en-
coding sequential information [39]. This section of the network is further enhanced by bottleneck
adapters, an innovation introduced by [21], which are situated subsequent to themulti-head attention
and feed-forward layers in the transformer. These adapters are notable for their limited number of
parameters relative to the attention and feedforward layers prevalent in traditional models. They
also feature a skip-connection, enhancing the efficiency of training.

In the context of adapter tuning, the process is meticulously selective, concentrating solely on
the parameters of the adapters, normalization layers, and the final classification layer, fostering a
disentangled form of learning. The network as a whole is subject to an end-to-end training regimen.
The model’s architectural design, as depicted in FIGURE 1, exemplifies the cohesive interplay
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between various innovative components designed to optimize character prediction accuracy from
input images.

Figure 1: The proposed model’s architecture. It primarily comprises a feature extraction network
and a sequential network, augmented with adapter modules. This architecture is
schematically depicted with solid lines representing data flow and dashed lines signifying
the repetition of identical modules. The adapter module consists of a vector of identical
adapters. Such a configuration facilitates a modular and scalable design.

The feature extraction network. Let’s consider an input image X ∈ R𝐻×𝑊×𝐶 , where 𝐻, 𝑊 , and
𝐶 represent the height, width, and number of channels of the image, respectively. The feature ex-
traction network, modeled on the principles of a Resnet-like convolutional neural network, operates
on X to extract salient features. Denoted as 𝑓𝜃,𝜙 (X), this network encompasses two types of pa-
rameters: domain-agnostic parameters 𝜃, which are common across various domains, and domain-
specific parameters 𝜙, which are unique to specific application areas. The network’s architecture
is composed of a series of stacked residual modules, each containing one or more residual blocks.
These blocks are the fundamental units that process the input image. Specifically, the 𝑖-th residual
block in the 𝑗-th module, 𝑔 ( 𝑗 )

𝜃𝑖 ,𝜙𝑖
(X), can be expressed as: 𝑔

( 𝑗 )
𝜃𝑖 ,𝜙𝑖

(X) = 𝑎((𝐼 + 𝛼𝑖)(𝜔𝑖 ∗ (X)))),
where 𝑖 = 1, 2, . . .; 𝑎 denotes the activation function; 𝐼 is the identity skip connection, facilitating
gradient flow during training; 𝜔𝑖 are the domain-agnostic weights; 𝛼𝑖 are the domain-specific
weights; and ∗ symbolizes the convolution operation. For the sake of simplicity, normalization
layers, typically essential for stabilizing training, are not included in this formula. Each residual
module, represented as 𝐺 𝑗 (X), is the functional composition of its constituent residual blocks:
𝐺 𝑗 (X) = 𝑔1◦𝑔2◦· · ·◦𝑔𝑛 (X),with 𝑛 indicating the number of residual blocks in the 𝑗-th module and
◦ symbolizing the composition of functions. Thus, the feature extraction network can be holistically
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represented as: 𝑓𝜃,𝜙 (X) = 𝐺1◦𝐺2◦· · ·◦𝐺𝑚(X),where𝐺 𝑗 denotes the 𝑗-th residual module and𝑚
the total number of modules. The output of this network is F ∈ R1×𝑊 ′×𝐶′ , where𝑊 ′ and 𝐶′ are the
width and number of channels of the feature map, respectively. Notably, the height is deliberately
reduced to 1 for seamless integration into subsequent sequential models.

The sequential network, as a core component of our model, is a transformer-based architecture
integrated with specialized bottleneck adapter modules. This network takes the features extracted by
the feature extraction network as input and outputs the final predictions. At the heart of this network
are the bottleneck adapters, each comprising three distinct layers: a linear down-projection layer,
a non-linearity layer, and a linear up-projection layer. These layers work in tandem to refine the
feature representation: the down-projection layer condenses the input features from the transformer
layer into a lower-dimensional space, represented mathematically as 𝑊𝑑X. Here, 𝑊𝑑 denotes the
weights of the down-projection layer. After down-projection, a non-linear function, symbolized by
𝑎, is applied to these features. This step introduces non-linearity to the model, enhancing its capacity
to capture complex patterns. Functions like ReLU or tanh are typically used for this purpose. The
transformed features are then projected back to their original dimension through the up-projection
layer, with weights represented by 𝑊𝑢. The adapter module can thus be denoted as ℎ𝑤𝑑 ,𝑤𝑢 (X) =
𝑊𝑢𝑎(𝑊𝑑X). The down-projection layer and up-projection layer are typically much smaller than the
transformer layer itself, which makes the adapter layers much faster to train and allows them to be
added to a larger number of layers in the transformer model. These adapters are strategically placed
after the attention or feed-forward layers in the transformer. This placement is critical as these layers
are instrumental in learning complex representations. By integrating adapters here, we can fine-
tune the model more effectively for specific tasks such as natural language understanding, machine
translation, and text summarization. This approach has been corroborated by various studies [21, 33,
34, 40, 41]. The final stage involves the application of a softmax function to convert the output into
a probability distribution over the output classes. The outputY, denoted asY ∈ R1×𝑊 ′×𝐶′ , reflects
the width 𝑊 ′ and the number of classes 𝐶′. To compute the loss, Y is fed into the Connectionist
Temporal Classification (CTC) loss function [42]. This loss function is particularly effective for
sequence-to-sequence problems, providing a robust framework for model training and optimization.

Training the Adapter Modules. The backbone of the network, namely the feature extraction
network and the sequential network, is initially trained on a large dataset, with the exclusion of the
adapter modules. In general, the efficacy of the backbone in extracting useful features correlates
strongly with the diversity and size of the dataset. Exclusively training on a limited dataset inside
a singular domain has the potential to result in overfitting, hence hindering the model’s ability to
effectively generalize across other domains. The following step of training involves incorporating
a new task into the model and subsequently optimizing the model’s performance on it. The new
task may encompass a novel domain such as a different language, a distinct font, or a new environ-
mental configuration. The existing model has the capability to be modified and applied to the new
task while retaining knowledge of the past tasks. The prevention of forgetting is accomplished
by freezing the weights of the backbone and solely updating the weights of the corresponding
adapter modules during the second phase of training. The adapter modules can be conceptualized
as a collection of task-specific modules that are incorporated to enhance the efficiency of feature
extraction for the novel job. During the process of backpropagation, the data originating from the
new domain is exclusively directed through its corresponding adapter module, while the remaining
adapter modules remain unaffected. Therefore, the performance of the model on different domains
is unaffected. Consequently, the model can accurately identify characters from several domains
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without requiring the training of separate models for each domain. By freezing the weights of the
backbone, the training process benefits from a significant reduction in the number of parameters to
be optimized. This leads to a faster training period andmitigates the potential problem of overfitting.
The utilization of information from the backbone by the adapters, which have been trained on a
substantial dataset to extract the most valuable characteristics, leads to a reduction in the needed
data size and number of training epochs for the adapter. Hence, our model exhibits a high degree
of adaptability in character recognition across many domains, resulting in efficient utilization of
training time and resources.

4. EXPERIMENTS

Datasets. We utilize the Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark
dataset, as documented by [43], to validate the efficacy of our proposed model. This dataset,
which is publicly available, comprises various Chinese text images curated specifically for multi-
source domain adaptation studies. The selection of a Chinese dataset is motivated by the linguistic
complexity of Chinese, with its character set exceeding 10,000 unique glyphs (11,376 in our study),
as opposed to the mere 35 characters found in traditional English-digit datasets. Such complexity
presents a greater challenge in character recognition, potentially enhancing the network’s capacity
for general feature learning and subsequent domain adaptability.

The dataset is categorized into five distinct text image types: handwritten, street scene, document,
synthetic, and car license plates. For the initial experiment, the document category—consisting of
1,614,955 training and 179,345 test images—is employed to train the network’s backbone. These
images, which feature a uniform font and clean background, serve as an ideal starting point. Subse-
quently, we evaluate the model’s domain adaptation capability using two additional categories: car
license plates and synthetic images. The car license plate domain, containing 187,136 training and
20,792 test images, is considered less challenging due to the uniformity of font, clean background,
and limited character set. Conversely, the synthetic domain, with its diverse fonts, noisy back-
grounds, and non-meaningful synthetic sentences, creates a more strenuous test environment. This
category includes 999,558 training and 111,062 test images. Each class in the dataset represents a
distinct Chinese character, totaling 11,376 classes. The images are preprocessed to a standard size
of 32x128 pixels and normalized to ensure a mean of zero and unit variance, facilitating consistent
input for the network.

Implementation Details. Our feature extraction network employs a relatively shallow architecture
due to the size of our training data. It comprises 4 residual modules, each containing 2 residual
blocks. The sequential network utilizes a multi-head attention mechanism with 8 heads and incor-
porates positional encoding to capture sequence information. Network feedforward layers consist
of 128 hidden units each.

For the training regimen, we employ a batch size of 256 and the Adam optimizer with an initial
learning rate of 1×10−5. The learning rate is subjected to a decay by a factor of 0.1 every five epochs.
The first two epochs function as a warmup phase for the learning rate. We train the backbone for
a total of 20 epochs under two distinct experimental scenarios to evaluate the adaptability of the
model:
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1. In the first scenario, the backbone is exclusively trained using the document dataset to test the
adapters’ generalization to unseen datasets.

2. In the second scenario, the backbone training also includes data from the car license and
synthetic datasets to explore how well the adapters can optimize performance within specific
domains.

Following the backbone training, we train the adapter models on the car license dataset or the
synthetic dataset for 20 additional epochs. We compare the outcomes of exclusively training the
adapter modules (adapter method) versus jointly training the adapter modules and the backbone
(finetuning method).

Performance is assessed using three metrics: character accuracy, word accuracy, and recall. Char-
acter accuracy (precision) is the fraction of correctly identified characters in the OCR output relative
to the ground truth. Word accuracy, effectively image-level accuracy due to the absence of Chinese
word segmentation, measures correct word recognition. Recall is defined as 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 ,
where 𝑇𝑃 is the count of accurately identified characters or words, and 𝐹𝑁 represents those that the
OCR system failed to identify. As an OCR engine tuned for high recall may inadvertently reduce
precision, achieving a balance between these metrics is vital. This consideration is particularly
crucial in fields that demand comprehensive data extraction, such as legal and medical document
processing. Our model is developed in PyTorch and trained on a suite of eight NVIDIA Tesla K80
GPUs.

Training Backone Results. The details pertaining to the backbone models can be found in TA-
BLE 1. In the 1st experiment, the backbone is solely trained using the document dataset. The
evaluation is conducted on all three datasets, namely document, car license, and synthetic. The
backbone model demonstrates a character accuracy rate of 94.93%, a word accuracy rate of 65.15%,
and a recall rate of 94.91% when evaluated on the document dataset. The metrics exhibit values in
proximity to zero when the model undergoes evaluation on the car license or the synthetic dataset.
This observation indicates that the current backbone model lacks the capacity to generalize effec-
tively to unfamiliar domains. Consequently, we employ this model as a means to evaluate the
efficacy of adapters in facilitating generalization to unseen domains. In the 2nd experiment, the
backbone undergoes training and subsequent evaluation on all three datasets. On the document
dataset, the backbone model exhibits a character accuracy of 99.29%, a word accuracy of 93.23%,
and a recall rate of 99.26%. The current backbone demonstrates superior performance across all
metrics in comparison to the previous experiment, which solely utilized the document dataset for
training. The performance metrics of the backbone model on the car license dataset are as follows:
99.80% character accuracy, 98.52% word accuracy, and 99.79% recall. The performance metrics
of the backbone model on the synthetic dataset are as follows: 92.17% character accuracy, 64.02%
word accuracy, and 92.13% recall. This observation indicates that there is potential for improve-
ment in the model’s performance on the synthetic dataset, particularly in terms of word accuracy.
The performance exhibited in this instance is highly commendable; however, it is important to
acknowledge that the second backbone has been trained on a significantly larger dataset, thereby
necessitating a substantial investment of time and computational resources. The backbone model is
subsequently employed to train the adapter models in order to evaluate their potential for improving
performance within a particular domain, while maintaining the same level of performance across
other domains.
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Table 1: The information of the backbone models. In the 1st experiment, the backbone is trained
only on the document dataset. The model performs poorly on unseen datasets like the car
license dataset and the synthetic dataset. In the 2nd experiment, the backbone is trained
on all of the three datasets (document, car license, and synthetic). Three metrics, character
accuracy, word accuracy and recall, are used to evaluate the backbone on all three datasets.

Evaluation Dataset Character Accuracy Word Accuracy Recall

Experiment: 1
document 94.93% 65.15% 94.91%
car license 2.44% 0.00% 1.84%
synthetic 0.43% 0.00% 0.55%

Experiment: 2
document 99.29% 93.32% 99.26%
car license 99.80% 98.52% 99.79%
synthetic 92.17% 64.02% 92.13%

Training Adapter Results. The results of training only adapters in two differenet scenarios are
shown in TABLE 2, and the results are compared with the finetuning method which updates all
parameters in comparison to updating only adapters. When using the finetuning method, there are
a total of 21,636,658 trainable parameters (the parameters of the irrelevant domains are excluded
when calculating). In contrast, there are only 7,590,930 trainable parameters when using the adapter
method, which is a marked reduction of 64.93%. Delving into the specifics, Experiment 1 unveils an
enhancement in character accuracy from a meager 2.44% to an impressive 99.64% using adapters
and a slightly higher 99.83% with finetuning on the car license dataset. This is a dataset that is
considered relatively straightforward due to its simplicity, hinting that the adaptermethod can indeed
parallel the performance of full finetuning on simple tasks. Moreover, this method has the added
advantage of retaining prior knowledge without the risk of domain forgetting—a common hurdle
in finetuning. When examining word accuracy, the adapter method even outperforms finetuning by
achieving 99.63% compared to 98.81%. However, the recall rate with the adapter method at 97.50%
underperforms the finetuning method at 99.83%. In the context of the synthetic dataset, which poses
a greater challenge due to its inclusion of unseen characters and nonsensical sentences, the adapter
method maintains its competence. Character accuracy ascends from a paltry 0.43% to 96.13% and
recall from 0.55% to 96.04% for the adapter method, nearing the finetuning outcomes of 98.94% and
93.91%, respectively. Although theword accuracy for adapter lags at 79.81%versus the finetuning’s
98.89%, the marginal disparity highlights a limitation in the backbone’s generalization capabilities
to unfamiliar domains. The evidence, as outlined here, suggests that adapters offer a promising
alternative to full model finetuning, particularly in scenarios where computational efficiency and
memory preservation are paramount. Despite the occasional dips in performance on more complex
datasets, the adapter method’s impressive recall and character accuracy signify its potential as a
viable strategy for domain-specific neural network training.

Experiment 2 offers an extension of the inquiry into the efficacy of adapter training versus full
model finetuning, this time with the backbone exposed to a more diverse training set. Indeed,
the performance on the car license datasets exhibited minimal variance, which can be attributed
to the already optimized state of the backbone for this particular domain, evidencing a saturation
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Table 2: The training and comparison results of the adapter. The adapter method refers to the
training of adapter modules while keeping the backbone frozen. The finetuning approach
involves training the adapter modules and the backbone simultaneously. In addition to
evaluating character accuracy, word accuracy, and recall, we also include the number of
trainable parameters in the last table column. Consequently, the adapter method shows
comparable performance to the finetuning method on a simple new domain, while its
effectiveness is constrained by the underlying backbone on a more intricate new domain.
The adapter method does not have the risk of forgetting the previous domain.

Method Evaluation Dataset Character Acc Word Acc Recall Trainable Param

Experiment: 1
Adapter car license 99.64% 99.63% 97.50% 7,590,930
Finetuning car license 99.83% 98.81% 99.83% 21,636,658
Adapter synthetic 96.13% 79.81% 96.04% 7,590,930
Finetuning synthetic 98.94% 98.89% 93.91% 21,636,658

Experiment: 2
Adapter car license 99.64% 99.63% 97.50% 7,590,930
Finetuning car license 99.97% 99.97% 99.97% 21,636,658
Adapter synthetic 98.48% 98.44% 91.56% 7,590,930
Finetuning synthetic 98.94% 98.89% 93.90% 21,636,658

point in learning. On the synthetic dataset, which serves as the benchmark for complexity within
this study, both methods demonstrated significant improvements in character and word accuracies,
achieving near-parity. The adapter method enhanced character accuracy from 92.17% to 98.48%,
while finetuning edged slightly ahead with a rise to 98.84%. Moreover, word accuracy for adapters
soared from 64.02% to a remarkable 98.44%, closely shadowing the finetuning result of 98.89%.
Interestingly, recall rates exhibited a different trend, remaining relatively stable for the adapter
method with a slight decline from 92.13% to 91.56%, whereas finetuning saw a modest increase
to 93.39%.

These outcomes are particularly noteworthy in that they illustrate the adapter method’s robustness
when the backbone network is enriched with diverse training data. In essence, the adapter-equipped
model nearly matches the finetuning method in performance, even when confronted with complex
datasets. Moreover, it underscores the adapter method’s proficiency in domain-specific enhance-
ment without compromising the existing knowledge encoded in the backbone—a notable advan-
tage over training all domains concurrently on the backbone. Thus, Experiment 2 reinforces the
conclusion drawn from the initial experiment: the adapter method not only boasts fewer parameters
and reduced risk of catastrophic forgetting but also exhibits the potential to deliver performance
comparable to finetuning, even under the pressures of dataset complexity. Given the additional
benefits of selective domain enhancement, the adapter method emerges as a compelling choice for
efficient and effective neural network training, especially when considering the computational and
memory constraints often encountered in real-world applications.
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5. CONCLUSION

In this paper, we introduce an innovative adapter network designed for multi-source OCR and
present its effectiveness over traditional domain adaptation methods. The empirical evidence from
the conducted experiments indicates that the adapter network outstrips the traditional methods. In
comparison to the alternative strategy, which involves domain-specific fine-tuning of the backbone
model, the adapter network shows an equivalent aptitude in performance. However, the standout
feature of the adapter network is its reduction in the quantity of parameters that require training.
This reduction is not trivial—it significantly streamlines the process of adapting to new domains, a
vital factor in business environments that demand both quick adaptability and the capacity to handle
multiple domains simultaneously.

Notwithstanding these advantages, the study also reveals a shortcoming of the adapter networkwhen
dealing with complex domains—as evidenced by the results from the synthetic dataset. When the
backbone of the network is relatively weak, the ability of the adapter network to achieve com-
mendable accuracy in intricate domains is compromised. The findings underscore the necessity
of training a robust backbone model on an extensive dataset. Such comprehensive training is
imperative for the model to discern and assimilate the essential characteristics inherent to the entities
within the domain, thereby enhancing the model’s capability to render high accuracy in demanding
and complex domains.

In essence, the research posits that while the adapter network holds promise for flexible and efficient
domain adaptation, the strength of the underlying model is a fundamental precept that governs the
ultimate performance and robustness in challenging domain-specific tasks.

6. DATA AVAILABILITY

The data that support the findings of this study are openly available at Meta Self-Learning for Multi-
Source Domain Adaptation: A Benchmark (https://github.com/bupt-ai-cz/Meta-SelfLearning).

References

[1] LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature. 2015;521:436-444.

[2] Ruder S. AnOverview ofMulti-Task Learning inDeepNeural Networks. 2017. Arxiv Preprint:
https://arxiv.org/pdf/1706.05098.pdf

[3] Reeve HWJ, Cannings TI, Samworth RJ. Adaptive Transfer Learning. Ann Statist. 2021;49:
3618-3649.

[4] Li B, Yan J, Wu W, Zhu Z, Hu X, et al. High Performance Visual Tracking With Siamese
Region Proposal Network. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018:8971-8980.

[5] Cannings TI, Fan Y, Samworth RJ. ClassificationWith Imperfect Training Labels. Biometrika.
2020;107:311-330.

1987

https://github.com/bupt-ai-cz/Meta-SelfLearning
https://github.com/bupt-ai-cz/Meta-SelfLearning


https://www.oajaiml.com/ | March 2024 Jiayou Chao and Wei Zhu

[6] Misra I, Shrivastava A, Gupta A, Hebert M. Cross-Stitch Networks for Multi-Task Learning.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016:3994-4003.

[7] Liu S, James S, Davison AJ, Johns E. Auto-Lambda: Disentangling Dynamic Task
Relationships. 2022. Arxiv Preprint: https://arxiv.org/pdf/2202.03091.pdf

[8] Liu S, Johns E, Davison AJ. End-To-EndMulti-Task LearningWith Attention. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:
1871-1880.

[9] Sinha A, Namkoong H, Volpi R, J Duchi. Certifying Some Distributional Robustness With
Principled Adversarial Training. 2020. Arxiv Preprint: https://arxiv.org/pdf/1710.10571v5.pdf

[10] Rothenhäusler D, Bühlmann P. Distributionally Robust and Generalizable Inference. Statist
Sci. 2023;38:527-542.

[11] Parisi GI, Kemker R, Part JL, Kanan C, Wermter S, et al. Continual Lifelong Learning With
Neural Networks: A Review. Neural Netw. 2019;113:54-71.

[12] Wang L, Zhang X, Su H, Zhu J. A Comprehensive Survey of Continual Learning: Theory,
Method and Application. 2023. Arxiv Preprint: https://arxiv.org/pdf/2302.00487.pdf

[13] Bhattacharjee D, Süsstrunk S, Salzmann M. Vision Transformer Adapters for Generalizable
Multitask Learning. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). 2023:19015-19026.

[14] Zhao H, Zhang S, Wu G, Moura JM, Costeira JP, et al. Adversarial Multiple Source Domain
Adaptation. Adv Neural Inf Process Syst. 2018;31.

[15] Peng X, Bai Q, Xia X, Huang Z, Saenko K, et al. Moment Matching for Multi-Source Domain
Adaptation. In: Proceedings of the IEEE/CVF international conference on computer vision.
2019:1406-1415.

[16] Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, et al. Domain-adversarial training
of neural networks. 2016. Arxiv Preprint: https://arxiv.org/pdf/1505.07818.pdf

[17] Rebuffi S-A, Vedaldi A, Bilen H. Efficient Parametrization of Multi-Domain Deep Neural
Networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE Publications. Salt Lake City: IEEE Publications. 2018:8119-8127.

[18] Liu P, Qiu X, Huang X. Adversarial Multi-Task Learning for Text Classification. 2017. Arxiv
Priprint: https://arxiv.org/pdf/1704.05742.pdf

[19] Guo H, Pasunuru R, Bansal M. Multi-Source Domain Adaptation for Text Classification via
Distancenet-Bandits. 2020. Arxiv Preprint: https://arxiv.org/pdf/2001.04362.pdf

[20] Wang Z, Liu X, Yang P, Liu S, Wang Z, et al. Cross-Lingual Text Classification With Hetero-
geneous Graph Neural Network. 2021. Arxiv Preprint: https://arxiv.org/pdf/2105.11246.pdf

[21] Houlsby N, Giurgiu A, Jastrzebski S, Morrone B, De Laroussilhe Q, et al. Parameter-Efficient
Transfer Learning for NLP. 2019: Arxiv Preprint: https://arxiv.org/pdf/1902.00751.pdf

1988



https://www.oajaiml.com/ | March 2024 Jiayou Chao and Wei Zhu

[22] Veeramachaneni S, Nagy G. Adaptive Classifiers for Multisource OCR. Int J Doc Anal
Recognit. 2003;6:154-166.

[23] Mathis C, Breuel T. Classification using a hierarchical Bayesian approach. Int. Conf. Pattern
Recognit. Quebec City, QC, Canada. 2002;4:103-106.

[24] Ho TK, Nagy G. OCR with no shape training. Proceedings 15th Int. Conf. Pattern Recognit.
ICPR-2000, Barcelona, Spain, 2000;4:27-30.

[25] FrenchRM.Catastrophic Forgetting in Connectionist Networks. Trends Cogn Sci. 1999;3:128-
135.

[26] Goodfellow IJ, Mirza M, Xiao D, Courville A, Bengio Y, et al. An Empirical Investigation
of Catastrophic Forgetting in Gradient-Based Neural Networks. 2015. Arxiv Preprint:
https://arxiv.org/pdf/1312.6211.pdf

[27] Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, et al. Overcoming
Catastrophic Forgetting in Neural Networks. Proc Natl Acad Sci U S A. 2017;114:3521-3526.

[28] Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspectives.
2014. Arxiv Preprint: https://arxiv.org/pdf/1206.5538.pdf

[29] Caruana R. Multitask Learning. Mach Learn. 1997;28:41-75.

[30] Zhao H, Wang H, Fu Y, Wu F, Li X, et al. Memory Efficient Class-Incremental Learning for
Image Classification. 2021. Arxiv Preprint: https://arxiv.org/pdf/2008.01411.pdf

[31] Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, et al. Progressive Neural
Networks. 2022. Arxiv Preprint: https://arxiv.org/pdf/1606.04671.pdf

[32] Fayek HM, Cavedon L, Wu HR. Progressive Learning: A Deep Learning Framework for
Continual Learning. Neural Netw. 2020;128:345-357.

[33] Hu Z, Lan Y, Wang L, Xu W, Lim EP, et al. LLM-Adapters: An Adapter Family
for Parameter Efficient Fine-Tuning of Large Language Models. 2023. Arxiv Preprint:
https://arxiv.org/pdf/2304.01933.pdf

[34] Rohanian O, Jauncey H, Nouriborji M, Kumar V, Gonalves BP, et al. Using Bottleneck
Adapters to Identify Cancer in Clinical Notes Under Low-Resource Constraints. 2023. Arxiv
Preprint: https://arxiv.org/pdf/2210.09440.pdf

[35] Pfeiffer J, Rücklé A, Poth C, Kamath A, Vulić I, et al. AdapterHub: A framework for adapting
transformers. In Proceedings of the 2020 conference on empirical methods in natural language
processing (EMNLP 2020): systems demonstrations. Online: Association for Computational
Linguistics 2020:46-54.

[36] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers,
and Iryna Gurevych. AdapterDrop: On the Efficiency of Adapters in Transformers. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
2021.:7930–7946.

1989



https://www.oajaiml.com/ | March 2024 Jiayou Chao and Wei Zhu

[37] He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. InComputer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–
14, 2016, Proceedings, Part IV 14. Springer International Publishing.2016:630-645.

[38] Rebuffi SA, Bilen H, Vedaldi A. Learning Multiple Visual Domains With Residual Adapters.
Nips. 2017:30.

[39] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al. Attention Is All You Need. 2023.
Arxiv Preprint: https://arxiv.org/pdf/1706.03762.pdf

[40] Liu CC, Pfeiffer J, Vulić I, Gurevych I. Improving Generalization of Adapter-
Based Crosslingual Transfer With Scheduled Unfreezing. 2023. Arxiv Preprint:
https://arxiv.org/pdf/2301.05487.pdf

[41] Mao Y, Mathias L, Hou R, Almahairi A, Ma H, et al. UniPELT: Unipelt: A Unified
Framework for Parameter Efficient Language Model Tuning. 2022. Arxiv Preprint:
https://arxiv.org/pdf/2110.07577.pdf

[42] Graves A, Fernández S, Gomez F, Schmidhuber J. Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data With Recurrent Neural Networks. In: Proceedings of
the 23rd international conference on machine learning – ICML 2006. Pittsburgh. ACM Press.
2006:369-376.

[43] Qiu S, Zhu C, Zhou W. Meta Self-Learning for Multi-Source Domain Adaptation: A
Benchmark. In: Proceedings of the IEEE/CVF international conference on computer vision.
2021:1592-1601.

1990


	INTRODUCTION
	RELATED WORK
	METHOD
	EXPERIMENTS
	CONCLUSION
	DATA AVAILABILITY

