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Abstract
Common in medical studies or reliability analysis, the failure of individuals or units may be
attributable to more than one cause. Also, design the life-testing experiments under a highly
reliable product or materials required a long period of time which requires stress higher than
normal stress. In this paper, I adopt the mixture of two exponential distributions which has
become increasingly necessary in engineering statistics. Under a step stress accelerate life
tests and type II censoring method for independent competing risks data the model is formu-
lated. The estimation problem is addressed here from a classical viewpoint. The maximum
likelihood estimates of the unknown model parameters are formulated. Additionally, the
asymptotic confidence intervals depend on normality theory, along with the two bootstrap
confidence intervals are proposed. Finally, to validate the proposed model and assess the
estimation methods, I formulated an extensive simulation study.

Keywords: Mixture of two distributions, Accelerate life tests; Competing risks model,
MLEs, Bootstrap confidence intervals.

1. INTRODUCTION

Increasing technological advancements lead to the demand for highly reliable and long-lasting
solutions. Technology is expected to work without failure and adapt to the changing world, which
challenges technical abilities to reliable analysis, see [1]. Mixed models are created to support
diversity in applications, technological advancements, implementing new methodologies and pro-
viding a wider perspective to computational tools. These models have been adopted into multiple
branches of statistics, notably using a mixture of distribution for hazard models, see [2]. Mixture
distributions consist of multiple components (finite or infinite) describing different data features.
They provide a detailed insight into the complex systems thus adopted into various fields like
engineering, information technology, bioinformatics, biostatistics, ecology, and robotics, see [3].
Determining random and fixed effects of distribution is a critical challenge when modifying such a
model according to data. This issue can be investigated by assessing the nullification of a sample
of random effects through its deviations. Random effect has characteristics varying on individual
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basis, while fixed has same characteristics for individuals, see [4]. Whenmodels are either known or
limited to an unknown distribution confined by given constraints, the inference is calculated using
likelihood maximization, see [5]. The findings of the likelihood-based evaluation can also be used
to determine starting values for chains and to verify that the outcomes are reasonable, see [6].

Finding a distribution that fits a given collection of data is one of the fascinating challenges in
statistics. The goal is to see if a particular distribution matches the data. In real life experiments,
usually some data points withdrew from the experience which causes the occurrence of censored
data. The censored data is utilized when some but not all datapoints under the test failed through
a specific period, see [7]. The censoring of type I and type II are the most common types of
censoring data. In type I censoring, the number of failures observed is a random variable, whereas
the experiment time is static. As opposite, in type II censoring, the experiment time is random
and the observed failure times are static. Apart from these two types, a combination of both can
also be used, namely, hybrid censoring technique or mixed censoring. The most used censoring
technique is type II censoring and has a time-to-death model to estimate dependability, see [8].
Data sets with censored data can include single or multiply censored data depending on the data. The
literature on the reliability of mixedmodels with type II censoring is still scarce, see [9]. Because the
difficulty of simulating field failure processes in a laboratory environment is critical for expedited
lifespan estimate, products are subjected to harsher-than-normal conditions to capture failure data
successfully, see [10]. Solutions like accelerated life testing are introduced to speed up the failure
process without changing the existing failure mechanism. This is one of the high-stress testing
techniques that is done by exposing the product to extreme conditions, see [11]. Multiple ALTs
types have been introduced over the years, i.e., constant-stress, step-stress and progressive-stress.
As given by [12], and [13], the maximum work carried out in single stress ALTs, which focuses
on model parameters with statistical inference. Most accelerated life-test investigations nowadays
concentrate on a specific component or failure mechanism [14]. As a result, products with various
features or failure mechanisms face difficulties in ensuring product dependability at the system
level [15]. The population’s target sample should be established from the start, as it influences
the distribution decision. Several methods for modeling and analysing ALT data for reliability
demonstration are offered and statistics-centered methods are the most significantly utilized models
[16]. Multiple stress ALT models and type II data filtering models have been presented over the
years to improve system dependability and reduce failures. The lifetime of the product is according
to Weibull distribution, and it can be applied using other distributions to increase the project results
[17]. The sample data for ALT is difficult to find due to the time that it takes for the product life
cycle and the extent to which every aspect of the product is fully used. Data-driven models rely
on probabilistic distributions like most statistical models. Thus, whether to use Monte Carlo or
adaptive filtering technique require an ample amount of data sets to implement these models for
accuracy. As per the Lithium-Ion case study, the data set covers a wide range of characteristics
of the battery life, and models are developed on those data sets to create a reliable evaluation of
its life cycle, see [18]. It further mentions that the wider and unique the data set, the higher the
precision of the prediction model is achievable, see [19]. Hence, to study ALT methods, obtaining
data samples of the performance is necessary when using the model-based evaluation [20]. The
unknown parameters of an external factor still rely on a huge number of ALT results; therefore,
multiple tests are carried out to find the root cause of failure, see [21]. The findings indicated that
observed lifetime tests at the lab level are crucial to ensure that the likely execution and lifetime
conditions can be gathered in actual field procedures. To anticipate the lifetime, collect exact and
complete test data, analyse, and process it, see [22]. ALT method is used to achieve the reliability
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test objective under the assumption of restricted test time and money to assess the lifetime product
fast and precisely, see [23]. The product’s lifetime is supposed to follow a given distribution type
for ALT data modeling. A matching statistical model of the product’s physical failure process is
utilized to assess and evaluate the reliability of the information obtained under accelerated stress,
see [24], and [25].

To assess the product’s lifetime in a quick and precise way, ALT scheme is used to arrive at the
target of the reliability test under the basis of the limited test time, see [26]. For the purpose of
studying ALT data modeling, the product’s lifetime is taken to follow a particular distribution type.
A matching statistics model of the product’s physical failure mechanism is accustomed to analyze
and convert the reliability information under accelerated stress obtaining its reliability information
under normal stress, see [26], and [27]. Using the Expectation maximization model, Peng and Xu
[28], achieved the distribution of parameters, but due to its complexity later, [29] proposed the use
of Markov Chain Monte Carlo to achieve the distribution type.

In practice, when the failure of individuals or materials occur under different causes of failure then,
I mean competing risk models. In this model, I measure the risk of one reason with respect to
other reasons of failure. This problem discussed early by [30], and recently by [31], and [32], for
partially observed causes of failure. Also, this problem discussed under joint samples by [31], [33],
and [34]. I aim in this article to proposes a mixture modeling of exponential distributions to analyze
the competing risks data under multiple independent causes of failure. For saving time and cost,
I applied step-stress partially accelerated life tests with type II censoring scheme. Additionally, I
combine the type II censoring with competing risk model to estimate the risk of a cause of failure
with respect to other independent causes of failures. Therefore, the observed data are processed to
estimate the model parameters by applying different schemes of estimation. The maximum like-
lihood is used to obtain the point estimators. However, the asymptotic confidence intervals under
normality theorem and two bootstrap confidence intervals are formulated. Estimators tested under
Monte Carlo simulation study. This paper can serve, Engineer, reliability Engineers, Practitioners,
Researchers and Academics in Reliability Engineering, System Safety Professionals, Industrial
Engineers, Risk Analysts.

The structured of this article is summarized as following: In Section 2, the competing risks model is
formulated under under type II censoring scheme. In section 3, the mixed model of two exponential
distributions is formulated. In section 4: model description and its assumptions are presented. In
Section 5, I formulated the maximum likelihood estimate of the model parameters. The asymp-
totic confidence intervals under normality theorem is formulated in Section 6. The two bootstrap
confidence intervals are presented in Section 7. Estimation results are assessed and compared with
Monte Carlo studying in Section 8. Finlay, Some comments are reported in conclusion in Section 9.

2. COMPETING RISKS MODELWITH TYPE II CENSORING DATA

Suppose, a random sample of size 𝑛 of items are placed into a life testing experiment. Earlier the
experiment is running, number of failure 𝑚 is determined. In type II censoring scheme, the joint
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likelihood function of 𝑚 failure times 𝑋1, < · · · < 𝑋𝑚, is given by (Chapter 7, [35]):

𝑓1,2,...,𝑚(x) =
𝑛!

(𝑛 − 𝑚) [1 − 𝐹 (𝑥𝑚)]𝑛−𝑚
𝑚∏
𝑖=1

𝑓 (𝑥𝑖), (1)

Suppose that, the failure is done with respected to one of two independent causes of failure which is
known by competing risks model. Therefore, the type II censoring scheme under competing risks
model described as follows:

when the 1𝑠𝑡 failure 𝑋1 is observed the corresponding cause of failure, 𝛿1 is determined. Also, at the
2𝑛𝑑 failure 𝑋2 is observed the corresponding cause of failure, 𝛿2 is determined. The experiment is
continual until m-th failure 𝑋𝑚 and its cause of failure 𝛿𝑚 are observed. The data (𝑋1, 𝛿1), (𝑋2, 𝛿2),
...., (𝑋𝑚, 𝛿𝑚) where 𝛿𝑖 = {1, 2}, 𝑖 = 1, 2, ..., 𝑚 is called type II competing risks sample. The value
𝜔𝑖 = 1 means that, failure done with respected to the 1𝑠𝑡 cause of failure and 𝛿𝑖 = 2 means the
failure under 2𝑛𝑑 cause. The joint likelihood function under type II competing risks data is given
by:

𝑓1,2,...,𝑚(x) =
𝑛!(𝑆1(𝑥𝑚)𝑆2(𝑥𝑚)) (𝑛−𝑚)

(𝑛 − 𝑚)!

𝑚∏
𝑖=1

𝑆1(𝑥𝑖)𝑆2(𝑥𝑖)(ℎ1(𝑥𝑖))𝑧 (𝛿𝑖=1) (ℎ2(𝑥𝑖))𝑧 (𝛿𝑖=2) , (2)

where

𝑧(𝛿𝑖 = 𝑗) =
{

1, 𝛿𝑖 = 𝑗
0, 𝛿𝑖 ≠ 𝑗 ,

for 𝑗 = 1, 2, (3)

where, 𝑆 𝑗 (.) is the survival function “SF”, and ℎ 𝑗 (.) is hazard failure rate “HRF”. FIGURE 1 shows
a diagrammatic representation of the data production which leads to an example of the real type II
censored data from an experiment. In the diagram the productions are affected by different failure
causes.

Figure 1: Diagrammatic and real type-II censored data from an experiment. The diagram shows
different units going through production line.
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3. MIXED LIFETIME MODEL

In this section, I consider the mixture distribution which is weighted as a summation of 𝐾 one
parameter distributions 𝑔1(𝑥;𝜆1), . . . , 𝑔𝐾 (𝑥;𝜆𝐾 ). This distribution is formulated by

𝑓 (𝑥;𝜆1, . . . , 𝜆𝐾 ) =
𝐾∑
𝑖=1

𝜁𝑖𝑔(𝑥;𝜆𝑖), (4)

where the weights satisfy
∑𝐾
𝑖=1 𝜁𝑖 = 1, and each distributions from this mixture has one parameter

𝜆𝑖. In this article, I consider the mixture of two one-dimensional exponential distributions as an
example for mixture of two continuous distributions given by:

𝑔1(𝑥;𝜆1) ∼ 𝑒𝑥𝑝(𝜆1), (5)
𝑔2(𝑥;𝜆2) ∼ 𝑒𝑥𝑝(𝜆2), (6)

the PDF is given as follows:

𝑔(𝑥;𝜆) = 𝜆 exp {−𝜆𝑥} ; 𝑥, 𝜆 > 0, (7)

and

𝑓 (𝑥;𝜆1, 𝜆2, 𝜁) = 𝜁𝑔1(𝑥;𝜆1) + (1 − 𝜁)𝑔2(𝑥;𝜆2) = 𝜁𝜆1 exp {−𝜆1𝑥} + (1 − 𝜁)𝜆2 exp {−𝜆2𝑥} . (8)

The cumulative distribution function CDF will take the following form:

𝐹 (𝑥;𝜆1, 𝜆2, 𝜁) = 1 − {𝜁𝑒𝑥𝑝 {−𝜆1𝑥} + (1 − 𝜁) exp {−𝜆2𝑥}} , (9)

and the survival function:

𝑆(𝑥;𝜆1, 𝜆2, 𝜁) = 𝜁𝑒𝑥𝑝 {−𝜆1𝑥} + (1 − 𝜁) exp {−𝜆2𝑥} , (10)

then the hazard function will take the following form:

ℎ(𝑥;𝜆1, 𝜆2, 𝜁) =
𝜁𝜆1 exp {−𝜆1𝑥} + (1 − 𝜁)𝜆2 exp {−𝜆2𝑥}
𝜁𝑒𝑥𝑝 {−𝜆1𝑥} + (1 − 𝜁) exp {−𝜆2𝑥}

, (11)

FIGURE 2 indicates the plots of the PDF, the CDF, the survival, and the hazard rate functions for the
value of 𝜁 = 0.2 and different scale parameters for a mixture of two one-dimensional exponential
distributions.

4. MODEL DESCRIPTION AND ASSUMPTION

Assume, a sample of size 𝑛 from identical independent items are randomly chosen from a mixture
distribution with PDF and CDF given by Equations (8) and (9). These items are subject to a life
testing experiment. Prior the experiment is running, two values 𝑚 and 𝑡 are determined, where 𝑚
denotes the effect sample size needing for statistical inference, and 𝑡 represents the stress change
time. The failure time 𝑋 𝑗𝑖 is defined as the life time of the 𝑖𝑡ℎ item under cause 𝑗 = 1, 2. The
observed failure times is defined by 𝑋𝑖 = min{𝑋1𝑖 , 𝑋2𝑖}, 𝑖 =1, 2, ..., 𝑚. Under step-stress partially
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(d) Hazard functions.

Figure 2: Plots of the PDF, the CDF, the survival, and the hazard rate functions for the value of
𝜁 = 0.2 and different scale parameters.

ALT, all the sample of size 𝑛 are put under normal stress conditions. At the time of the experiment is
running, the failure time and the corresponding cause of failure are recorded until the stress changes
time 𝑡 is reached. Then, the 𝑛 samples are placed under stress condition until 𝑚 − 𝑡ℎ failure is
observed. The reduction in the test unit’s lifetime appears to be proportional to the inverse of the
acceleration factor, with the proportionality constant equal to the unit’s remaining lifetime. The
total lifetime of a test unit, denoted by𝑊𝑡 (𝑋𝑖), using accelerated conditions. The life time of a unit
in partially step-stress ALTs, is define as follows:

𝑊 =

{
𝑋𝑖 , 𝑋 < 𝑡
𝑡 + 𝛾−1(𝑋 − 𝑡), 𝑋 > 𝑡, (12)

where 𝛾 is an acceleration factor, conducts a decrease in the whole lifespan of the tested components
and 𝑡 is a changing time. Then, for a combination of two continuous distribution parameters 𝜆1, 𝜆2,
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and acceleration factor 𝛾, the PDF, takes the following form,

𝑔(𝑤) =


0, if 𝑤 < 0
𝑓1(𝑤), if 0 < 𝑤 < 𝑡,
𝑓2(𝑤), if 𝑤 > 𝑡,

(13)

where 𝑓1(𝑤) is given by Equation (8) and 𝑓2(𝑤) is obtained from Equation (8) after transforming
variable. The PDF, CDF, survival and hazard rate functions under stress conditions, respectively
given by:

𝑓2(𝑤;𝜆1, 𝜆2, 𝜁) = 𝜁𝛾𝜆1 exp {−𝜆1(𝛾(𝑤 − 𝑡) + 𝑡)} + (1 − 𝜁)𝛾𝜆2 exp {−𝜆2(𝛾(𝑤 − 𝑡) + 𝑡)} , (14)

𝐹2(𝑤;𝜆1, 𝜆2, 𝜁 , 𝛾) = 1 − {𝜁 exp {−𝜆1(𝛾(𝑤 − 𝑡) + 𝑡)} + (1 − 𝜁) exp {−𝜆2(𝛾(𝑤 − 𝑡) + 𝑡)}} , (15)

𝑆2(𝑤;𝜆1, 𝜆2, 𝜁 , 𝛾) = {𝜁 exp {−𝜆1(𝛾(𝑤 − 𝑡) + 𝑡)} + (1 − 𝜁) exp {−𝜆2(𝛾(𝑤 − 𝑡) + 𝑡)}} , (16)

the hazard function:

ℎ2(𝑤𝑖;𝜆 𝑗2, 𝜎, 𝜁1, 𝛾) =
𝜁𝛾𝜆1 exp {−𝜆1(𝛾(𝑤 − 𝑡) + 𝑡)} + (1 − 𝜁)𝛾𝜆2 exp {−𝜆2(𝛾(𝑤 − 𝑡) + 𝑡)}

{𝜁 exp {−𝜆1(𝛾(𝑤 − 𝑡) + 𝑡)} + (1 − 𝜁) exp {−𝜆2(𝛾(𝑤 − 𝑡) + 𝑡)}} .

(17)

Suppose that, the number of items which fail under normal conditions is represented by 𝑟, and
number of failed items under accelerated conditions is denoted by 𝑚 − 𝑟. Then, the type II censored
random sample of the total lifetime𝑊 , defined, separately, in two case:

1- If 𝑊𝑚 < 𝑡 then experiment is running completely under normal conditions and the joint
likelihood function of censored sample (𝑊1, 𝛿1) < (𝑊2, 𝛿2) < · · · < (𝑊𝑚, 𝛿𝑚) < 𝑡 is given
by:

𝑓 (𝑤) = 𝑛!(𝑆11(𝑤𝑚)𝑆21(𝑤𝑚)) (𝑛−𝑚)

(𝑛 − 𝑚)!

𝑚∏
𝑖=1

𝑆11(𝑤𝑖)𝑆21(𝑤𝑖)(ℎ21(𝑤𝑖))𝑧 (𝛿𝑖=1) (ℎ21(𝑤𝑖))𝑧 (𝛿𝑖=2) ,

(18)

and accelerated factor is equal to zero.

2- If 𝑊𝑚 > 𝑡 the whole lifetime 𝑊 is running under stress conditions, defined by: (𝑊1, 𝛿1) <
(𝑊2, 𝛿2) < · · · < (𝑊𝑟 , 𝛿𝑟 ) < 𝑡 < (𝑊𝑟+1, 𝛿𝑟+1) < · · · < (𝑊𝑚, 𝛿𝑚). In this case the joint
likelihood function

𝑓 (𝑤) = 𝑛!(𝑆12(𝑤𝑚)𝑆22(𝑤𝑚)) (𝑛−𝑚)

(𝑛 − 𝑚)!

𝑟∏
𝑖=1

𝑆11(𝑤𝑖)𝑆21(𝑤𝑖) (ℎ11(𝑤𝑖))𝑧 (𝛿𝑖=1) (ℎ21(𝑤𝑖))𝑧 (𝛿𝑖=2)

×
𝑚∏

𝑖=𝑟+1
𝑆12(𝑤𝑖)𝑆22(𝑤𝑖)(ℎ12(𝑤𝑖))𝑧 (𝛿𝑖=1) (ℎ22(𝑤𝑖))𝑧 (𝛿𝑖=2) (19)

𝑧(𝛿𝑖 = 𝑗) =
{

1, if 𝛿𝑖 = 𝑗
0, if 𝛿𝑖 ≠ 𝑗
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3- The time-to-failure𝑊𝑖 , 𝑖 =1, 2, , ..., 𝑚 is taken to be𝑊𝑖 = min{𝑊1𝑖 ,𝑊2𝑖} and 𝑗 = 1, 2.

4- The failure time𝑊 𝑗𝑖 has a mixed exponential lifetime distribution with CDF, defined by:

𝐹𝑗1(𝑤) = 1 −
{
𝜁 exp

{
−𝜆 𝑗1𝑤

}
+ (1 − 𝜁) exp

{
−𝜆 𝑗2𝑤

}}
. (20)

and

𝐹𝑗2(𝑤) = 1 −
{
𝜁 exp

{
−𝜆 𝑗1(𝛾(𝑤 − 𝑡) + 𝑡)

}
+ (1 − 𝜁) exp

{
−𝜆 𝑗2(𝛾(𝑤 − 𝑡) + 𝑡)

}}
, (21)

where 𝑗 = 1, 2, denotes the causes of failure.

5. MAXIMUM LIKELIHOOD ESTIMATION

The corresponding joint likelihood function of mixture of two exponential lifetime distributions
under the assumption of the observed type II censored sample, are defined as follows: (𝑊1, 𝛿1) <
(𝑊2, 𝛿2) < · · · < (𝑊𝑟 , 𝛿𝑟 ) < 𝑡 < (𝑊𝑟+1, 𝛿𝑟+1) < · · · < (𝑊𝑚, 𝛿𝑚), given by Equation (19), is
reduced to:

𝐿 (Θ|w) =
{
𝜁2 exp {−(𝜆11 + 𝜆21)(𝛾(𝑤𝑚 − 𝑡) + 𝑡)} + (1 − 𝜁)2 exp {−(𝜆12 + 𝜆22) (𝛾(𝑤𝑚 − 𝑡) + 𝑡)}
+ 𝜁 (1 − 𝜁) exp {−(𝜆11 + 𝜆21) (𝛾(𝑤𝑚 − 𝑡) + 𝑡)}
+ 𝜁 (1 − 𝜁) exp {−(𝜆12 + 𝜆22) (𝛾(𝑤𝑚 − 𝑡) + 𝑡)}} (𝑛−𝑚)

×
𝑟∏
𝑖=1

{
𝜁2𝜆11 exp {−(𝜆11 + 𝜆21)𝑤𝑖} + (1 − 𝜁)2𝜆12 exp {−(𝜆12 + 𝜆22)𝑤𝑖}

+ 𝜁 (1 − 𝜁)𝜆11 exp {−(𝜆11 + 𝜆22)𝑤𝑖} + 𝜁 (1 − 𝜁)𝜆12 exp {−(𝜆12 + 𝜆21)𝑤𝑖}}𝑧 (𝛿𝑖=1)

×
{
𝜁2𝜆21 exp {−(𝜆11 + 𝜆21)𝑤𝑖} + (1 − 𝜁)2𝜆22 exp {−(𝜆12 + 𝜆22)𝑤𝑖}

+ 𝜁 (1 − 𝜁)𝜆21 exp {−(𝜆21 + 𝜆12)𝑤𝑖} + 𝜁 (1 − 𝜁)𝜆22 exp {−(𝜆11 + 𝜆22)𝑤𝑖}}𝑧 (𝛿𝑖=2)

×
𝑚∏

𝑖=𝑟+1

{
𝜁2𝜆11 exp {−(𝜆11 + 𝜆21) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}

+ (1 − 𝜁)2𝜆12 exp {−(𝜆12 + 𝜆22)(𝛾(𝑤𝑖 − 𝑡) + 𝑡))}
+ 𝜁 (1 − 𝜁)𝜆11 exp {−(𝜆11 + 𝜆22) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}
+ 𝜁 (1 − 𝜁)𝜆12 exp {−(𝜆12 + 𝜆21) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}}𝑧 (𝛿𝑖=1)

×
{
𝜁2𝜆21 exp {−(𝜆11 + 𝜆21) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}

+ (1 − 𝜁)2𝜆22 exp {−(𝜆12 + 𝜆22)(𝛾(𝑤𝑖 − 𝑡) + 𝑡))}
+ 𝜁 (1 − 𝜁)𝜆21 exp {−(𝜆21 + 𝜆12) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}
+𝜁 (1 − 𝜁)𝜆22 exp {−(𝜆11 + 𝜆22)(𝛾(𝑤𝑖 − 𝑡) + 𝑡))}}𝑧 (𝛿𝑖=2) (22)

The comprehending log-likelihood function is given by:

𝑙 (Θ|w) = (𝑛 − 𝑚) log
{
𝜁2 exp {−(𝜆11 + 𝜆21) (𝛾(𝑤𝑚 − 𝑡) + 𝑡)}

+(1 − 𝜁)2 exp {−(𝜆12 + 𝜆22) (𝛾(𝑤𝑚 − 𝑡) + 𝑡)}
+ 𝜁 (1 − 𝜁) exp {−(𝜆11 + 𝜆21) (𝛾(𝑤𝑚 − 𝑡) + 𝑡)}
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+𝜁 (1 − 𝜁) exp {−(𝜆12 + 𝜆22)(𝛾(𝑤𝑚 − 𝑡) + 𝑡)}}

+
𝑟∑
𝑖=1

{
𝜁2𝜆11 exp {−(𝜆11 + 𝜆21)𝑤𝑖} + (1 − 𝜁)2𝜆12 exp {−(𝜆12 + 𝜆22)𝑤𝑖}

+ 𝜁 (1 − 𝜁)𝜆11 exp {−(𝜆11 + 𝜆22)𝑤𝑖} + 𝜁 (1 − 𝜁)𝜆12 exp {−(𝜆12 + 𝜆21)𝑤𝑖}}

+
𝑟∑
𝑖=1

𝑧(𝛿𝑖 = 1)
{
𝜁2𝜆21 exp {−(𝜆11 + 𝜆21)𝑤𝑖} + (1 − 𝜁)2𝜆22 exp {−(𝜆12 + 𝜆22)𝑤𝑖}

+ 𝜁 (1 − 𝜁)𝜆21 exp {−(𝜆21 + 𝜆12)𝑤𝑖} + 𝜁 (1 − 𝜁)𝜆22 exp {−(𝜆11 + 𝜆22)𝑤𝑖}}

+
𝑚∑

𝑖=𝑟+1
𝑧(𝛿𝑖 = 1)

{
𝜁2𝜆11 exp {−(𝜆11 + 𝜆21) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}

+(1 − 𝜁)2𝜆12 exp {−(𝜆12 + 𝜆22) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}
+ 𝜁 (1 − 𝜁)𝜆11 exp {−(𝜆11 + 𝜆22)(𝛾(𝑤𝑖 − 𝑡) + 𝑡))}
+𝜁 (1 − 𝜁)𝜆12 exp {−(𝜆12 + 𝜆21)(𝛾(𝑤𝑖 − 𝑡) + 𝑡))}}

+
𝑚∑

𝑖=𝑟+1
𝑧(𝛿𝑖 = 2)

{
𝜁2𝜆21 exp {−(𝜆11 + 𝜆21) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}

+(1 − 𝜁)2𝜆22 exp {−(𝜆12 + 𝜆22) (𝛾(𝑤𝑖 − 𝑡) + 𝑡))}
+ 𝜁 (1 − 𝜁)𝜆21 exp {−(𝜆21 + 𝜆12)(𝛾(𝑤𝑖 − 𝑡) + 𝑡))}
+𝜁 (1 − 𝜁)𝜆22 exp {−(𝜆11 + 𝜆22)(𝛾(𝑤𝑖 − 𝑡) + 𝑡))}} (23)

MLEs

The model parameters’ point estimate are got by differentiate either the likelihood function as in
Equation (22) or the log-likelihood equation as in Equation (23). Here, differentiating the likeli-
hood function is complicated and I will focus on finding the derivative by using the log-likelihood
function. The estimation of parameters 𝜆11, 𝜆12, 𝜆21, 𝜆22, and 𝛾 can be achieved by differentiating
the log-likelihood function with respect to these parameters. The derivatives these parameters are
shown as follows:

𝜕𝑙 (Θ|w)
𝜕𝜆 𝑗1

= 0, 𝑗 = 1, 2, (24)

𝜕𝑙 (Θ|w)
𝜕𝜆 𝑗2

= 0, 𝑗 = 1, 2, (25)

and

𝜕𝑙 (Θ|w)
𝜕𝛾

= 0, 𝑗 = 1, 2. (26)

Different iteration method can be used to solve Equations (24), (25) and (26) to obtain the estimation
of parameters Θ̂ = {𝜆11, 𝜆12, 𝜆21, 𝜆22, 𝛾} which maximize the likelihood function.
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6. APPROXIMATE CONFIDENCE INTERVALS

The matrix of Fisher information occurs from the minus expectation of the second partial derivative
of log of the likelihood function that is denoted by 𝜅. Interval estimation of parameters Θ = {𝜆11,
𝜆12, 𝜆21, 𝜆22, 𝛾} are found from asymptotic normality distribution of Θ̂ = {𝜆11, 𝜆12, 𝜆21, 𝜆22, 𝛾}
with mean Θ = {𝜆11, 𝜆12, 𝜆21, 𝜆22, 𝛾} and variance-covariance matrix 𝜅−1. This approximation is
shown by the estimate of the following:

Θ̂ = {𝜆11, 𝜆12, 𝜆21, 𝜆22, 𝛾} −→ 𝑁 (𝜆11, 𝜆12, 𝜆21, 𝜆22, 𝛾}, 𝜅−1) (27)

The variance-covariance matrix 𝜅−1
0 can be defend as

𝜅−1
0 =

©«

−𝜕
2𝑙 (Θ |w)
𝜕𝜆2

11
−𝜕

2𝑙 (Θ |w)
𝜕𝜆11𝜆12

−𝜕
2𝑙 (Θ |w)
𝜕𝜆11𝜆21

−𝜕
2𝑙 (Θ |w)
𝜕𝜆11𝜆22

−𝜕
2𝑙 (Θ |w)
𝜕𝜆11𝛾

−𝜕
2𝑙 (Θ |w)
𝜕𝜆12𝜆11

−𝜕
2𝑙 (Θ |w)
𝜕𝜆2

12𝜆12
−𝜕

2𝑙 (Θ |w)
𝜕𝜆12𝜆21

−𝜕
2𝑙 (Θ |w)
𝜕𝜆12𝜆22

−𝜕
2𝑙 (Θ |w)
𝜕𝜆12𝛾

−𝜕
2𝑙 (Θ |w)
𝜕𝜆21𝜆11

−𝜕
2𝑙 (Θ |w)
𝜕𝜆21𝜆12

−𝜕
2𝑙 (Θ |w)
𝜕𝜆2

21
−𝜕

2𝑙 (Θ |w)
𝜕𝜆21𝜆22

−𝜕
2𝑙 (Θ |w)
𝜕𝜆21𝛾

−𝜕
2𝑙 (Θ |w)
𝜕𝜆22𝜆11

−𝜕
2𝑙 (Θ |w)
𝜕𝜆22𝜆12

−𝜕
2𝑙 (Θ |w)
𝜕𝜆22𝜆21

−𝜕
2𝑙 (Θ |w)
𝜕𝜆2

11
−𝜕

2𝑙 (Θ |w)
𝜕𝜆22𝛾

−𝜕
2𝑙 (Θ |w)
𝜕𝜆22𝜆11

−𝜕
2𝑙 (Θ |w)
𝜕𝜆22𝜆12

−𝜕
2𝑙 (Θ |w)
𝜕𝜆22𝜆21

−𝜕
2𝑙 (Θ |w)
𝜕𝜆2

11
−𝜕

2𝑙 (Θ |w)
𝜕𝜆22𝛾

−𝜕
2𝑙 (Θ |w)
𝜕𝛾𝜆11

−𝜕
2𝑙 (Θ |w)
𝜕𝛾𝜆12

−𝜕
2𝑙 (Θ |w)
𝜕𝛾𝜆21

−𝜕
2𝑙 (Θ |w)
𝜕𝛾𝜆22

−𝜕
2𝑙 (Θ |w)
𝜕𝛾2

ª®®®®®®®®®®®®®¬
.

Θ̂={𝜆11,𝜆12,𝜆21,𝜆22,𝛾}

Therefore, (1 − 𝛼)100% confidence intervals of the model parameters is constructed by:
𝛾 ∓ 𝑧 𝛼

2
𝑒55,

𝜆11 ∓ 𝑧 𝛼
2
𝑒11, 𝜆12 ∓ 𝑧 𝛼

2
𝑒22,

𝜆21 ∓ 𝑧 𝛼
2
𝑒33, 𝜆22 ∓ 𝑧 𝛼

2
𝑒44,

(28)

where the values 𝑒𝑖𝑖 , 𝑖 = 1, .., 5 are the diagonals of the 𝜅−1
0 . Also, the value 𝑧 has standard normal

distribution and the corresponding significant level is equal to 𝛾. Equation (28) has shown that,
lower bound of the asymptotic confidence intervals may be taken negative value. Therefore, I
consider the delta method with log-transformation to avoid the negative cases as follows:

The log-transformation of of the model parametersΘ = {𝜆11, 𝜆12, 𝜆21, 𝜆22, 𝛾} are defined as logΘ𝑖 ,
𝑖 = 1, 2, .., 6. Under normal property of the pivotal 𝜂 = logΘ𝑖−logΘ̂𝑖

Var(log{Θ̂𝑖 })
with mean 0 and variance 1.

Hence, the approximate (1 − 𝛼)100% confidence interval of the model parameters Θ is defined as

©«
Θ̂𝑖

exp
(
𝑧 𝛼

2

√
Var( log Θ̂𝑖)

) , Θ̂𝑖 exp
(
𝑧 𝛼

2

√
Var( log Θ̂𝑖)

)ª®®®®¬
, (29)

where Var(log Θ̂𝑖)=Var(Θ̂𝑖 )
Θ̂𝑖

and 𝑖 = 1, 2, .., 5, see [36].
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7. BOOTSTRAP CONFIDENCE INTERVALS

Resemblingmethods “Bootstrap” for parameters estimation of a life populations are commonly used
not only for estimated confidence intervals, but also in estimation the calibrate hypothesis tests or
bias and variance of an estimator. In this section, the parametric bootstrap technique is adopted
to formulate confidence interval of the parameters of the model, for more detail about paramet-
ric bootstrap techniques see, [37]. The following algorithms describe bootstrap-p and bootstrap-t
confidence intervals as follows:

1- For given competing risks type II censoring sample ((𝑤1, 𝛿1), (𝑤2, 𝛿2), ..., (𝑤𝑟 , 𝛿𝑟 ), 𝑡 < (𝑤𝑟+1,
𝛿𝑟+1), ..., (𝑤𝑚, 𝛿𝑚) ) the value of ML estimate is Θ̂ = {𝜆11, 𝜆12, 𝜆21, 𝜆22, 𝛾}.

2- Based on 𝜆 𝑗1 and 𝜆 𝑗2 generated two type II censoring sample from distribution given by
Equation (9), 𝑗 = 1, 2. The competing risks type II censoring sample is obtained minimum of
two samples.

3- Applied the transformation in Equation (12) the bootstrap competing risks type II censoring
sample is obtained as ((𝑤∗

1, 𝛿
∗
1), (𝑤

∗
2, 𝛿

∗
2), ..., (𝑤

∗
𝑟 , 𝛿

∗
𝑟 ), 𝑡 < (𝑤∗

𝑟+1, 𝛿
∗
𝑟+1), ..., (𝑤

∗
𝑚, 𝛿

∗
𝑚)).

4- Based on bootstrap competing risks type II censoring sample compute the bootstrap sample
estimate Θ̂∗ = {𝜆∗11, 𝜆

∗
12, 𝜆

∗
21, 𝜆

∗
22, 𝛾

∗}.

5- Steps from Step 2 to Step 4 are repeated 𝑁 times.

6- The vector Θ̂∗(1) = {𝜆∗(𝑖)11 , 𝜆∗(𝑖)12 , 𝜆∗(𝑖)21 , 𝜆∗(𝑖)22 , 𝛾∗(𝑖) }, 𝑖 = 1, 2, ...., 𝑁 put in ascending order as
Θ̂∗

(𝑖) = {𝜆∗11(𝑖) , 𝜆
∗
12(𝑖) , 𝜆

∗
21(𝑖) , 𝜆

∗
22(𝑖) , 𝛾

∗
(𝑖) }, 𝑖 =1, 2, ...., 𝑁.

Bootstrap-p confidence interval: Suppose that, the CDF of Θ̂∗
𝑘 is defined by 𝑍 (𝑥) = 𝑃(Θ̂∗

𝑘 ⩽ 𝑥).
The value Θ̂∗

𝑘boot = 𝑍
−1(𝑥) and 100(1 − 𝛼)% is the approximate confidence interval of Θ̂∗

𝑘 , 𝑘 = 1,
2, ..., 5 is formulated by: [

Θ̂∗
𝑘boot(

𝛼

2
), Θ̂∗

𝑘boot(1 − 𝛼

2
)
]
. (30)

Bootstrap-t confidence interval Suppose, the order statistics values Ω∗(1)
𝑘 < Ω∗(2)

𝑘 < ... < Ω∗(𝑁 )
𝑘 ,

is defined by

Ω∗(𝑖)
𝑘 =

Θ̂∗(𝑖)
𝑘 − Θ̂𝑘√
var

(
Θ̂∗(𝑖)
𝑘

) , 𝑖 = 1, 2, ..., 𝑁, 𝑘 = 1, 2, ..., 5 (31)

where Θ̂1 = 𝜆11, Θ̂2 = 𝜆12 and so.

Suppose, the CDF of Θ̂∗
𝑘 is defined by 𝑍 (𝑥) = 𝑃(Ω∗

𝑘 < 𝑥)

Θ̂𝑘boot-𝑡 = Θ̂𝑘 +
√
Var(Θ̂𝑘)𝑍−1(𝑥). (32)

Hence, 100(1 − 𝛼)% confidence interval of Θ̂𝑘 is given by:(
Θ̂𝑘boot-𝑡 (

𝛼

2
), Θ̂𝑘boot-𝑡 (1 − 𝛾

2
)
)
.
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8. SIMULATION STUDIES

In this section, the the studied model and the corresponding estimation methods are investigated
under Monte Carlo simulation study. The results are tested with respect to several values of the
model parameters. Also, I test the effect of change each of censoring scheme stress change time.
The performance of the the estimators of the acceleration factor and scale parameters has been
considered in regards to the mean square errors (MSEs) for different values of 𝜁 . The approximate
confidence intervals and two bootstrap confidence intervals (boot-p and boot-t) are tested with
respect to average interval lengths (AIL) and coverage percentages (CP). A 1000 different samples
are generated for each sample and checked whether the true value lays within the interval, then
the length of the confidence interval is registered. Coverage percentage value is computed as the
number of confidence intervals that covered the true values divided by 1000. However, the sum
of the lengths for all intervals divided by 1000 is the estimated expected width. In this study,
two values of the parameters are considered and accelerated factor, Θ = {𝜆11, 𝜆12, 𝜆21, 𝜆22, 𝛾} =
{1.5, 0.8, 1.2, 0.6, 2.0} and the corresponding (𝑡 = 0.5, 1.5), Θ = {0.5, 0.8, 0.8, 0.2, 1.5} with
(𝑡 = 1.0, 2.0). Without loss the generality the value of 𝜁 is taken to be 0.4.

Results discussion: From the numerical results shown in TABLE 1 - TABLE 4, the following points
can be noticed:

1- The results are logical.

2- By increasing the stress change times, the MSEs of the considered parameters decrease, for
fixed values of the sample size.

3- For fixed values of the sample and failure time sizes, the type II censoring scheme serves well.

4- The approximate CIs and bootstrap-𝑡 CIs provide more accurate results than the bootstrap-
p CIs, and that is due to the lengths of CIs and bootstrap-𝑡 are smaller than the lengths of
bootstrap-p CIs, for different sample sizes, observed failures and schemes.

5- The accelerated factor estimate values performance under reduced value of 𝑡 shows good
results.

6- TABLE 1 - TABLE 4 indicate that estimation schemes are able to perform effectively for
different choices of the model’s parameter values.

9. CONCLUSION

The problem of analyzing time-to-failure of life units or individual is a common approach in com-
peting risks models, however, under modern technologies, more time is needed for the failure
occurrence specially in readable products. For this reason, to obtain sufficient information about
life products in a small period of time, the ALTs problem is adopted. In this paper, the step-stress
partially ALTs model is applied to analysis the type II censoring competing risks data obtained from
mixed population. The mixture of two exponential distributions is the model is used for this work
and this work can be extended to other mixture distributions.The results of simulation studies are
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Table 1: The estimate value of mean and MSEs of Θ = (1.5, 0.8, 1.2, 0.6, 2.0).

𝑡 MLE
(𝑛, 𝑚) AVG MSE

𝜆11 𝜆12 𝜆21 𝜆22 𝛾 𝜆11 𝜆12 𝜆21 𝜆22 𝛾
0.5 (25,15) 1.854 1.123 1.452 0.874 2.542 0.321 0.245 0.331 0.210 0.452

(25,25) 1.801 1.091 1.411 0.824 2.507 0.282 0.201 0.287 0.191 0.415
(40,25) 1.791 1.094 1.415 0.821 2.502 0.279 0.197 0.282 0.194 0.407
(40,35) 1.732 1.041 1.361 0.784 2.440 0.240 0.161 0.241 0.159 0.471
(60,40) 1.690 1.002 1.301 0.719 2.391 0.208 0.142 0.217 0.118 0.438
(60,50) 1.601 0.987 1.150 0.640 2.282 0.184 0.100 0.169 0.081 0.394
(70,70) 1.578 0.894 1.201 0.615 2.174 0.101 0.071 0.132 0.044 0.351

1.5 (25,15) 1.814 1.084 1.415 0.823 2.500 0.301 0.218 0.307 0.194 0.433
(25,25) 1.784 1.061 1.362 0.791 2.451 0.258 0.175 0.259 0.174 0.400
(40,25) 1.762 1.044 1.365 0.789 2.462 0.254 0.175 0.257 0.169 0.389
(40,35) 1.681 1.002 1.313 0.727 2.403 0.217 0.131 0.212 0.135 0.454
(60,40) 1.654 0.978 1.241 0.694 2.359 0.192 0.117 0.204 0.100 0.424
(60,50) 1.544 0.928 1.104 0.596 2.247 0.114 0.060 0.119 0.042 0.345
(70,70) 1.541 0.852 1.154 0.596 2.124 0.087 0.043 0.114 0.025 0.328

given in TABLE 1 - TABLE 4 show the results are logical and the estimation methods behave well
for different values of the model’s parameters. This work can also, be extended to other censoring
schemes and populations. also, the results can be applied to more than two causes of failure and
others accelerated types.
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Table 2: The estimate value AIL and CP of Θ=(1.5, 0.8, 1.2, 0.6, 2.0).

𝑡 MLE
(𝑛, 𝑚) CS AIL CP

𝜆11 𝜆12 𝜆21 𝜆22 𝛾 𝜆11 𝜆12 𝜆21 𝜆22 𝛾
0.5 (25,15) ML 3.567 2.147 2.546 1.425 5.124 0.88 0.89 0.87 0.90 0.90

Boot-p 3.687 2.251 2.664 1.547 5.288 0.88 0.89 0.89 0.91 0.89
Boot-t 3.412 2.041 2.444 1.325 5.019 0.88 0.90 0.91 0.89 0.90

(25,25) ML 3.515 2.094 2.499 1.375 5.041 0.90 0.89 0.91 0.91 0.90
Boot-p 3.619 2.204 2.607 1.491 5.227 0.91 0.92 0.91 0.90 0.92
Boot-t 3.370 2.001 2.392 1.282 4.954 0.92 0.93 0.91 0.92 0.93

(40,25) ML 3.519 2.081 2.492 1.369 5.054 0.91 0.90 0.91 0.91 0.93
Boot-p 3.612 2.201 2.614 1.487 5.215 0.91 0.94 0.91 0.93 0.92
Boot-t 3.366 1.998 2.387 1.279 4.942 0.92 0.94 0.94 0.92 0.95

(40,35) ML 3.410 2.004 2.399 1.281 4.954 0.91 0.92 0.91 0.92 0.91
Boot-p 3.511 2.114 2.524 1.403 5.124 0.91 0.94 0.93 0.95 0.91
Boot-t 3.287 1.905 2.301 1.192 4.888 0.94 0.94 0.94 0.92 0.92

(60,40) ML 3.301 1.924 2.315 1.192 4.850 0.93 0.92 0.91 0.92 0.90
Boot-p 3.412 2.025 2.424 1.327 5.018 0.92 0.94 0.92 0.95 0.94
Boot-t 3.168 1.824 2.222 1.101 4.802 0.92 0.94 0.92 0.92 0.93

(60,50) ML 3.230 1.871 2.264 1.119 4.780 0.91 0.92 0.92 0.92 0.93
Boot-p 3.351 1.981 2.354 1.262 5.018 0.90 0.93 0.92 0.94 0.91
Boot-t 3.100 1.735 2.151 1.014 4.725 0.92 0.95 0.92 0.95 0.93

(70,70) ML 3.091 1.690 2.114 1.001 4.620 0.93 0.92 0.91 0.92 0.95
Boot-p 3.214 1.874 2.194 1.114 4.871 0.94 0.93 0.95 0.94 0.93
Boot-t 3.000 1.620 2.014 0.984 4.660 0.94 0.94 0.92 0.94 0.93

1.5 (25,15) ML 3.545 2.131 2.519 1.402 5.101 0.90 0.89 0.82 0.91 0.91
Boot-p 3.662 2.224 2.629 1.518 5.251 0.90 0.90 0.89 0.91 0.92
Boot-t 3.395 2.017 2.418 1.299 5.000 0.90 0.91 0.92 0.89 0.90

(25,25) ML 3.470 2.066 2.470 1.325 4.982 0.90 0.89 0.91 0.91 0.93
Boot-p 3.600 2.181 2.691 1.455 5.201 0.91 0.93 0.91 0.92 0.92
Boot-t 3.352 1.987 2.376 1.261 4.925 0.92 0.92 0.93 0.92 0.91

(40,25) ML 3.502 2.071 2.459 1.344 5.018 0.91 0.92 0.93 0.92 0.91
Boot-p 3.587 2.174 2.600 1.461 5.185 0.91 0.94 0.91 0.93 0.92
Boot-t 3.339 1.974 2.364 1.254 4.919 0.92 0.93 0.94 0.94 0.95

(40,35) ML 3.387 1.974 2.372 1.254 4.918 0.92 0.95 0.94 0.92 0.94
Boot-p 3.500 2.097 2.501 1.375 5.103 0.91 0.94 0.93 0.95 0.91
Boot-t 3.269 1.879 2.282 1.169 4.851 0.94 0.94 0.94 0.92 0.92

(60,40) ML 3.269 1.901 2.292 1.171 4.824 0.93 0.92 0.91 0.92 0.90
Boot-p 3.387 2.008 2.400 1.301 4.987 0.92 0.94 0.92 0.95 0.94
Boot-t 3.144 1.798 2.200 1.087 4.759 0.92 0.94 0.92 0.92 0.93

(60,50) ML 3.204 1.839 2.225 1.100 4.731 0.91 0.92 0.92 0.92 0.93
Boot-p 3.314 1.949 2.324 1.241 5.003 0.90 0.93 0.92 0.94 0.91
Boot-t 3.71 1.714 2.134 0.989 4.725 0.92 0.95 0.92 0.95 0.93

(70,70) ML 3.066 1.672 2.092 0.997 4.602 0.93 0.92 0.91 0.92 0.95
Boot-p 3.197 1.847 2.169 1.082 4.805 0.94 0.93 0.95 0.94 0.93
Boot-t 2.974 1.602 1.984 0.971 4.635 0.94 0.94 0.92 0.94 0.93

2878



https://www.oajaiml.com/ | November 2024 Amirah Saeed Alharthi.

Table 3: The estimate value of mean and MSEs of Θ = (0.5, 0.8, 0.8, 0.2, 1.5).

𝑡 MLE
(𝑛, 𝑚) AVG MSE

𝜆11 𝜆12 𝜆21 𝜆22 𝛾 𝜆11 𝜆12 𝜆21 𝜆22 𝛾
1.0 (25,15) 0.741 0.954 1.124 0.354 1.897 0.147 0.200 0.184 0.078 0.364

(25,25) 0.709 0.925 1.092 0.312 1.871 0.125 0.181 0.168 0.069 0.349
(40,25) 0.711 0.921 1.078 0.302 1.865 0.127 0.180 0.162 0.063 0.341
(40,35) 0.674 0.881 1.039 0.266 1.831 0.101 0.161 0.129 0.044 0.319
(60,40) 0.637 0.847 1.007 0.224 1.800 0.089 0.132 0.108 0.029 0.289
(60,50) 0.612 0.818 0.987 0.198 1.761 0.066 0.108 0.087 0.022 0.256
(70,70) 0.564 0.747 0.952 0.166 1.742 0.049 0.089 0.081 0.018 0.231

1.5 (25,15) 0.724 0.932 1.107 0.337 1.869 0.132 0.185 0.171 0.070 0.348
(25,25) 0.689 0.902 1.071 0.280 1.855 0.114 0.171 0.160 0.054 0.334
(40,25) 0.701 0.907 1.071 0.289 1.852 0.120 0.169 0.156 0.057 0.341
(40,35) 0.659 0.874 1.031 0.251 1.818 0.092 0.147 0.118 0.040 0.308
(60,40) 0.619 0.832 1.000 0.202 1.789 0.080 0.119 0.101 0.003 0.271
(60,50) 0.600 0.807 0.976 0.191 1.747 0.054 0.100 0.078 0.020 0.245
(70,70) 0.549 0.724 0.921 0.148 1.727 0.024 0.078 0.066 0.012 0.222
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