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Abstract
Accurate camera calibration is a cornerstone of aerial imaging, essential for precise 3D re-
construction, mapping, and motion estimation. Traditional calibration methods often depend
on predefined objects and periodic recalibration, which are impractical in dynamic aerial
environments. This study investigates the potential of AI-based calibration methods, specif-
ically GeoCalib, CTRL-C, and DeepCalib, to address these challenges. Using the ISPRS
Vaihingen dataset, evaluate these methods against the conventional approach. The research
focuses on intrinsic parameter estimation and its impact on 3D reconstruction accuracy. Our
findings reveal that CTRL-C achieved the highest precision, with a mean reconstruction
error of 1.59e10−5, significantly outperforming GeoCalib (1.0549) and DeepCalib (0.2110).
Additionally, DeepCalib demonstrated strong performance in minimizing Chamfer Distance
(0.4220) and Hausdorff Distance (0.2502), while GeoCalib exhibited broader error distribu-
tions. These results underscore the superior capability of AI-based techniques in delivering
accurate and reliable calibration for aerial imaging systems.
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1. INTRODUCTION

In computer vision and image processing, camera calibration is an essential procedure. It plays a
vital role in establishing the relationship between 2D image points and their corresponding 3Dworld
coordinates [1]. However, camera calibration faces several significant challenges, particularly in
aerial photography. One primary issue is that traditional calibration methods often rely on specific
calibration objects, such as checkerboards, and require periodic recalibration [2]. This approach
is ill-suited for systems operating continuously or in dynamically changing environments, such
as aerial photography. Furthermore, radial and tangential lens distortions [3, 4] pose significant
challenges in obtaining accurate and precise images, especially for aerial cameras operating in
diverse environmental conditions. Moreover, achieving a balance between accuracy and processing
speed remains a critical problem, particularly for real-time systems. Time-consuming calibration
procedures may be impractical for real-world applications such as autonomous vehicles or aerial
navigation systems, which demand rapid and accurate responses. Artificial Intelligence (AI), espe-
cially Deep Learning, has shown promise in recent years as a remedy for these problems [5, 6]. The
application of AI in calibration not only addresses the limitations of traditional methods but also
enables systems to continuously adapt to changing environmental conditions.

This paper presents the concepts and techniques in camera calibration using AI. We cover the
fundamentals of camera calibration and explore the application of Deep Learning techniques in
developing automated calibration systems. Additionally, we analyze methods for addressing the
problems as mentioned earlier, present case studies, and discuss future development trends.

2. FUNDAMENTALS OF CAMERA CALIBRATION

2.1 Camera Model and Parameters

The central projection of points in 3D space onto a 2D plane is described by the pinhole camera
model [7], as seen in FIGURE 1. The origin of a Euclidean coordinate system serves as the center
of projection in this approach. The image plane, the focal plane, is defined as z = f, where f is
the focal length. A location on the image plane where a line linking X to the center of projection
intersects the image plane is mapped to a point X in 3D space with coordinates (X, Y, Z)𝑇 . Using
similar triangles, we can derive that the 3D point (X, Y, Z)𝑇 is mapped to the 2D point (fX/Z, fY/Z)
𝑇 on the image plane. This mapping can be expressed mathematically as:

(X,Y,Z)T ↦→ (fX/Z, fY/Z)T

This equation describes the central projectionmapping fromworld coordinates to image coordinates,
transforming points from Euclidean 3-space R3 to Euclidean 2-space R2.

The camera center, sometimes referred to as the optical center, is the center of projection in the
pinhole camera paradigm. The primary axis or principal ray of the camera is a line that extends
from this camera center and intersects the image plane at a straight angle. The principal point is the
intersection of this principal axis and the picture plane. Furthermore, the major plane of the camera
is a plane that runs parallel to the image plane and goes through the center of the camera.
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Figure 1: Geometry of a pinhole camera

The pinhole camera model is a fundamental basis for understanding camera geometry in computer
vision and photogrammetry. This model explains mathematically how a perfect pinhole camera
projects 3D points from the outside world onto a 2D image plane. Camera parameters define the
characteristics and behavior of a camera, determining how it captures and projects 3D scenes onto
a 2D image plane. These parameters are essential in computer vision and photogrammetry for
accurately mapping points from the 3D world to their corresponding 2D image points. Camera
parameters are typically categorized into two main groups: intrinsic and extrinsic parameters.

These two sets of characteristics are determined by camera calibration [7]. The focal length, image
center, and lens distortion coefficients are examples of intrinsic parameters. Extrinsic parameters
comprise rotation matrices and translation vectors. These parameters are crucial for transforming
3Dworld coordinates into 2D image points [8], enabling accurate spatial analysis and reconstruction
in various imaging applications.

2.1.1 Intrinsic parameters

The camera’s internal optical properties are described by intrinsic parameters. Among them are:

1. Focal Length ( 𝑓 ): This represents the distance between the camera center and the image plane.
In practice, we often use two focal lengths, 𝑓𝑥 and 𝑓𝑦 , to account for non-square pixels [1].

2. Principal Point (𝑐𝑥 , 𝑐𝑦): The intersection of the optical axis with the image plane, typically
close to the image center [8].

3. Skew Coefficient: Explains the angle formed by the pixel axes x and y. In most modern
cameras, this is zero [9].
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These parameters form the camera intrinsic matrix 𝐾:

𝐾 =


𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1


Where s is the skew coefficient.

2.1.2 Extrinsic parameters

In the global coordinate system, the camera’s orientation and position are determined by external
factors. They include:

1. Rotation Matrix (R): A 3x3 matrix describing the camera’s orientation [10].

2. Translation Vector (t): A 3x1 vector describing the camera’s position [10].

The extrinsic parameters can be combined into a 3x4 matrix [R|t].

2.1.3 Projection model

The complete projection of a 3D point X = (X, Y, Z, 1)𝑇 to a 2D image point x = (u, v, 1)𝑇 can be
described by:

𝑥 = 𝐾 (𝑅 |𝑡)𝑋

This equation encapsulates the camera model, relating 3D world coordinates to 2D image coordi-
nates [11].

2.1.4 Lens distortion

Real cameras deviate from the ideal pinhole model due to lens distortion. Two main types of
distortion are typically considered:

1. Radial Distortion: Caused by the shape of the lens, it increases with distance from the optical
center. It’s usually modeled using polynomial coefficients (𝑘1, 𝑘2, 𝑘3) [3].

2. Manufacturing flaws that result in the lens not being precisely parallel to the image plane
produce tangential distortion. It’s modeled using parameters 𝑝1 and 𝑝2 [4].

The distortion model is applied after the projection and before scaling and offset by the intrinsic
parameters.
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2.1.5 Importance in calibration

Camera calibration aims to estimate these intrinsic and extrinsic parameters accurately. For aerial
photography, precise calibration is crucial for 3D reconstruction, motion estimation, and mapping
[2]. The challenge lies in accurately estimating these parameters, especially in dynamic environ-
ments or when the camera’s internal characteristics may change due to temperature or vibration
[12].

In Coordinate Transformation and Perspective Projection, as shown in FIGURE 2, both extrinsic
and intrinsic parameters are rewritten by using homogeneous coordinates as follows:

Figure 2: The Coordinated for the Camera Transform

Extrinsic Matrix: 𝑀𝑒𝑥𝑡 =

[
𝑅3×3 𝑡
01×3 1

]
=


𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1


Intrinsic Matrix: 𝑀𝑖𝑛𝑡 = (𝐾 |0) =


𝑓𝑥 𝑠 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0
0 0 1 0


Combining the above two matrixes is imperative to acquire the essential projection matrix used in
camera calibration.

𝑥𝑖𝑚𝑎𝑔𝑒 = 𝑀𝑖𝑛𝑡𝑀𝑒𝑥𝑡𝑋𝑤𝑜𝑟𝑙𝑑 = 𝑃𝑋𝑤𝑜𝑟𝑙𝑑

2.2 3D Reconstruction and Accuracy Metrics

Using photogrammetry and stereo-vision techniques, the multi-camera system’s photos are pro-
cessed to create a 3D point cloud of the scene. In order to project 3D points into the world co-
ordinate system, each camera’s intrinsic and extrinsic parameters are estimated during the camera
calibration procedure [13]. We use the following metrics to evaluate the reconstructed 3D point
cloud’s accuracy.

2.2.1 Chamfer distance

The average point distance between the ground truth and the reconstructed point cloud is measured
by the Chamfer Distance. It finds the nearest points in one point cloud to each point in the other

3413



https://www.oajaiml.com/ | March 2025 Jittiphan Changkaew, et al.

point cloud and computes the average distance. Smaller Chamfer Distance indicates more accurate
3D reconstruction.

𝐷𝐶ℎ𝑎𝑚 𝑓 𝑒𝑟 (𝑆1, 𝑆2) =
1
|𝑆1 |

∑
𝑥∈𝑆1

min
𝑦∈𝑆2

∥𝑥 − 𝑦∥2 + 1
|𝑆2 |

∑
𝑦∈𝑆2

min
𝑥∈𝑆1

∥𝑦 − 𝑥∥2

Where : 𝑆1 and 𝑆2 are two sets of 3D reconstruction and ground truth points. 𝑥 and 𝑦 are individual
points in the point clouds.

2.2.2 Hausdorff distance

A point in one set and the closer point in another set are separated by the Hausdorff Distance, which
is the largest of all distances. A smaller Hausdorff distance means that the two sets of reconstructed
and ground truth points are closer to each other.

𝐷𝐻𝑎𝑢𝑠𝑑𝑜𝑟 𝑓 𝑓 (𝑆1, 𝑆2) = max
(
sup
𝑥∈𝑆1

inf
𝑦∈𝑆2

∥𝑥 − 𝑦∥ , sup
𝑦∈𝑆2

inf
𝑥∈𝑆1

∥𝑦 − 𝑥∥
)

2.2.3 Reprojection error

The difference between the 2D projection of the reconstructed 3D points onto the picture plane and
the observed 2D image points is measured by the Reprojection Error. Quantifies how precisely the
3D points that have been reconstructed are projected back onto the 2D picture planes [14, 15].

Reprojection Error =
1
𝑛

𝑛∑
𝑖=1

∥𝑥𝑖 − 𝑃𝑋𝑖 ∥

Where: 𝑥𝑖 are the observed 2D points 𝑃 is the camera projection matrix. 𝑋𝑖 are the reconstructed
3D points. ∥ · ∥ denotes the Euclidean distance.

2.2.4 Point-to-point errors or Euclidean distance

The Euclidean Distance compares the reconstructed 3D points directly with the ground truth 3D
points. Higher accuracy is shown by a smaller average Euclidean distance between the reconstructed
and ground truth points.

Point-to-Point =
1
𝑛

𝑛∑
𝑖=1




𝑋 𝑖
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑋 𝑖

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ





Where : 𝑋 𝑖

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 are the 3D points reconstructed by the algorithm. 𝑋 𝑖
𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ are the

corresponding ground truth 3D points.
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3. AI TECHNIQUES FOR CAMERA CALIBRATION

3.1 Convolutional Neural Networks (CNNs)

With notable gains in speed, accuracy, and versatility over conventional techniques, Convolutional
Neural Networks (CNNs) have become a potent instrument in the field of camera calibration. These
networks can learn image features and use this information to accurately estimate intrinsic and
extrinsic camera parameters [16]. They are particularly well-suited for this task because they can
automatically learn relevant features from input images, reducing the need for manual feature engi-
neering.

3.2 CTRL-C Algorithm

The CTRL-C algorithm [17] is a state-of-the-art calibration algorithm that combines deep learning
techniques with geometric understanding to achieve robust and accurate camera calibration from a
single image, outperforming previous methods in challenging real-world scenarios.

3.3 DeepCalib Algorithm

DeepCalib [19] is an algorithm for automatic intrinsic calibration of wide field-of-view cameras us-
ing deep learning. The algorithm demonstrates how deep learning can be applied to the challenging
task of intrinsic calibration for wide-angle cameras. Learning from a large dataset of synthetically
distorted images can generalize to real-world wide-angle cameras without requiring specific calibra-
tion patterns or multiple views. This makes it particularly useful for applications where traditional
calibration methods are impractical or time-consuming.

3.4 GeoCalib

GeoCalib [20] is a new approach to single-image camera calibration that combines deep learning
with traditional geometric optimization. Enhancing the ability to estimate camera parameters from
a single image, such as focal length and gravity direction, is the aim. It is valuable for 3D mapping,
visual localization, and augmented reality applications. Whether based purely on geometry or deep
learning, they have limitations: geometry-based methods are accurate but struggle with scenes
lacking clear lines or vanishing points. In contrast, deep learning approaches are more robust but
often lack accuracy and generalizability.
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4. EXPERIMENTS AND RESULTS

4.1 Experimental System Installation

For our experiment, the ISPRS Vaihingen dataset, as shown FIGURE 3, was selected, and evaluate
the effectiveness of camera calibration using AI by comparing and analyzing its results against those
obtained from Tsai’s two-stage method, which is currently the most widely adopted approach for
explicit camera calibration.

Figure 3: The ISPRS Vaihingen dataset

The performance of different camera calibration techniques is assessed in this research by comparing
the average inaccuracy between the calibrated image coordinates and the corresponding real-world
coordinates. The metrics we use for this comparison are the Chamfer Distance, Hausdorff Distance,
Euclidean Distance, and Mean Reprojection Error.

4.2 AI-Based Camera Calibration

4.2.1 GeoCalib

GeoCalib is an AI-driven calibration approach that combines deep learning with geometric opti-
mization to estimate intrinsic camera parameters effectively. This method leverages its ability to
process single images and outputs parameters tailored for accurate 3D mapping and visual localiza-
tion applications. The results of the GeoCalib calibration process are as follows in FIGURE 4, and
the camera parameter in TABLE 1.
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Figure 4: The Output of the GeoCalib Calibration Method

Table 1: The Camera Parameter from AI-Based Calibration Method

Models Intrinsic

fx fy Cx Cy dist coef.

Geocalib 2851.097 3816.815 959.5 1284.5 [1, 0, 0, 0, 0]
DeepCalib 2438.863 3264.95 959.5 1284.5 [0.2, 0, 0, 0, 0]
CTRL-C 1358.736 1818.964 218.1047 2517.546 [0, 0, 0, 0, 0]
OpenCV 2952.650 2680.027 2377.6412 2486.843 [0.1, -0.01, 0.07, 0.07, 0]

4.2.2 CTRL-C

CTRL-C integrates deep learning with geometric constraints, achieving exceptional precision in
camera parameter estimation. Unlike traditional methods, CTRL-C can perform robust calibration
using a single image, making it highly suitable for dynamic aerial environments. The results of the
CTRL-C calibration process are as follows in FIGURE 5 and the camera parameter in TABLE 1.

4.2.3 DeepCalib

DeepCalib is an AI-driven calibration method designed for intrinsic calibration of wide field-of-
view cameras. By utilizing deep learning, it eliminates the dependency on traditional calibration
patterns and adapts effectively to complex real-world scenarios. This approach makes DeepCalib
particularly advantageous for aerial imaging systems operating in dynamic environments. The
results of the DeepCalib calibration process are as follows in FIGURE 6 and the camera parameter
in TABLE 1.
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Figure 5: The Output of the GeoCalib Calibration Method

4.3 3D Reconstruction Accuracy Evaluation

The flowchart as shown in FIGURE 7, illustrates a process for evaluating 3D reconstruction ac-
curacy using orthophoto imagery and Digital Surface Model (DSM) data. It begins with loading
orthophoto images and DSM files, which serve as the input data for subsequent steps. The DSMdata
is then normalized for visualization, preparing it for further processing. Pixels from the orthophoto
are converted into corresponding 3D world coordinates using the DSM data and transformation
parameters. These 3D world coordinates are subsequently projected onto a 2D image plane using
camera calibration parameters to simulate how the 3D points would appear in the image shown in
FIGURE 8-10. Using the projected 2D image points, 3D world points are reconstructed based on
depth values and the given camera parameters. Reconstruction errors, including the mean error, are
calculated by comparing the original and rebuilt 3D points in order to measure the reconstruction’s
accuracy. Finally, the process visualizes the original and reconstructed 3D world points using a
3D scatter plot for a clear comparison shown in FIGURE 11. This visual representation aids in
assessing how closely the reconstructed points match the ground truth, providing a comprehensive
evaluation of the 3D reconstruction process.

5. CONCLUSION

This study demonstrates the transformative potential of AI-based camera calibration methods in
addressing the limitations of traditional techniques for aerial imaging applications. By leveraging
advanced algorithms such as GeoCalib, CTRL-C, and DeepCalib. The experimental results, using
the ISPRS Vaihingen dataset, revealed that CTRL-C delivered the most precise calibration. How-
ever, while AI-based calibration methods demonstrated superior performance in our experiments,
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Figure 6: The Output of the DeepCalib Calibration Method

Figure 7: The Flowchart for 3D Reconstruction Accuracy Evaluation
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Figure 8: The Projected point from Camera Parameter Calibration using GeoCalib

Table 2: Comparison of 3D Reconstruction Accuracy Across Methods

Point No. 3D World Points Reconstruction Error by Method

x y z Conventional GeoCalib DeepCalib CTRL-C

1 20.8931 -35.3078 275.0902 0.6893 0.9125 0.1825 7.86e-06
2 22.2318 -35.2495 274.6358 0.6881 0.9596 0.1919 9.54e-06
3 22.6658 -37.3656 279.9971 0.7557 1.0647 0.2129 2.36e-05
4 23.9325 -36.0450 278.4471 0.7117 1.0447 0.2089 1.16e-05
5 22.2917 -38.1258 275.3761 0.7984 1.1359 0.2272 2.36e-05
6 20.9197 -35.9311 275.4399 0.7125 0.9473 0.1895 1.91e-06
7 17.9687 -35.6786 272.4594 0.7199 0.8587 0.1718 4.26e-06
8 18.5804 -39.0061 281.7344 0.8349 1.0161 0.2032 4.26e-06
9 20.4926 -40.0544 269.8176 0.9044 1.2510 0.2502 2.73e-05
10 21.5907 -38.2605 266.7164 0.8292 1.1919 0.2384 2.73e-05
11 20.7966 -37.9104 273.8202 0.7972 1.0783 0.2157 2.29e-05
12 18.4388 -41.5047 279.5869 0.9573 1.1984 0.2397 2.68e-05

Mean Reconstruction Error 0.7832 1.0549 0.2110 1.59e-05
Maximum Error 0.9573 1.2510 0.2502 2.73e-05

Standard Deviation 0.1201 0.0242 8.76e-06

several limitations and considerations should be acknowledged. For instance, AI-based methods,
particularly deep learning approaches like CTRL-C and DeepCalib, require significant computa-
tional resources for training and inference. Additionally, their effectiveness is highly dependent on
the quality and diversity of training datasets. When applied to scenes significantly different from
their training data, these methods may exhibit degraded performance.
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Figure 9: The Projected point from Camera Parameter Calibration using DeepCalib

Figure 10: The Projected point from Camera Parameter Calibration using CTRL-C

Table 3: The 3D World Coordinate Reconstruction Performance Matrics

Mean Reconstruction
Error

Hausdorff
Distance

Chamfer
Distance RMSE

GeoCalib 1.0549 1.2510 2.0521 1.0615
DeepCalib [18] 0.2110 0.2502 0.4220 0.2123
CTRL-C [16] 1.59e-05 2.7309e-05 3.1817e-05 1.865e-05
Conventional 0.7832 0.9573 1.5284 0.7876
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(a) GeoCalib (b) DeepCalib

(c) CTRL-C (d) Conventional approach

Figure 11: The 3D plot for Reconstruction Errors for each point (a) GeoCalib (b) DeepCalib (c)
CTRL-C and conventional approach

Traditional calibration methods offer clear geometric interpretations of their parameters, facilitating
troubleshooting and manual adjustment. In contrast, AI-based methods may operate as “black
boxes,” making it difficult to diagnose issues or make targeted refinements to the calibration. There-
fore, future research should explore hybrid approaches that combine the precision of AI-based
methods with the interpretability and theoretical foundations of conventional techniques.
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