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Abstract
Focal cortical dysplasia (FCD) is one of the most common lesions responsible for drug-
resistant epilepsy, and is frequently missed by visual inspection. FCD may be amenable to
surgical resection to achieve seizure freedom. By improving lesion detection the surgical
outcome of these patients can be improved. Image processing techniques are a potential tool
to improve the detection of FCD prior to epilepsy surgery. In this research, we propose and
compare the performance of two type of models, Fully Convolutional Network (FCN) and a
multi-sequence FCN to classify and segment FCD in children with drug-resistant epilepsy.
This experiment utilized the volumetric T1-weighted, T2 weighted and FLAIR sequences.
The whole slice FCN models were applied to each sequence separately while the multi-
sequence model leverages combined information of all three sequences simultaneously. A
leave-one-subject-out technique was utilized to train and evaluate the models. We evaluated
subjectwise sensitivity and specificity, which corresponds to the ability of the model to
classify those with or without a lesion. We also evaluated lesional sensitivity and specificity,
which expresses the ability of the model to segment the lesion and the dice coefficient to
evaluate lesion coverage. Our data consisted of 80 FCD subjects (56 MR-positive and 24
MR-negative) and 15 healthy controls. Performance of whole slice FCN was best on T1-
weighted, followed by T2-weighted and lowest with FLAIR sequences. Multi-sequence
model performed better than the T1 whole slice FCN, and detected 98% vs. 93% respectively
MR-positive cases, and 92% vs. 88% respectively MR-negative cases, as well as achieved
lesion coverage of 74% vs. 67% respectively forMR-positive cases and 68% vs. 64% forMR
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negative cases. The dice coefficient for the multi-sequence model was 57% and for whole
slice FCN was 56% for MR-positive cases. In the test cohort of six new cases, the multi-
sequencemodel detected 4 out of 6 cases where the predicted lesion had 56% overlap with the
actual lesion. This work showed that deep learning methods in particular fully convolutional
networks are a promising tool for classification and segmentation of FCD. Additional work
is required to further improve lesion classification and segmentation, particularly for small
lesions, as well as to train and test optimal algorithms on a larger multi-center dataset.

Keywords: Epilepsy, Focal Cortical Dysplasia (FCD), Convolutional Neural Network (CNN),
Segmentation, Multi-sequence MRI

1. INTRODUCTION

Epilepsy is one of the most common neurological disorders in children with an incidence rate
of 4 to 9 in 1000 per year [1,2]. Drug-resistant epilepsy is a serious neurological disorder,
which can lead to detrimental effects on children’s cognition and psychosocial development
[3,4], and 5 to 9 times higher mortality rate than the general population [5-7]. Focal cortical
dysplasia (FCD), a brain malformation, is one of the most common lesions responsible for
drug-resistant epilepsy in children. The MRI features of FCD are frequently subtle and may
be overlooked or may not be detected by visual assessment. A lesion is seen on MRI in 30%
to 85% of patients with drug resistant epilepsy [8]. In other words, 15% to 70% of patients
do not have an abnormality reported on MRI. The patients who do not have an abnormality
reported on MRI could have a subtle lesion that is not detected by the radiologist. Patients
in whom a lesion is not detected on pre-surgical evaluation with MRI are considered to have
MR-negative focal epilepsy (or non-lesional epilepsy). Up to 72% of patients with MR-
negative epilepsy have FCD reported on histopathology [9-13].

Children with focal drug-resistant epilepsy may be treated with epilepsy surgery to remove
the lesion responsible for epilepsy. Patients who have MR-negative epilepsy have poorer
seizure-free epilepsy surgery outcome [14], and may have increased use of invasive elec-
troencephalography (EEG) monitoring for surgical planning. Therefore, it is critical to im-
prove our ability to detect FCD, as discovering a previously undetected lesion can increase the
success of surgery in curing focal drug-resistant epilepsy, and change pre-surgical planning
of epilepsy surgery. Visual assessment of MRI is subjective and highly dependent on the
expertise of the observer. Thus there is a need for a more advanced and objective tool for
analyzing the MRI data to improve detection of FCD. Machine learning algorithms offer
the potential to detect subtle structural changes, which may not be identifiable on visual
inspection of MRI.

Recently, artificial intelligence (AI) techniques based on Deep Neural Networks (DNN) have
emerged and been applied to many fields, such as computer vision and natural language
processing [15,16]. Deep neural network methods also have been applied in various fields
of medicine, including identifying lesions on medical imaging [17]. In general, DNN works
on vector shaped inputs. However, a particular type of DNN has been proposed where it
can take images as input and learn kernels or filters to extract features out of the image,
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then performs classification or regression to get the desired output. These deep networks are
called “Convolutional Neural Networks (CNN)” [18].

In this study, we applied two types of deep learning-based methods, Fully Convolutional
Network (FCN) and a multi-sequence FCN for the task of FCD detection and localization.
FCN is a special type of Convolutional Neural Network (CNN) that takes an input image and
produces the same size output. It is used in the image-to-image translation problems such
as segmentation. The whole slice FCN models were applied to the 2D MRI slices of T1,
T2 and FLAIR sequences separately while the multi-sequence model combined information
from MRI slices of T1, T2 and FLAIR weighted sequences simultaneously.

2. LITERATURE REVIEW

Previous studies have utilized a variety of image processing algorithms, including voxel-
based morphometric analysis [25,26] or surface-based algorithms to detect FCD [23,24,27-
29]. These algorithms extracts various features of FCD such as cortical thickness, gray-white
junction, sulcal depth, and cortical fold, and subsequently integrating these features within a
classicalmachine learning framework for the classification of FCD. These approaches require
domain experts to extract the required features. It is time-intensive to post-process the data,
and errors in processing are propagated throughout the algorithm. We have chosen state-of-
the-art deep learning approach using CNN to overcome some of the limitations of classical
computer aided tools to identify FCD, which does not require feature extraction and could
learn optimal features automatically without human intervention.

The performance of recent classical works is summarized in TABLE 1. The first column is
the work and the year. The second column shows their extracted features out of the MRIs
along with the classification algorithm they have used for FCD detection. The last column
illustrates their results in terms of subjectwise specificity and sensitivity.

More recently, a few studies have utilized deep learning approaches to detect FCD [30-34].
Gill et al. [34], trained two networks on patches extracted from MRI in patients with FCD.
The algorithm was trained on volumetric T1 and FLAIR MRI data from a single site and
evaluated on independent data from seven sites. Two networks were developed, consisting
of three stacks of convolution and max-pooling layers with 48, 96 and 2 feature channels
and 3 × 3 × 3 kernels. The first network is trained to recognize lesional voxels and the
second network is trained to reduce the number of misclassified voxels. The authors found
that the classifier showed excellent sensitivity (91%, 61/67 lesions detected) and specificity
(95%, no findings in 36/38 healthy controls). David et al. [33], have combined conditional
generative adversarial networks (cGAN) with 3D CNN and showed that the addition of
cGAN to CNN can improve the sensitivity of subject-wise classification from 81% to 93%,
and the specificity from 71% to 96%. Wang et al. [31], have used patch-wise CNN with five
convolutional layers, a max pooling layer and two fully connected layers to evaluate FCD,
and found that this technique successfully classified 9 out of 10 FCD cases. These studies
have used CNN to classify subjects as lesional or non-lesional but have not evaluated the
performance of CNN for localizing the lesion. Feng et al. [30], have used a six-layer CNN,
consisting of two convolutional layers, two pooling layers and two fully connected layers,
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Table 1: Summary of some the classical approaches to problem of FCD detection and localization. The first column is
the work and the year. The second column shows their features along with the classification algorithm. The last column
illustrates their results in terms of subjectwise specificity and sensitivity.

Author and Year Method Results

Antel et al. (2003) [19]

This
Cortical thickening, blurring of GW junction,
gray level hyperintensity and textural features.

Bayesian classifier and Fishers discriminant ratio.

This
Specificity of 83%
Sensitivity 100%

Yang et al. (2011) [20]

This
Statistical features on cortical thickness.

Naïve Bayes classifier.

This
Specificity of 62%
Sensitivity 81%

Strumia et al. (2013) [21]

This
Textural features such as cortical thickness,

and spatial tissue maps.
Naïve Bayes classifier.

This
Specificity of 95%
Sensitivity 100%

Ahmed et al. (2014) [22]

This
Patches extracted from coarse
to fine resolutions of the image.

Random forest.

This
MR Pos Specificity of 90%
MR Neg Specificity 80%

Adler et al. (2017) [23]

This
Morphometric and textural features.

Neural network.
This

Specificity of 73%

Kulaseharan et al (2019) [24]

This
Morphometric and textural features.

Two-step Bayesian classifier.

This
Specificity of 94%
Sensitivity 100%

in conjunction with activation maximization and convolutional localization to classify and
localize FCDon FLAIR sequence in 12MRI-negative epilepsy patients. The authors reported
subject-wise recall or detection rate of 83% to 100%, and dice coefficient of 53% to 71% for
localizing FCD.

Bijay et al. [32], have also applied CNN to the FLAIR sequence in 43 subjects with FCD and
found subject-wise recall of 83%, and dice coefficient of 52% for localizing FCD. Thomas
et al. [35], proposed a multi-resolution attention based model which is based on U-net
architecture [36]. They have used ResPaths [37], and Attention Gates [38], to overcome
the segmentation gap between the decoder and encoder parts of U-net. They used 26 FCD
subjects where they yielded 92% subject-wise sensitivity with lesion coverage of 60%. Pre-
vious publications based on CNN to detect FCD have been applied to adults or mixed adults
and pediatric population.

The results for the recent deep learning-based works are presented in TABLE 2. These
numbers are on different datasets used by each team, and to the best of our knowledge, they
used MR-positive cases only except for Feng et al. [30], where they have considered both
MR-positive and MR-negative.

Most of the proposed deep learning-based methods for FCD detection are using one sequence
(such as FLAIR or T1) at a time. In this paper, we propose integrating information from dif-
ferent sequences simultaneously. The use of several sequences has been explored previously
by Gill et al. [34]. However, they used each sequence consecutively, where a network is
trained on one sequence and then it is trained on another sequence and their outputs are
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Table 2: FCD detection and localization performance

MR-positive Subjects
Subjectwise Sens. Subjectwise Spec. Lesional Sens. Lesional Spec. Dice

David et al.[33] 93 96 - - -
Gill et al. [34] 91 95 - - -
Wang et al. [31] 90 85 - - 78
Feng et al. [30] 100 - 59 99 71
Bijay et al. [32] 83 - 40 - 52
Thomas et al. [35] 92 - 60 - 62

MR-negative Subjects
Subjectwise Sens. Subjectwise Spec. Lesional Sens. Lesional Spec. Dice

Feng et al. [30] 83 - 51 99 53

combined at the end. Here we plan to incorporate information from various sequences at the
training phase simultaneously, using a multi-sequence model. We have also explored the use
of different sequences independently through a two dimensional FCNs.

3. MATERIALS AND METHODS

3.1 Data

Our dataset consisted of T1-weighted, T2 weighted and FLAIR sequences of paediatric
subjects. The MRI data was acquired from the Hospital for Sick Children. This study has the
approval of Research Ethics Board. the dataset included 80 subjects with suspected FCD on
MRI (56 MR-positive and 24 MR-negative), and 15 healthy controls. The mean age of the
MR-positive FCD patients was 11.15 years with standard deviation (SD) 3.22 years; there are
36 males and 20 females. For MR-negative cases, we had 14 male and 10 female subjects
with mean age of 11.71 (SD=30.78) years. For healthy controls, the mean age was 13.87
(SD=2.94) years, including 6 males and 9 females. The baseline characteristics of the FCD
subject’s MRI data are presented in TABLE 3. Patients and controls underwent MRI on
Philips 3 T scanner (Philips Medical System, Best, Netherlands) using 8-channel head coil
with the same imaging parameters. Patients underwent high-resolution epilepsy protocol,
which included volumetric T1-weighted (TR/TE = 4.9/2.3 msec, ST = 0.9 mm, FOV = 22
cm, matrix = 220 × 220), axial and coronal FLAIR (TR/TE = 10,000/140 msec, ST = 3 mm,
FOV = 22 cm, matrix = 316 × 290) and axial and coronal T2-weighted (TR/TE = 4200/80
msec, ST = 3 mm, FOV = 22 cm, matrix = 400 × 272). All patients underwent epilepsy
surgery resection and had post operative Computed Tomography (CT) or volumetric T1-
weighted MRI on the same scanner. All controls underwent volumetric T1- weighted, axial
T2- weighted, and axial FLAIR imaging, using the same parameters as for the patients.

426



https://www.oajaiml.com/ | July-2022 Aminpour A, et al.

Table 3: Characteristics of MRI data, lesion or surgery location and surgical outcome, SD is the standard deviation.

This is a text MR-positive MR-negative This is a text
Mean age (SD) in years 11.15 (3.22) 11.71 (3.78)

Sex # (%)
Male 36 (64.29 %) 14 (58.33 %)
Female 20 (35.71 %) 10 (41.67 %)

Mean age at seizure onset (SD) in years 5.57 (3.95) 6.02 (4.03)
Seizure frequency, # (%)

Daily 27 (48.21 %) 14 (58.33 %)
Weekly 22 (39.29 %) 10 (41.67 %)
Monthly 6 (10.71 %) 0 (0 %)
3-Monthly 1 (1.79 %) 0 (0 %)

Mean number of anti-seizure medications (SD) 2.04 (0.85) 2.33 (0.64 )
Location of lesion or surgery,# (%)

Frontal 23 (41.07 %) 10 (41.33 %)
Temporal 19 (33.93 %) 7 (29.17 %)
Parietal 10 (17.86 %) 5 (20.83 %)
Others 4 (7.14 %) 2 (8.33 %)

ILAE surgical outcome, # (%)
I 41 (73.21 %) 17 (70.83 %)
II 3 (5.36 %) 4 (16.67 %)
III 4 (7.14 %) 1 (4.17 %)
IV 6 (10.71 %) 1 (4.17 %)
V 2 (3.57 %) 1 (4.17 %)

Histology, # (%)
FCD I 4 (7.14 %) 7 (29.17 %)
FCD II 32 (57.14 %) 3 (12.5 %)

Oligodendrogliosis 10 (17.86 %) 2 (8.33 %)
Subpial gliosis 9 (16.07 %) 9 (37.5 %)

No abnormality/ others 1 (1.79 %) 3 (12.5 %)
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Original MRI slice
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Resized MRI sliced

Manual segmentation

BET algorithm
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Figure 1: Data pre-processing flow chart.

3.2 Pre-processing

We performed brain extraction on each subject to remove the non-brain tissue using BET
(Brain Extraction Tool) algorithm proposed by Smith et. al. in 2002 [39], which is embedded
in FSL 1 software package.

Next, each MRI voxel was labelled with three classes, including the background class label.
For healthy controls, we created a binary mask where all the voxels with intensity are labelled
as 1 and the rest as zero. In FCD subjects, the lesion was manually segmented by a paedi-
atric neuroradiologist to provide the ground truth segmentation masks. To do the manual
segmentation on the MRI volume, we utilized “segmentation editor” plug-in within ImageJ
software package 2 [40]. The acquired segmentation masks from the neuroradiologist were
used to create a 3-dimensional array the same size as each volume where we assigned label
2 to the voxels within the segmented part and 1 to the rest of valued voxels and zero to the
background area.

We then resized all the slices to a standard size since deep learning frameworks are sensitive to
the input size and are not able to process slices of different sizes during training. We could not
stretch or compress the actual brain images due to the sensitivity of the data. Therefore, based
on the largest brain size in all slices of all subjects, we resized the slices by adding or removing
background voxels. The slice size we chose was 320 × 400, as it was the largest foreground
(brain tissue) segment across all the slices in all MRI sequences. The pre-processing steps
are illustrated in FIGURE 1.

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
2 https://imagej.nih.gov/ij/
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Figure 2: Two-dimensional whole-slice FCN architecture, blue rectangles are 3× 3 convolutional layers, and green ones
are pooling layers, purple rectangles are up-sampling layers. The black arrows represents the skip connections from
pooling layers to the up-sampling layers.

3.3 Network Architecture

3.3.1 Whole-slice FCN

We built upon previous work based on whole-slice CNN for the current work using whole-
slice FCN [41]. The feature extraction part of our proposed network is the same as the whole-
slice network architecture where we have four blocks of two convolutions and pooling layers.
Afterwards, the fully connected layers are replaced by three up-sampling blocks which have
one convolutional layer and one up-sampling layer. Up-sampling layers [15], are used in
FCNs to increase the spatial dimension of the activation maps. An up-sampling layer is used
to produce dense pixel outputs from coarse inputs. Similar to a pooling layer, up-sampling
layers do not have learnable parameters and use some interpolation techniques (e.g. nearest-
neighbor or bilinear interpolation) to account for missing data. The first two up-sampling
layers are “2x 𝑈𝑝 − 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔”, where they increase inputs spatial size to twice their initial
size. Both up-sampling layers are followed by one convolution layer with kernel size of 3×3.
The last up-sampling layer is a “4x𝑈𝑝−𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔” layer Followed by 1×1 convolution layer.
The network’s architecture scheme is presented in FIGURE 2. ReLu activation function is
following each layer in the architecture. We have also utilized skip layers [15], to get a
more refined up-sampled output by adding the respective down-sampled feature map from
the encoder part. Skip connection will improve the up-sampled output at each step which
results in a more refined and detailed lesion segmentation. In addition, batch normalization
and dropout were used in order to improve training and avoid over fitting.

3.3.2 Multi-sequence FCN

The proposed model consisted of two networks working together to extract features from all
sequences and combine them and predict a segmentation map. The architecture is illustrated
in FIGURE 3. The feature extraction network was trained on different sequences with subject
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Pool 1 Pool 2 Pool 3 Pool 4

2x Upsampling 4x Upsampling

Subject Level 
Ground Truth

Conv

Lesional

Healthy

Pixel Level 
Ground Truth

T1

T2

FLAIR

3 Feature Maps

Figure 3: multi-sequence FCN architecture, blue rectangles are 3× 3 convolutional layers, light blue rectangles are 1× 1
convolutional layers, orange rectangles are 2 × 2 convolutional layers moving with stride of 2, and purple rectangles are
representing upsampling layers.

level labels, then last convolutional layer’s output was used as an input for the second net-
work. The second network was an FCN that takes three feature maps of T1, T2 and FLAIR
sequences, concatenates them and upsamples the input to the original size, in order to get
the segmentation map. The feature extraction CNN’s architecture is same as the whole-slice
CNN [41], including four blocks of three convolution layers. In each block. The first two
convolution were 3 × 3 filters with stride 1 and zero-padding and the last convolution layer
had 2 × 2 filter sizes with stride 2 for downsampling. The blocks were followed by a 1 × 1
convolutional layer to decrease the feature maps depth to one. Then three fully connected
layers to classify the extracted features into healthy or lesional classes. All layers except the
last fully connected layer were using ReLu activation function and the last fully connected
layer activation was the Sigmoid function. Dropout was utilized in the fully connected layers
to prevent over-fitting, and batch normalization were used in convolutional layers. We used
binary cross-entropy function as loss and optimized the model using SGD optimizer.

The upsampling FCN consisted of two convolutional layers followed by three blocks of
upsampling. The convelutional layers had 128 filters of size 3 × 3 with stride of 1 and zero-
padding. The first two blocks of upsampling were one 2x upsampling layer and one 3 × 3
convolutional layer. The last block consisted of one 4x upsampling layer followed by a 1× 1
convolutional layer. ReLU was used as activation for all layers except the last convolutional
layer which was using Sigmoid function instead. We applied batch normalization after the
3 × 3 convolutional layers.
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Table 4: Confusion Matrix

Actual
1-Positive 2-Negative

Prediction 1-Positive TP FP
2-Negative FN TN

3.4 Methods of Measuring Performance

To evaluate the performance of our model, we computed the number of subjects who were
correctly identified by the model as well as the number of mis-labelled subjects (TABLE 4)
and then evaluated subjectwise sensitivity and subjectwise specificity. Then, we performed
the same processes at pixel level to evaluate the segmentation output and subsequently as-
sessed the lesional sensitivity and lesional specificity. Subjectwise sensitivity is the number
of all FCD subjects correctly classified (true positive) divided by the total number of FCD
subjects. Subjectwise specificity is the count of all control subjects in which no lesion
is identified (true negative) divided by the total number of control subjects. Here are the
definitions of sensitivity and specificity,

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
.

Lesional sensitivity is measured as the sum of all abnormal tissue pixels labelled lesional by
the model divided by the total number pixels labelled as lesional by a neuroradiologist in the
ground truth masks. Lesional specificity is the sum of healthy tissue pixels in FCD subjects
classified as normal divided by the total number of non-lesional pixels for FCD subjects.
Lesional sensitivity and lesional specificity will only be calculated for subjects which the
model labelled as FCD individually and the final results were averaged over all subjects.

We will also report the dice coefficient for the FCD subjects. Dice coefficient, is a statistical
tool which measures the similarity between two sets of data. This index has arguably been
the most commonly used method for evaluating segmentation algorithms. The index is
calculated using the following equation,

𝐷𝑖𝑐𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
.

4. RESULTS

As the number of subjects was not sufficient for a train-and-test set split, we applied a leave-
one-subject-out technique for training and evaluation of both models. In this case, all of the
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Figure 4: Subjectwise class label ratio cut-off ROC curves, horizontal axis shows (1-subjectwise specificity) and the
vertical axis indicates the subjectwise sensitivity. The green curve has the largest AUC which indicates best ratio cut-off
value.

subjects except for one, were used as training set and the remaining subject was used as the
test subject to evaluate the model.

After obtaining the predictions, to determine the subject’s label as either healthy control or
FCD, we divided the number of lesional predicted pixels over the healthy predicted pixels
and based on this ratio, labelled the subject as FCD or control. FIGURE 4 shows the Receiver
Operating Characteristic (ROC) curve for various ratio cut-off values. The ratio cut-off value
represents the threshold for defining the subjects as FCD or healthy controls. Subjects with
values above the ratio cut-off value were labeled as FCD and thoes with values below the
ratio cut-off values were labeled as controls. The threshold value of 1 percent has the largest
area under the curve (AUC). Hence we chose 1% as the cut-off value. Then, for each FCD
predicted subject we calculated the lesional sensitivity and lesional specificity.

TABLE 5 shows results for two dimensional FCN. We grouped the subjects based on MR-
positive and MR-negative cases in TABLE 5 along with all FCD subjects. The model was
trained and tested on T1, T2 and FLAIR separately. In case of T1-weighted, two dimensional
FCN classified all healthy control cases as healthy. For T1-weighted sequence, the FCN
detected 52 out of 56 MR-positive cases with lesion coverage of 67 percent (SD of 4) and
dice coefficient of 56 (SD of 14) while detecting 21 out of 24 MR-negative subjects with 64
percent (SD of 3) coverage and dice coefficient of 55 (SD of 10). For T2-weighted sequence,
two dimensional FCN model classified all healthy control cases as healthy, while for FLAIR
sequences, the model predicted 14 out of 15 as healthy. For T2 sequence, the model detected
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Table 5: Two dimensional FCN results for MR-positive and MR-negative subjects in percent (%). SD is the standard
deviation.

This is a T1-weighted This is a
MR-positive MR-negative All Subjects

Subject-wise Sensitivity 93 88 91
Subject-wise Specificity 100 100 100
Lesional Sensitivity (SD) 67 (4) 64 (3) 66 (4)
Lesional Specificity (SD) 98 (2) 97 (1) 98 (2)
Lesional Precision (SD) 51 (19) 49 (14) 50 (18)

Dice (SD) 56 (14) 55 (10) 56 (13)
T2-weighted
MR-positive MR-negative All Subjects

Subject-wise Sensitivity 88 75 84
Subject-wise Specificity 100 100 100
Lesional Sensitivity (SD) 65 (6) 57 (5) 63 (6)
Lesional Specificity (SD) 97 (2) 96 (1) 97 (2)
Lesional Precision (SD) 36 (14) 33 (9) 35 (13)

Dice (SD) 44 (13) 40 (9) 43 (13)
FLAIR

MR-positive MR-negative All Subjects
Subject-wise Sensitivity 84 67 79
Subject-wise Specificity 93 93 93
Lesional Sensitivity (SD) 61 (6) 55 (3) 60 (6)
Lesional Specificity (SD) 97 (1) 96 (1) 97 (1)
Lesional Precision (SD) 38 (15) 26 (13) 35 (15)

Dice (SD) 45 (13) 34 (12) 42 (14)
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Table 6: multi-sequence Segmentation FCN results for MR-positive and MR-negative subjects in percent (%). SD is the
standard deviation.

This is a MR-positive MR-negative All Subjects This is a
Subject-wise Sensitivity 98 92 96
Subject-wise Specificity 100 100 100
Lesional Sensitivity (SD) 74 (5) 68 (9) 72 (7)
Lesional Specificity (SD) 98 (1) 97 (2) 98 (1)
Lesional Precision (SD) 48 (15) 51 (12) 49 (14)

Dice (SD) 57 (12) 56 (8) 57 (11)

49 out of 56 MR-positive cases with lesion coverage of 65 percent (SD of 6) and 18 out of 24
MR-negative subjects with lesion coverage of 57 percent (SD of 5). For FLAIR sequence,
the model detected 47 out of 56 MR-positive cases with lesion coverage of 61 percent (SD
of 6) and 16 out of 24 MR-negative subjects with lesion coverage of 55 percent (SD of 3).

In TABLE 6, we grouped the subjects based on MR-positive and MR-negative cases along
with all subjects results. The multi-sequence FCN model correctly classified all healthy
control cases, and detected 55 out of 56 MR-positive cases and 22 out of 24 MR-negative
subjects. For MR-positive cases, we obtained 74 percent (SD of 5) lesion coverage and dice
coefficient of 57 (SD of 12) while for MR-negative subjects, the lesion coverage was 68
percent (SD of 9) and dice coefficient of 56 (SD of 8).

FIGURE 5 illustrates both models predictions, we have 4 subjects along with the pixel level
ground truth and the network’s output. There are subtle differences between multi-sequence
and two dimensional FCN however the multi-sequence model is covering the lesion better.
The case of multi-sequence prediction is an over-segmentation case where the FCD predicted
pixels outnumbers the ground truth FCD pixels by a small margin. The advantage of multi-
sequence model over the two-dimensional FCN is that we achieved a higher subject-wise
sensitivity which is the result of the combined information from all sequences simultaneously.
Both models segmented the lesion as best as possible while avoiding the healthy tissue.

TABLE 7 shows information related to the relative volume of the lesion for MR-positive and
MR-negative cases. Relative volume is computed by dividing number of lesional voxels over
healthy voxels which here is presented in percentage. The average relative lesion volume for
MR-positive cases was 2.08 percent with a standard deviation of 1.9 percent and for MR-
negative cases, the average relative lesion size was 1.8 percent (SD of 0.83). Both FCN
models had difficulty detecting smaller and subtle lesions, for example, the average relative
lesion size for missed cases by the multi-sequence model was 1.01 percent (3 cases) and the
average relative lesion size for the seven missed cases by the 2D segmentation FCNwas 1.02
percent.

We tested the multi-sequence model on six new cases to ensure the model did not overfit.
Once we obtained the predictions for the location of the lesion, the subjects labels was
assigned using the cut-off ratio. Subsequently, we calculated the lesional performance of
the model on the new cases. TABLE 8 shows the characteristic of the new patients.
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Image Post-Surgery Ground Truth 2D FCN Prediction
Multi-sequence 

Prediction

(a)MR-positive subjects

Image Post-Surgery Ground Truth 2D FCN Prediction
Multi-sequence 

Prediction

(b)MR-negative subjects

Figure 5: Models output visualization, each row’s of images belong to one subject. Top are MR-positive cases and the
bottom are MR-negative. Each row, from left to right, columns represent the original slice, post-surgery volumes, pixel-
wise ground-truth, 2D FCN’s prediction, multi-sequence network’s prediction.
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Table 7: Lesions relative volumes (mean and Standard deviation(SD)).

MR-positive MR-negative
Mean 2.08% 1.80%

Standard deviation 1.91% 0.83%
Minimum 0.44% 1.06%
Maximum 7.80% 5.16%

Table 8: Baseline characteristics of the MRI data for the new patients.

Subject Age Sex
Age at

seizure onset Seizure freq.
Number of anti-

seizure medications Location of the lesion Histology
107 8.94 Male 7 Weekly 2 R posterior temporal Laser therapy (N/A)
108 8.05 Male 4 Daily 3 R parietal FCD IIB
109 15.10 Male 2 Monthly 1 L mesial parietal Laser therapy (N/A)
110 14.52 Male 5 Daily 3 L inferior frontal FCD IIB
112 16.62 Female 9 Weekly 2 R basal frontal Laser therapy (N/A)
113 11.45 Male 3 Daily 3 R inferior frontal FCD IIB

TABLE 9, shows the performance of the multi-sequence and the 2D segmentation FCN on
the new cases. The multi-sequence model detected four out of six cases where the predicted
lesion had 56 percent overlap with the actual lesion.

Similar to the previous experiments the lesion in the missed cases were very subtle or smaller
in size and the average relative lesion size for the two missed cases were 0.72 percent (SD of
0.02) and the average relative lesion size for the correctly classified cases were 2.17 percent
(SD of 1.6). Relative lesion size is computed by dividing number of lesional voxels over
healthy voxels which here is presented in percentage.

5. DISCUSSION AND CONCLUSION

In this study, we have applied whole-slice and a multi-sequence FCN to volumetric T1, T2,
FLAIR imaging to classify and localize FCD in children with drug-resistant epilepsy. We
have found that the sensitivity of FCN to classify a lesion was dependent on the model used,
with multi-sequence FCN demonstrating higher subject-wise sensitivity than the whole-slice
FCN to classify a lesion. In the whole-slice FCN model, a whole slice approach was used
as input for the model, which may have reduced the subject-wise sensitivity compared to
multi-sequence model. The lesional sensitivity was also dependent on the model used, with
multi-sequence FCN demonstrating higher lesional sensitivity than the whole slice FCN to
segment a lesion, with dice coefficient of 57% as compared to 56%, 43% and 42%. Themulti-

Table 9: multi-sequence FCN results for new cases in percent (%). SD is the standard deviation.

Subjectwise Sens. Lesional Sens. (SD) Lesional Spec. (SD) Dice (SD)
Muti-sequence FCN 67 56 (9) 99 (0) 58 (6)
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sequence model combined information from three distinct sequences which could account
for its higher lesional sensitivity. Our models, irrespective of multi-sequence or whole-slice
FCN, achieved higher subject-wise sensitivity and dice coefficient compared to the study by
Feng et al. [30], and Bijay et al. [32].

This study was conducted using MRI dataset derived from a single institution and from
a single scanner, and therefore the performance of the network may differ if there were
heterogeneity in MRI datasets from different institutions. Future study that focus on training
using heterogeneous datasets from multiple scanners, and then subsequently validating the
models to multi-institutional datasets, will improve the generalizability of the models for
detecting subtle lesion such as FCD in children. Due to the relatively small dataset, we have
not split the data into training and testing datasets, but instead utilize a leave-one-out method
of training and testing. Other study using CNN has also utilized a leave-one-out technique
for training and testing dataset [31].

We have shown that multi-sequence and whole-slice FCN could identify and localize a lesion
in children with drug-resistant epilepsy. The subject-wise sensitivity and lesional sensitivity
were higher with multi-sequence FCN than whole-slice FCN. This work showed that deep
learning utilizing FCN is promising for identifying and localizing FCD in children with drug-
resistant epilepsy [42]. Additional work is needed to further improve lesion identification and
localization, particularly for small lesion, as well as to train and test the optimal algorithm
on a larger multi-center dataset.

As part of future work, larger datasets are crucial in data-driven models, and also moving to
a patch-wise multi-sequence model, which is a more robust way of building representations
compared to the current model. Another bottleneck in the multi-sequence model is the
labeling of the T2 and FLAIR sequences as they are sharing the same label as T1 even though
T2 and FLAIR sequences are 2D MRI images where T1 is a 3D MRI sequence. Improving
the labeling and data pre-processing will also improve the representation and could result in
a more accurate detection and localization.
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