Advances in Artificial Intelligence and Machine Learning; Research 3 (4) 1526-1556 Received 23-05-2023 ; Accepted 15-10-2023 ; Published 22-10-2023

A Journey Towards the Most Efficient State Database
For Hyperledger Fabric

Ivan Laishevskiy ivan.laishevskii@scientificideas.org
Idea Blockchain Research Lab
Moscow, Russia

Artem Barger bartem@scientificideas.org
Idea Blockchain Research Lab
Haifa, Israel

Vladimir Gorgadze gorgadze.vv@mipt.ru
Moscow Institute of Physics and Technology
Moscow, Russia

Corresponding Author: Vladimir Gorgadze

Copyright © 2023 Ivan Laishevskiy, et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Abstract

Hyperledger Fabric is a leading permissioned blockchain platform known for its flexibility
and customization. A crucial yet often overlooked component is its state database, which
records the current state of blockchain applications. While the platform currently supports
LevelDB and CouchDB, this study argues that there is an unmet need for exploring alterna-
tive databases to enhance performance and scalability. We evaluate RocksDB, Boltdb, and
BadgerDB under various workloads, focusing on memory and CPU utilization. Our findings
reveal that each alternative outperforms the existing options: RocksDB excels in throughput
and latency, Boltdb minimizes CPU usage, and BadgerDB is most memory-efficient. This
research not only provides a roadmap for integrating new state databases into Hyperledger
Fabric but also offers critical insights for those aiming to optimize enterprise blockchain
systems. The study underscores the significant gains in scalability and performance that can
be achieved by reconsidering the choice of state database.

Keywords: Blockchain, Key value store, Database, LevelDB, RocksDB, BadgerDB, BoltDB,
Hyperledger fabric, Hyperledger caliper, State database.

1. INTRODUCTION

In recent years, the popularity of blockchains as a means of payment and asset transfer has increased
significantly. The public perception of blockchain technology has evolved from initial unawareness
and suspicion to current optimism about the potential for decentralized asset management [1]. The
technology is also expanding on its use cases, facilitating intermediation among mutually untrusted

1526

Citation: Ivan Laishevskiy, et al. A journey towards the most efficient state database for Hyperledger Fabric Advances in Artificial
Intelligence and Machine Learning. 2023;3(4):88.

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

entities. A blockchain is a shared and distributed ledger of transactions that all network participants
maintain multiple copies of, providing secure and transparent record-keeping. Transactions are
grouped into hash-chained blocks, with each block using a cryptographic hash function pointing to
its immediate predecessor, ensuring the immutability of records.

Blockchain technology has been gaining momentum in recent years, with its potential to disrupt
various industries and transform the way businesses operate. As such, there has been a surge in the
adoption of blockchain-based solutions in various sectors, including finance, healthcare, and supply
chain management, among others. This trend is supported by the increasing number of studies
and research works that explore the potential of blockchain technology, as cited by [2—4]. Among
the many blockchain frameworks available today, Hyperledger Fabric has emerged as a popular
choice for businesses looking to implement blockchain-based solutions. This is due to its flexible
architecture, which allows for the creation of customized solutions tailored to meet specific business
needs, as well as its robust security features and scalability. Additionally, Hyperledger Fabric has a
vibrant community of developers, making it easy for businesses to find skilled professionals to build
and deploy blockchain solutions. This is supported by several research works, as cited by [5—7].

Hyperledger Fabric is an open-source initiative designed to meet the specific needs of businesses
and plays a significant role in the development of enterprise-grade solutions [8]. Fabric offers
an enterprise-grade, permissioned blockchain platform and leverages the execute-order-validate
paradigm for smart contract execution, ensuring that transactions are executed in a deterministic
order and verified by the network [9, 10]. Its modular architecture and customizable components
make it a reliable and cost-effective choice for businesses developing blockchain solutions [5].

Businesses can develop tailored solutions that meet their specific needs by leveraging Fabric’s
components, enabling integration with existing systems and applications, reducing development
costs and time to market [5]. Furthermore, the open-source nature of Hyperledger Fabric has
attracted a vibrant community of developers, researchers, and industry leaders, who work together
to enhance and expand the platform’s capabilities. This collaborative effort has resulted in a reliable
and future-proof platform that meets the needs of businesses across various industries.

The open-source nature of Hyperledger Fabric has contributed significantly to its popularity and
trustworthiness among businesses. Fabric’s source code is available for review, enabling enterprises
to contribute to its development and customize it to meet their specific needs. This feature makes
it a cost-effective and flexible choice for businesses, and its pluggable architecture ensures that it
can be integrated with various systems and applications. Additionally, the vibrant community of
developers and contributors has worked together to enhance and expand the platform’s capabilities,
resulting in a platform that meets the needs of businesses across various industries and has significant
potential to drive innovation and transformation in the enterprise sector.

The state database, or StateDB, is an essential component of the Hyperledger Fabric blockchain
platform that plays a crucial role in maintaining the integrity of the ledger. It captures the most up-
to-date snapshot of the world state and accumulates blockchain transaction updates into a persisting
key-value database [9].

During the execution of transactions, peers rely on StateDB to read the current values with their
version to form the Read-Set for transactions. Then, during the commit and validation phase, while
executing the multi-value concurrency control check, peers read from StateDB to compare Read-

1527

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

Set versions [11]. Once the validation is complete, the peer commits validated transactions into
StateDB to reflect the recent changes, ensuring the integrity of the ledger.

The StateDB plays a crucial role in maintaining the integrity of the Hyperledger Fabric blockchain.
Peers rely on the StateDB to read the current values, and it accumulates blockchain transaction
updates into a persisting key-value database. The database is used during the commit and validation
phase, where peers read from StateDB to compare Read-Set versions, commit validated transactions
into StateDB to reflect recent changes, and ensure the integrity of the ledger. The use of StateDB in
Hyperledger Fabric provides a reliable and secure platform for businesses developing blockchain
solutions.

According to the [12], the commit phase in HLF dominates the transaction processing time and, as a
result, constitutes a bottleneck in terms of performance. In addition, the study demonstrates that the
read operation plays an important role when peers replicate transactions. Clearly, the interaction
with the StateDB directly affects the overall performance of the HLF. Currently, HLF presents
two potential StateDB implementations, one based on GoLevelDB and the other on CouchDB.
Therefore, the Fabric community acknowledged the necessity to develop a superior alternative to
StateDB [13]. In this paper, we will analyze various options for StateDB and examine the various
implementations of the embedded databases based on LSM-trees or B+ trees [14, 15].

This paper is structured in the following. The background section, which delves into the key
components and concepts of Hyperledger Fabric, including peers, the ordering service, and StateDB.
The Related Work section reviews existing literature and studies that have explored the perfor-
mance aspects of Hyperledger Fabric and its state database. In the Methodology section, we detail
our experimental setup and the benchmarks employed to assess performance. The Results and
Analysis section presents our findings, offering a nuanced view of how different databases impact
the performance metrics of Hyperledger Fabric. Subsequently, the paper identifies Opportunities
for Low-Effort, High-Impact Improvements, pinpointing specific areas where resource utilization
and throughput can be optimized. The Discussion section elaborates on the implications of our
findings, suggesting potential avenues for further research and optimization. Finally, the Conclusion
summarizes the key insights gained from this study, offering a cohesive wrap-up of our contributions
to the field of enterprise blockchain technology.

2. BACKGROUND

2.1 Hyperledger Fabric

The Hypereldger Fabric (HLF) blockchain platform is a permissioned system with a flexible and
modular design. It ensures a high anonymity level while still being stable and scalable. The permis-
sioned aspect of the platform is achieved using an abstraction known as a Membership Service
Provider. This abstraction encapsulates the identity management and credentials of businesses
engaging with the platform. The Membership Service Provider ensures that all entities engaged
in the transaction coordination formation have their authenticity and authorization verified.

The concept of channels is brought into play by Fabric architecture to facilitate improved data segre-
gation, which protects users’ privacy and enables sharding, alleviating scalability issues. In addition,

1528

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

the information may be safely traded between consortium members through the channel formed by
the parties who have organized themselves into a consortium. Channels are a straightforward ab-
straction of the private blockchain instance’s ledger management, smart contract administration, and
other features. The nodes that participate in the Hyperledger Fabric blockchain network typically
fulfill one of the following three roles:

» The business application code is tasked with coordinating the flow of transaction processing,
and it typically uses the Fabric SDK to interact with the Hyperledger Fabric.

* The endorsing and committing peers are responsible for managing the state, validating trans-
actions, and providing attestation of agreement of transaction execution results.

* Ordering service instituting atomic broadcast abstraction to carry out consensus protocol,
which is used to group client transactions into blocks and guarantee total order between all
transactions.

The following is an example of how the transaction processing flow of Hyperledger Fabric may be
described:

1. The client is responsible for putting together a signed transaction and submitting the proposal
to the group of peers supporting it per the endorsement policy.

2. Each endorsing peer calls chaincode to simulate transactions, recording state updates as read-
writes to capture all state-related operations. This is done by recording read-writes and state
updates. After that, sending endorsed peer-computed hashes of the read-write set together
with the signed hashed result will result in the client receiving both the read-write sets and the
signed hash.

3. The client is responsible for organizing the answers from all the endorsing peers and validating
that all the endorsing peers have signed the same payload. After that, it constructs a transaction
by fusing all of the signatures of the peers who endorsed it together with the read-write sets.

4. The client invokes an ”atomic broadcast” application programming interface (API) to transmit
the transaction to the ordering service. For instance, the client will only place one order while
utilizing the Raft-based ordering service.

5. The ordering service is responsible for gathering all incoming transactions, grouping them
into blocks, and obtaining approval on the blocks to ensure the transactions are in the correct
order.

6. Peers communicate with one another to distribute blocks using a process based on gossip.
This allows certain peers to obtain blocks directly from the ordering service while others share
blocks.

7. When a peer receives a new block, they loop over their transactions and validate

(a) the endorsement policy and

(b) execute multi-version concurrency control checks against the state. This happens after
they have received the new block.

1529

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

8. Once peers have validated the transactions, the block will be attached to the distributed ledger,
and the state will be updated to reflect any recent changes.

When the block is finally committed, the peer sends out an event to alert any interested clients.

2.2 State Database

In Hyperledger Fabric, the state database is a key-value store that is used to track the current state
of the ledger. It stores the current values of all assets on the ledger, as well as the current state
of any smart contracts that have been deployed on the platform. The state database is updated
whenever a transaction is committed to the ledger, and it is used to validate the state of the ledger
before a transaction is committed. The state database in Hyperledger Fabric is a key-value store
used to track the current state of the ledger. The state database is designed to be scalable, reliable,
and fast, supporting the high transaction volumes and performance requirements of enterprise-grade
blockchain applications.

The state database is implemented using GoLevelDB, which is an open-source, on-disk key-value
store that is optimized for fast, read-heavy workloads. GoLevelDB is known for its simplicity,
reliability, and performance, making it a good choice for the state database in Hyperledger Fabric.
Hyperledger Fabric also provides an option to use Apache CouchDB as the state database. CouchDB
is an open-source, NoSQL database that uses a document-oriented data model and is known for
its ease of use and scalability. One key advantage of using CouchDB as the state database in
Hyperledger Fabric is its ability to store data in a JSON format, which makes it easy to work
with and integrate with other systems. CouchDB also provides a rich set of indexing and querying
capabilities, allowing developers to easily retrieve and manipulate data stored in the state database.

A global state database takes a snapshot of the state based on the most recent set of valid transactions,
and the ledger structure of Hyperledger Fabric is similar to that of other blockchain platforms in that
it is an append-only series of hash-chained blocks. To facilitate execution and check the read-write-
set against the real state value, the peers committing transactions and approving transactions use the
state database to read keys and supply values into chaincode.

Let’s examine the impact of StateDB on HLF performance. For this, a number of performance
benchmarks will be run, and in some cases, the HLF profiles will be examined. In this study we
would focus only on analysis of GoLevelDB implementation of the state database, as it was shown
that it outperforms CouchDB [16]

2.3 GoLevelDB

GoLevelDB is an implementation of LevelDB in the Go programming language. LevelDB itself is
a fast key-value storage library that provides an ordered mapping from string keys to string values.
This section aims to delve into the actual details of LevelDB, its design architecture involving Log-
Structured Merge-trees (LSM trees), and how it differentiates from other databases. We will also
discuss the types of applications for which GoLevelDB is most suitable.

1530

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

LevelDB utilizes a Log-Structured Merge-tree (LSM tree) to achieve high write throughput and effi-
cient range queries. Unlike traditional B-trees used in relational databases, LSM trees are optimized
for write operations. The LSM tree consists of a memory component, known as the MemTable, and
multiple levels of SSTables (Sorted String Tables) on disk.

The LSM tree architecture offers several advantages:

1. High Write Throughput: The LSM tree is optimized for write operations, which means that
it can handle a large number of writes per second. This makes it ideal for applications that
require high write throughput, such as logging and analytics.

2. Efficient Disk Reads The LSM tree is optimized for range queries, which means that it can
handle a large number of reads per second. This makes it ideal for applications that require
high read throughput, such as search engines and social networks.

3. Write Amplification Minimization The LSM tree minimizes write amplification by using a
log-structured merge-tree (LSM tree) to store data on disk. This means that it can handle a
large number of writes per second without incurring significant overhead.

GoLevelDB leverages the LSM tree architecture to offer high write throughput and efficient disk
reads, making it a suitable choice for specific types of applications that do not require the complex-
ities of a full-fledged relational database. Its design makes it distinct and optimized for write-heavy
workloads, although it comes with the trade-off of limited query capabilities.

2.4 CouchDB

CouchDB is a NoSQL database that uses a schema-free JSON document format to store data. Unlike
GoLevelDB, CouchDB is designed with a focus on ease of use and being “a database that completely
embraces the web.” This section will explore the architecture of CouchDB, its design principles,
and how it differs from databases like GoLevelDB. We’ll also discuss the types of applications for
which CouchDB is most suitable.

CouchDB uses a Multi-Version Concurrency Control (MVCC) system to manage concurrent reads
and writes. It also employs a B-tree indexing model, which is different from the LSM trees used in
LevelDB.

1. Multi-Version Concurrency Control (MVCC) CouchDB uses a Multi-Version Concurrency
Control (MVCC) system to manage concurrent reads and writes. This means that it can handle
a large number of reads and writes per second without incurring significant overhead.

2. B-Tree Indexing Model CouchDB uses a B-tree indexing model, which is different from the
LSM trees used in LevelDB. This means that it can handle a large number of reads and writes
per second without incurring significant overhead.

3. Schema-Free JSON Document Format CouchDB uses a schema-free JSON document for-
mat to store data. This means that it can handle a large number of reads and writes per second
without incurring significant overhead.

1531

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

CouchDB offers a different set of features and optimizations compared to GoLevelDB. Its archi-
tecture is designed to be web-friendly and to offer strong consistency and availability guarantees.
While it may not be as write-optimized as databases that use LSM trees, it offers a rich set of features
that make it suitable for a wide range of applications, particularly those that are read-heavy or require
complex queries.

2.5 State Database Configuration

GoLevelDB comes pre-packaged with Hyperledger Fabric, so no additional installation steps are
required. To initialize a network using GoLevelDB, you can use the standard network initialization
scripts provided by Hyperledger Fabric. No changes are needed in the configuration files when
using GoLevelDB, as it is the default state database. However, if you want to use CouchDB instead
of GoLevelDB, you will need to make some changes in the configuration files. The following steps
will show you how to configure CouchDB as the state database in Hyperledger Fabric.

1. Install CouchDB on your machine. You can download CouchDB from the official website of
Apache CouchDB.

2. Open the core.yaml file and make the following changes:

(a) Set the port number to 5984.
(b) Set the bind address to address of the couchdb container.

(¢) Set the admin username and password.

Here is the example of the configuration file:

ledger:

state: CouchDB

couchDBConfig:

couchDBAddress: <CouchDB_Container:Port>
username: <Admin Username>

password: <Admin_Password>

The key difference in two configurations is that CouchDB is a document-oriented database, while
GoLevelDB is a key-value store. This means that CouchDB stores data in the form of documents,
while GoLevelDB stores data in the form of key-value pairs. This difference in data storage format
has a significant impact on the performance of the state database.

2.6 Performance Baseline

There is a need to establish a starting point for comparison and therefore we implemented a bench-
mark to identify the maximum potential performance improvement that could be achieved by re-
placing the current implementations with more performant alternatives. In addition, it serves as a

1532

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

baseline comparison to detect the potential performance gains that may be possible. The benchmark
implements chaincode FixedAsset with two methods, one which results in interaction between the
peer and the state database and the other which does not.

In this paper, similarly [17], the term transaction” is used in a general sense and refers to any
interaction with a smart contract, regardless of the complexity of the subsequent interaction(s) with
the HLF platform. In this article, we will give an extra description and route map for each type of
transaction that is employed (e.g. as in FIGURE 1).

Blockchain

. Evaluate Ledger
CI_|ent_ Chaincode
Application m m
StateDB

Figure 1: Diagram of HLF components interaction when running the Empty-Contract-Evaluate
benchmark. Active components are highlighted in blue.

The chaincode benchmark that does not interact with StateDB consists of loads of Evaluate and
Submit calls to the EmptyContract function of the FixedAsset smart contract written in Golang
within the Hyperledger Fabric network, where goleveldb is used as StateDB.

EmptyContract Evaluate transactions will being run on a single Hyperledger Fabric peer and will not
result in any interaction with the Orderer, resulting in the transaction pathway depicted in FIGURE 1.
Thereby, there is no interaction with StateDB at this stage. Compared to this, we can understand
how much longer the work of a smart contract takes if something needs to be read from StateDB.

EmptyContract Submit transactions will being run on a single Hyperledger Fabric peer and then,

after approval by the Orderer, are written to the blockchain. It will result in the transaction pathway
depicted in FIGURE 2.

Blockchain

Figure 2: Diagram of HLF components interaction during the Empty-Contract-Submit benchmark.
Active components are highlighted in blue.

.
CI_|ent' Chaincode
Application
Submit Write

Thereby, there is no interaction with StateDB at this stage. Compared to this, we can understand
how much longer the work of a smart contract takes if something needs to be written to StateDB.

Achievable throughput is investigated through maintaining a constant transaction backlog of 100
transactions for each of the 10 test clients.

To compare Evaluate of the EmptyContract function of the FixedAsset chaincode, Evaluate of the
GetAsset function of the same smart contract is called. The key value length is 100 bytes (detailed

1533

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

description is given in the section 6.1). To compare Submit of the EmptyContract function, Submit
of the CreateAsset function of the same smart contract is called (detailed description is given in the
section 6.2).

We can conclude that reading small values in transactions from StateDB has essentially no impact
on HLF performance compared to writing the same values to StateDB based on the findings of
comparing the average TPS in FIGURE 3.

No StateDB VS StateDB benchmarks (Avg. TPS)

869 864

No StateDB usage (goleveldb)
3 With StateDB ussage (goleveldb)

Avg. TPS

submit (invoke)
HLF transaction type

Figure 3: NoStateDB-VS-StateDB performance benchmark results.

As a result, in this study, we gave top importance to enhancing StateDB’s write performance.

2.7 Profiler Analysis

We utilized a profiling tool [18] to obtain the execution footprint of the Hyperledger Fabric peer node
to detect potential bottlenecks for improvements and optimizations. The profiling data collection
performed on transactions updating or adding a piece of new information into state database because
it was indicated earlier 2.6 write operation has more impact on overall HLF performance compared
to read operations.

While conducting profiling on HLF configured with goleveldb-based implementation of the state
database, we noted that while peer nodes were performing an update of transactions applying them
into the state, the peer spent only roughly 0.32% of CPU time. However, continuing profiling [19],
we discovered that 6% of the overall profile sampling time was spent off-CPU, waiting for ad-
ditional IO and syscalls. Furthermore, further tracing [20] has shown that time was spent during
syscall.Fsync, meaning transferring data from RAM into actually the disk.

In addition, it was discovered that the HLF peer uses 9 additional distinct goleveldb entities in addi-
tion to StateDB. Every one of which starts 5 auxiliary goroutines that are waiting for compression,
looking for compression errors, etc. On the basis of this, it can be concluded that the routines for
waiting for goleveldb events are redundant in the HLF peer.

As aresult, StateDB (and goleveldb behind the scenes) are crucial to the functionality of Hyperledger
Fabric and have a big impact on write operation performance.

1534

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

3. OPPORTUNITIES FOR LOW-EFFORT, HIGH-IMPACT
IMPROVEMENTS

We analyzed resources to use during the loading of peers and identified a few areas for improvement.
Inspecting the findings depicted at2.7, we saw that even though disk 1O can handle 30M/s, we
only achieved 14M/s with 45 tps and just 27% CPU use. With an increase in load to 100 tps,
we only utilized 10% of our CPU and obtained 6M/s. These observations suggest that resources
should be used to their maximum potential; consequently, identifying the bottlenecks might result
in significant changes that increase throughput.

The trace analysis showed an excessive wait in the blocked mutex after each block delivery and
synchronization in the function responsible for delivering blocks. We also found evidence in the
code [21], explaining that while committing a block, the client can get a message confirming the
new block’s successfully committed while also receiving the old state. After carefully analyzing the
code, we found no risk to eliminating the lock [22]. We ran all integration and unit tests supplied by
Fabric to ensure no regression was made and results revealed no errors, while TPS, CPU utilization,
and disk write speed all showed improvements. In FIGURE 4, the outcome of modifications in
the utilization of CPU and TPS resources for various types of transactions is depicted. FIGURE 5
shows a difference in disk write speed and TPS.

TPS rate depending on the CPU rate

30 A
O LevelDB
O27.4 O LevelDB-tuned
&5'6
254
40_.3 20 1
©
—
>
a
© 15
c;l2.6
o11.6
101 09.22853-392
40 60 80 100 120

TPS rate

Figure 4: Comparison of TPS versus CPU usage before and after eliminating excessive mutex lock
waits. For three types of transactions, 64KB, 4KB and 100B in size (left to right in the
graph), improvements were found both on the OX axis and on the OY axis. "LevelDB”
means HLF with StateDB goleveldb before code changes, and ”LevelDB-tuned” means
HLF with StateDB goleveldb after code changes.

Our implementation resulted in more efficient resource utilization and improved performance of
HLF. We also conclude that there is potential for further identification and optimization of bottle-
necks in the existing HLF code.

1535

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

TPS rate depending on the Disk Writes (per second) rate

16
14.6 O LevelDB
4.0 O LevelDB-tuned
144 o
(0]
o
©
—
—~ 12 1
©
c
S 10
(]
0
o
a 8
0
2 6
=
Y2 4
w ¢
e 1.984
2] 175 &
0.638 0.7004
Q [¢)
40 60 80 100 120

TPS rate

Figure 5: Comparison of TPS versus disk write rate before and after eliminating excessive mutex
lock waits. For three types of transactions, 64KB, 4KB and 100B in size (left to right in the
graph), improvements were found both on the OX axis and on the OY axis. "LevelDB”
means HLF with StateDB goleveldb before code changes, and ”LevelDB-tuned” means
HLF with StateDB goleveldb after code changes.

4. Alternative Statedbs Selection

4.1 Criteria for Choosing an Alternative StateDB

It turns out that it makes sense to consider other databases for StateDB HLF. The following main
criteria were used to choose the databases:

» Support for key-value format is needed to maintain compatibility across all HLF components
and cut DB embedding time;

* The availability of an API in Golang or the implementation of storage in Golang;
* There is documentation available;

* The accessibility of open access performance benchmark results that set this key-value store
apart from others;

* Desirably, the storage should provide a lock to make changes when the database is opened by
another process. As a result, handling process blocking in HLF code won’t be necessary in
the future. Today this is artificially enforced in HLF through the FileLock method described
in5.1.3.

 Additionally, the storage should provide thread safety. Because today in HLF this is guaran-
teed by locking the mutex on every database operation.

1536

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

» Of course, storage with ACID offers the highest level of assurance for atomic change, data
consistency, transaction isolation, and durability;

* The store must include iteration capability since HLF employs iterators;

» The batch (a set of keys and values) writes mechanism must also be supported in an alternative
StateDB due to the fact that HLF primarily uses batch writes;

 To support the functionality of client queries in HLF, today it is necessary to connect an
additional StateDB to the peer - CouchDB [23]. In this context, it would be advantageous
if the goleveldb substitute allowed for database queries.

* Built-in logical storage partitioning mechanisms will eliminate the need for logical database
partitioning in the HLF code. This will make the project code simpler and, in some situations,
let you select the performance-optimal technique. Some databases offer various logical parti-
tion types to this goal. Today, in HLF, logical storage separation is supported by the DBHandle
structure described in 5.1.2.

* A rough estimate of connection complexity;

» The projected difficulty of sustaining database functioning, accounting for future HLF up-
grades.

» The kind of tree the store uses.

The Table 1 presents distinctive comparison properties of the chosen DBs. A more detailed descrip-
tion of each database is provided below.

4.2 Selecting RocksDB

 Language and brief background. According to [24], RocksDB [25] is the most used database
in blockchain. RocksDB is a fork of an earlier version of LevelDB. It is also based on the
LSM-tree and is written in C++, like the original LevelDB.

At the time of writing this article there are several APIs in Golang which allow to work with
C++ implementation of RocksDB. Finally the API in the grocksdb [26] repository was chosen
as the most popular and active at that time.

* Performance. When writing batches in 2020 in [27] RocksDB demonstrated throughput that
was three times greater than goleveldb, but it lost severely in read operations (for an SSD with
fsync enabled). Among the obvious differences between RocksDB and LevelDB, RocksDB
developers mention several performance optimizations and additional options for interacting
with the DB [28].

» Working with multiple processes and threads, ACID. When multiple processes access the
RocksDB database, only one of them will be able to write. The DB must be used in read-
only mode by the remaining processes. Basic database operations: Put(), Write(), Get(),
Newlterator(), as well as the use of constant ReadOptions and WriteOptions are thread-safe.
Some of the ACID properties are warranted by the user. For example, such as atomicity in
the case of writing batches to several DBs or transaction isolation in the case of using the
TransactionDB entity instead of OptimisticTransactionDB.

1537

https://www.oajaiml.com/ | October 2023

Table 1: Selected characteristics of key value storages

Ivan Laishevskiy, et al.

[5) = -
gl = o 2
g £ 5.8 2IE »
R E|E|EIEls3E|E S
[}
= z = > £ 2 |2lES258 2
= @ o=l 5 al 5 w |2 EIGE|l 5
Ne| DB 8 g 3 2 = < ol 2] & |2m|lsgT |25 ©
2 = = - 8 F g »n < 5 = g1Q|= e 2L < 8
b= s o2 oz = S| 2 |El5|8Els 8| &
5 = = g g S 5| <=|2|8|g=8|l8 g F
<) 2 o o o o e = 3 S | &g Bl &
5 E g A = = | 2 |9RE2|E 2
i =} < A < A oy © = o 3 = g @
g g2 |Ee |22 25|%a
= o =] =) =5 @ Mm o| =%
=l a [E8 |£8 |¥3 ol
T 5 < = o 2
< © < © =
Possible
>
= even
N with one
5 . DB object is
1 | goleveldb | Go 3 RocksDB|No data |running) - + + | == - - |LSM
S . |thread-safe
1) process in
an .
= read-write
a.
mode
Basic
operations: %
Put(), =
Write(), %
= Possible | Get(), E
S even Newlter- E =
E with one|ator() are| g 3
2 | RocksDB |C++ = No data |goleveldb|runnin, thread-safe. | §| + + | — | | High | High |LSM
B g g 3| Hg g
. . o —
3 process in|ReadOptions | & =
i read-write |and 3 g
3 mode WriteOp- =
tions can be s
used from §
different n
threads
Extracting
. data and
Possible, . 2
> creating %) 9]
E but objects from S 2048
S |RocksDB processes aJ database R 2
. Q =S 9
3 bbolt | Go 3 Bad- goleveldbjin read-|. +|= 8|8 &|-*|3%|Low |Low | B+
° . instance, but o o|© & =
=) gerDB write . S g5leow m
50 .., | not operating 0 oS 8
~ mode will . 5 2le o
9 on derivated o 2|8 &
be blocked |, . 25l 2
objects (e.g.| |2 5|5 =
transactions) | | °|E 2
Only
5 poss1ble o
50 if all| DB object is
g rocesses |thread-safe
=] - 5
L = RocksDB|P . b
4 |BadgerDB| Go | 3 < |No data bbolt have Transaction |+| + + |-?| - |Low | Low |LSM
] . .
Sz gﬂ opened the | object is not
25 database in | thread-safe
= o 2
g0 s read-only
SR]
< E mode

2Possible with additional

=+

ool [29] bpossible with additional tool [30]

1538

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

* Tools provided by the storage. RocksDB, like goleveldb, provides iterators. However, it has
a slightly modified logic (setting boundaries, closing the iterator, etc.). Multiple keys can be
written simultaneously in batches. There is no way to use queries. It was discovered that
RocksDB may be logically separated into different databases and Column Families. Each sort
of division has distinct qualities.

* Evaluation of the complexity of embedding and further support. The fact that this DB requires
an additional API connection with the C++ library, in contrast to others, means that embedding
it will take longer than any other DB. Additionally, RocksDB presents difficulties for further
support within HLF. One explanation is that each upgrade to the RocksDB version necessitates
an API update, followed by a new API and RocksDB library binding. In addition, even as
of the time of authoring the paper, several features of the current database version are not
implemented in the API (some options are not available, etc.).

The choice was made to add RocksDB as StateDB in HLF due to the variety of features and
competing reported performance figures.

4.3 Selecting bbolt

» Language and brief background. As a database with the mechanism of B-tree, or rather its
subspecies B+ tree, sometimes mentioned LMDB [31], but the repository with this DB is read-
only [32], and in addition it is implemented in C. The current Golang-APIs, which have not
been updated since 2017, have limited interfaces and somewhat low-level package bindings
[33]. Asaresult, it was decided not to take LMDB into consideration. However, an alternative
database in the Golang language was found - BoltDB, which is “LLMDB-inspired” and is also
based on the B+ tree [34]. However, the repository’s data indicates that there haven’t been
any modifications since 2018. The developers advise utilizing the bbolt fork [35], which is
supported as of this writing, for those who desire updates.

* Performance. According to [27], bbolt outperforms goleveldb in batch write transaction through-
put by a factor of 3 and exceeds rocksdb in read operations by more than a factor of 2 (for an
SSD with fsync enabled).

» Working with multiple processes and threads, ACID. bbolt can run in read-only mode from
multiple processes, but does not support shared database access for processes attempting
to open a file in read-write mode. In read-write mode, a process will halt until all others
have completed. Although the bbolt database object is thread-safe, objects derived from it
(such transactions, buckets, and keys) are not. It is claimed that BoltDB supported all ACID
properties. bbolt must therefore support ACID if it is to be considered a more featureful
version of Bolt.”

* Tools provided by the storage. The cursor serves as the bbolt equivalent of the iterator. Only
when a transaction is open can all of the cursor’s components be accessed. There is no way to
write a batch containing multiple keys, but you can write a pre-opened transaction to which
keys have been added. There is no support for queries, but it is possible with the additional
tool [29] (although the last update in the repository at the time of writing is 2020). The bbolt
database is logically separated into buckets that can be nested inside of one another.

1539

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

* Evaluation of the complexity of embedding and further support. Given the equivalents of the
components that already exist in bbolt for goleveldb and its Golang implementation, connect-
ing it does not appear to be difficult. It appears straightforward to support bbolt functionality in
updating HLF. But if HLF is built with the obsolete Extras API [29], things could get trickier.

As a result, it was chosen to implement bbolt as StateDB into HLF without adding any additional
APIs.

4.4 Selecting BadgerDB

» Language. BadgerDB is implemented in Golang. The data storage model is an LSM-tree.

» Performance. On DB performance measures, several published studies have been evaluated.
Performance tests for HDD and SSD with and without fsync were conducted in [36]. Since an
SSD with fsync enabled is the most common type of HLF production peer, we only consider
that scenario.

The updated results for [36], presented in [27], show that in random read operations, pogreb
[37] leads by a good margin, followed by buntdb [38], nutsdb [39] and goleveldb, followed
by bolt, bbolt and BadgerDB [40]. For single write operation, RocksDB and pebble [41], as
well as BadgerDB have performance advantages over goleveldb, although goleveldb showed
better results compared to bolt and bbolt. BadgerDB is the leader with a breakaway for the
batch writing operation, followed (in descending order) by buntdb, RocksDB, bbolt, pebble,
boltdb.

In a 2017 paper from the BadgerDB developers, [42] for a performance benchmark of writing
keys with corresponding values of 128 and 1024 bytes, BadgerDB showed more than a 10-
fold and 14-fold advantage over LMDB and boltdb. And in another article [43] the authors
noted lower memory consumption of BadgerDB compared to RocksDB, and BadgerDB came
out as the leader in writing keys with sizes of their respective values 1024 and 16384 bytes
(more than 4 times and 11 times respectively), but nevertheless in performance benchmarks
of random read operations RocksDB looked better by more than 3 times.

» Working with multiple processes and threads, ACID. Reading from the database is feasi-
ble when it has been opened in read-only mode by all processes. However, if a read-write
process has locked the BadgerDB directory, reading from other processes won’t function.
The database object itself is thread-safe, but transaction objects are not thread-safe. The DB
provides all ACID properties.

* Tools provided by the storage. BadgerDB supports iterators and batches. With additional tools
[30] it is possible to use queries. BadgerDB does not support logical DB partitioning.

 Evaluation of the complexity of embedding and further support. Given the aforementioned,
embedding and maintaining BadgerDB looks simple. It was decided to postpone the use of
the API with queries until the future works.

BadgerDB was chosen to be embedded as StateDB because to its competitive features.

The most crucial characteristics of the selected DBs are contrasted in the Table 1.

1540

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

4.5 A Few Comments About Other Key-Value Storages

The official pogreb repository [37] presents performance benchmark results showing that this database
is several times faster in single random read operations than goleveldb, BadgerDB and bboltdb.

In [44], which describes RoseDB [45], performance benchmarks show almost the same write speed
as leveldb, which is 2.5 times faster than BadgerDB. Because RoseDB can store keys and values in
RAM (if they are not large), its read operation is faster than both goleveldb and BadgerDB, but for
the case of storing only keys in RAM (for large values) RoseDB shows approximately equal results
with goleveldb and 1.25 times faster than BadgerDB.

However, RoseDB appears to be insufficiently documented, thus there is a chance that using it
in HLF will be challenging. Future work may focus on pebble because of its strong single write
performance and pogreb because of its highly intriguing read benchmarks, but its repository is not
particularly active at the time of paper writing.

S. ALTERNATIVE STATEDBS INTEGRATION

5.1 Components Requiring Changes to the HLF

In the open source HLF code (commit [46]), the main components responsible for HLF interaction
with StateDB have been identified. These are depicted in FIGURE 6. In order to add new StateDBs,
it was decided to create an analogue of the marked components for each database. So the main code
upgrade was to add three code files for each DB: stateNameOfDB.go, NameOfDB_provider.go,
NameOfDB_helper.go. Functionality of goleveldb has been fully preserved. To select StateDB you
need to specify in core.yaml file the name of selected DB before running the container.

stateleveldb leveldbhelper goleveldb

A
Y

leveldb file

leveldb_provider.go

leveldb_helper.go goleveldb_functions

stateleveldb.go

< .
< >

Figure 6: HLF components responsible for interacting with StateDB (highlighted in colour).

Let’s walk through the functions and modules that have been added:

1541

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

5.1.1 stateNameOfDB.go file

» VersionedDBProvider struct — satisfies the top-level interface VersionedDBProvider
and is responsible for top-level DB opening and closing, snapshot import, and logically divides
one database into multiple versionedDB instances to independently access HLF channels,
since channel data does not overlap. It also allows the entire data of a channel to be deleted
by calling the Drop method. Basically, structure methods work by calling methods from
NameOfDB_provider.go file. Although some of the connected databases have built-in logical
partition functions, it was decided to keep this functionality at the current level to reduce the
embedding time for all StateDBs.

* versionedDB struct — satisfies the top-level interface VersionedDB and provides many
methods that allow access to StateDB. Among them, methods such as: reading values GetState,
reading versions of values GetVersion, opening iterator for range of values GetStateRange
ScanIteratorWithPagination (through initialization object kvScanner), writing batch to
the database ApplyUpdates and others.

* kvScanner struct — structure, which is a layer to work with the iterator, provides primarily
methods Next and Close.

5.1.2 NameOfDB_provider.go file

* Provider struct — is another layer between HLF and StateDB and is responsible for open-
ing and closing the database, provides separation into multiple logical database partitions
DBHandle. Using this structure, versionedDB instances are created from stateNameOfDB.go
file.

* DBHandle struct — is the underlying layer through which versionedDB struct operates,
is an abstraction of the database logical partition and serves methods for reading a value
from the database Get, writing a value to the database Put, writing a batch to the database
WriteBatch (notable, that Put is not used when calling ApplyUpdates, only WriteBatch is
used), delete value Delete, delete all data belonging to a certain channel Drop and function
that opens iterator GetIterator.

» UpdateBatch struct — temporary storage in memory for the values to be written when the
batch is written to the database WriteBatch. UpdateBatch provides methods to add items
to the batch Put and remove Delete. Because of the different batch handling features in
different databases, this structure has been implemented differently for each plugin StateDB.

» Iterator struct — provides a top-level interface to work with the database iterator. All
embedded databases have different logic of iterator’s work — different in Seek function, pro-
cessing of its bounds, errors, etc. Therefore the Iterator was upgraded depending on the
specifics of each database. This allowed for compatibility with the default StateDB goleveldb.

5.1.3 NameOfDB _helper.go file

* DB struct — a structure that holds directly an instance of the opened DB, providing meth-
ods for opening the DB Open, closing Close, reading a value from the DB Get, writing a

1542

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

value to the DB Put, removing Delete, getting an iterator GetIterator and writing a batch
WriteBatch. As you can see, almost all methods repeat the functionality of the methods of
the NameOfDB_provider.go file. This suggests the need to optimize this HLF module, which
in order to save time it was decided to include in the future work.

* FileLock struct — is responsible for providing a lock to the opened goleveldb database by
some process. In general, all embedded databases have such a locking mechanism internally.
However it was decided to keep this code for all connected databases to save connection time.

In addition to the modules described, test files covering the added code have also been created and
some minor changes have been implemented in some other HLF modules.

5.2 Embedding RocksDB into HLF

To connect RocksDB as StateDB you need to use cgo as the RocksDB library is written in C++.
The selected grocksdb API provided the tools to call the C++ functions of the library from the HLF.

In the process, the RocksDB dynamic library was successfully connected.

During the process of RocksDB embedding the unstable work of the iterator in the grocksdb API
was found, so it was initiated a patch [47]. Eventually RocksDB v.6.27.3 was embedded to HLF
with grocksdb 1.6.45 with the iterator working stably [48].

Additionally, the final docker images of peer and tools, used to run HLF, turned out to be signifi-
cantly larger than the originals: peer image was larger by 3.4 GB (+6309%), tools image was also
larger by 3.4 GB (+847%). This is due to storing auxiliary dynamic libraries in the images. Solving
this problem may be an area for further research.

5.3 Embedding bboltdb and BadgerDB into HLF

There are no particular difficulties in embedding bbolt. It was decided to use transactions instead
of batches.

When embedding BadgerDB, it was necessary to implement additional methods to get similar logic
to the golevedb methods. So, BadgerDB lacks built-in ability to iterate within a given range,
ability to iterate back a step, etc. It also required additional runtime checks related to byte-by-byte
comparisons of slices, which could affect the performance of iterator operations.

Link to StateDB bbolt repository: [49]; StateDB BadgerDB repository link: [50].

1543

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

6. BENCHMARKS FOR EMBEDDED STATEDB IN HLF

Performance evaluations of HLF with the new embedded StateDBs were carried out using the
Hyperledger Caliper tool[51], which offers universal benchmarks for several blockchain platforms,
including Hyperledger Fabric.

This utility supports the capture of basic blockchain performance [52] metrics. Due to the large
number of metrics to compare, in order to simplify for better visualization in our work we will
consider:

» Write/read transactions throughput,

Latency (delay in receiving a response),
* CPU usage,
* RAM usage,

Disk read/write speeds.

The performance benchmarks are based on code samples from [53].

As well as in 2.6, the term “transaction” is used here in a general sense and refers to any interaction
with a smart contract, regardless of the complexity of the subsequent interaction(s) with the HLF
platform. The different information content of transactions affects the performance of the HLF
network. Therefore, in addition to separating transaction types, which are specified in the headers
of the database comparison graphs, transactions have also been divided into subtypes signed on
the OX axis. Measuring transaction throughput demonstrated the potential transaction rates and in
addition allowed us to track the performance differences for GoLevelDB API calls versus other DB
APIs. The data shown in the graphs were measured in the controlled environment. Results obtained
in other environments may vary.

The preliminary configuration of the HLF benchmark network was as follows: one channel in
which one organization with one peer was deployed and there was another peer of the ordering
service. Network endorsement policy: 1-of-any. This simplified configuration was chosen in order
to minimize latency from other HLF components and to get as accurate information as possible
about components associated only with StateDB.

The results show the average performance of each StateDB.

Since StateDB only runs on an endorsement peer and a validator peer, it was decided to move the
peer machine apart from the rest of the HLF network. The configuration of the peer machine on
which the performance benchmarks were run is presented in the Table 2. FixedAsset chaincode
methods [54] were developed in Golang to evaluate the performance of various interactions with
StateDB.

Although there is evidence that write operations need performance improvements the most, we

must make sure that read operations performance are not adversely affected. Thus, two kinds of
performance benchmarks for read and write operations are solicited for consideration.

1544

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

Table 2: The peer machine configuration which was used to execute performance benchmarks in
Hyperledger Caliper for embedded StateDBs.

OS: Ubuntu 20.04.4 LTS
CPU(s): 4
RAM: 16
Total SSD memory: 60 GB
Max. bandwidth (read | write): 30 MB/s | 30 MB/s
Max. IOPS (read | write): 2000 | 2000
CPU family: 6
Model: 106
Model name: Intel Xeon Processor (Icelake)
Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1

6.1 Get-Asset Performance Benchmark

The scenario under study is aimed at reading from StateDB. The read performance benchmark
consists of Evaluate calls to the GetAsset method of the FixedAsset chaincode. This chaincode was
deployed in independent HLF networks per each considered StateDB. Each network has its own
database as StateDB. One of them has the standard goleveldb and others have one of the proposed
alternatives: RocksDB, bboltdb or BadgerDB.

Every network uses a ”1-of-any” endorsment policy to minimize latencies (there are one peer and
one orderer deployed in the network. The peer is acting as an endorser and committer) The chain-
code method runs on a single Hyperledger Fabric peer and does not result in any interaction with
the orderer. Resulted transaction pathway of this performance benchmark is depicted in FIGURE 7.

Blockchain

Evaluate Read

CI_ient' Chaincode
Application '

StateDB

Figure 7: Diagram of HLF components interaction during Get-Asset-Evaluate benchmark. Active
components are highlighted in blue.

10 clients interact with the network. Before starting the performance benchmark, StateDB is ini-
tialized - each client sends a command to create (write) 1000 values of each type: 100 bytes / 1000
bytes /2000 bytes / 4000 bytes / 8000 bytes / 16000 bytes / 32000 bytes / 64000 bytes. The key name
corresponding to value contains a prefix relating to each type of value and the number of the sending
client (for example, for client 5 and value type 4000 bytes, the prefix will be: ’client5 4000). The
prefix is followed by a key id in the range from 1 to 1000.

1545

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

Then a separate performance sub-benchmark is run for each type of value, lasting 5 minutes. 10
clients send transactions concurrently to retrieve one type of asset with a random ID from StateDB.
Achievable throughput is investigated through maintaining a constant transaction backlog of 50
transactions for each of the 10 test clients.

FIGURE 8 shows a comparison of transaction throughput for embedded StateDBs. It demonstrates
that the alternative StateDBs didn’t see any appreciable performance reduction. In every instance,
BadgerDB has an even somewhat higher TPS than the original goleveldb. At the same time, all
StateDBs’ measured Latency rates displayed about the same numbers (we will not give here). What
about resource consumption, though?

Get-Asset-Evaluate benchmarks (Avg. TPS)

[ZZ LevelDB
=1 RocksDB
=N BoltDB
3 BadgerDB

| 846

864

600

Avg. TPS

100 1000 2000 4000 8000 16000 32000 64000
Asset Size (bytes)

Figure 8: Get-Asset performance benchmark results (transactions per second rate).

Likewise, all StateDBs’ CPU utilization rates were found to range between 23% and 32%. (we
will not illustrate the CPU graph here). But with RAM consumption, things are more interesting
- see FIGURE 9. It becomes apparent that, when compared to goleveldb and bbolt, RocksDB
and BadgerDB require excessively more RAM. Let’s leave the facts as they are for now and draw
conclusions afterwards.

6.2 Create-Asset performance benchmark

The scenario under study is aimed at writing to StateDB. The write performance benchmark con-
sists of Submit calls to the CreateAsset method of the FixedAsset chaincode. This chaincode was
deployed in independent HLF networks per each considered StateDB. Each network has its own
database as StateDB. One of them has the standard goleveldb and others have one of the proposed
alternatives: RocksDB, bboltdb or BadgerDB.

Every network uses a ’1-of-any” endorsment policy to minimize latencies (The network has one peer
and one orderer deployed. The peer is acting as an endorser and committer) The chaincode method
runs on the endorser and its result is then placed on the ledger by passing through the orderer and the
committer. Resulted transaction pathway of this performance benchmark is depicted in FIGURE 10.

1546

https://www.oajaiml.com/ | October 2023

2000

MB

1500

1000

Avg. RAM usage,

\ 876

Get-Asset-Evaluate benchmarks (Avg. RAM usage, MB)

] 2180

J 856
N 921

2221

[897

eie 1381

] 2002

N 777

\ 744

] 2061
] 2063

N 742

N 732
A8

| 2054

)
5
N
5

N\ 724

[ZZ LevelDB
=1 RocksDB
=S BoltDB
X1 BadgerDB
2

] 2034

R
o

©
a
=
o

N 733

[704

100

1000

2000

Asset Size (bytes)

4000 8000

16000

32000 64000

Ivan Laishevskiy, et al.

Figure 9: Get-Asset performance benchmark results (average RAM consumption score).

Client
Application

Submit

Chaincode

l
Write

Blockchain

StateDB

Figure 10: Diagram of HLF components interaction during Create-Asset-Submit benchmark.
Active components are highlighted in blue.

1547

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

There are 10 clients interacting with the network. At the beginning of the performance benchmark,
no initialization occurs. As soon as HLF starts, performance readings begin to be collected for
StateDB write transactions. Concurrently with the other clients, every client submits transactions to
the endorser. Each transaction writes one key-value pair to the StateDB. It lasts 5 minutes for each
client for each type of transaction: 100 bytes / 1000 bytes / 4000 bytes / 8000 bytes / 16000 bytes /
24000 bytes / 32000 bytes / 64000 bytes. Each key of the written value consists of: client number,
value size and transaction sequence number (for example, for client 3 and value type 24000 bytes,
the key for the seventh transaction sent by the client would be: “client3 24000 7). Achievable
throughput is investigated through maintaining a constant transaction backlog of 10 transactions for
each of the 10 test clients.

FIGURE 11 compares the throughput of HLF transactions for embedded StateDBs. It shows that
all StateDB compete with each other almost on an equal footing. However, StateDB BadgerDB
has a slight TPS edge for all types of transactions. Additionally, for a transaction size of 64KB,
BadgerDB’s TPS is much greater than goleveldb’s. In turn, RocksDB showed equal performance
with goleveldb and achieved a clear advantage for a transaction size of 64KB. Similar to this, bbolt
only demonstrated a marginal benefit over goleveldb for transactions of 32KB and 64KB in size.

Create-Asset benchmarks (Avg. TPS)

[ZZ LevelDB
=1 RocksDB
=N BoltDB

I3 BadgerDB

°
8
N 104

80

60

Avg. TPS

40

20

100 1000 4000 8000 16000 24000 32000 64000
Asset Size (bytes)

Figure 11: Create-Asset performance benchmark results (transactions per second rate).

The Latency comparison graph in FIGURE 12, confirms that BadgerDB is more efficient than other
StateDBs.

The CPU use comparison in FIGURE 13, further demonstrates that alternative StateDBs are in
a competitive position with goleveldb. But the RAM utilization graph (FIGURE 14) once more
demonstrates the increasing memory usage of RocksDB and BadgerDB. The speed of writing to the
disk of the peer was higher for goleveldb and bbolt (FIGURE 15).

1548

https://www.oajaiml.com/ | October 2023

035

0.30

o °
o I
5 b

Avg. Latency, s
°
G

0.10

Create-Asset benchmarks (Avg. Latency, s)

~
o
ZZ LevelDB S
=1 RocksDB a.:
I BoltDB s
[0 BadgerDB N
n
2
]
S
~ oo .
SRf,
R
U m o
100 1000 4000 8000 16000 24000 32000 64000

Asset Size (bytes)

Ivan Laishevskiy, et al.

Figure 12: Create-Asset performance benchmark results (average Latency rate).

Avg. CPU usage, %

Create-Asset benchmarks (Avg. CPU usage, %)

ZZ2 LevelDB
=1 RocksDB
=S BoltDB

=23 BadgerDB

|27

|21

\ 22

100 1000 4000 8000 16000 24000 32000 64000
Asset Size (bytes)

Figure 13: Create-Asset performance benchmark results (average CPU consumption rate).

2500

2000

1500

RAM usage, MB

1000

Avg

Create-Asset benchmarks (Avg. RAM usage, MB)

| 2569

ZZ1 LevelDB
=1 RocksDB
I BoltDB

=21 BadgerDB

i 2276

]1820

8l fefd &l |3
6

8000 16000 24000 32000
Asset Size (bytes)

100

Figure 14: Create-Asset performance benchmark results (average RAM usage rate).

1549

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

Create-Asset benchmarks (Avg. Total Disk Write, MB/s)

|22

ZZ1 LevelDB
=1 RocksDB
X1 BoltDB

=1 BadgerDB

N 22

N
S

._.
&
\ 15
J1a
[11

Avg. Total Disk Write, MB/s
5

|7.613

8000 16000 24000 32000 64000
Asset Size (bytes)

Figure 15: Create-Asset performance benchmark results (average Disk Writes per second rate).

7. ANALYSIS OF COLLECTED PERFORMANCE DATA

7.1 RAM

Get-Asset generally showed higher RAM consumption than Create-Asset for all StateDBs (FIG-
URE 9 and FIGURE 14). It is clear that RocksDB and BadgerDB require more RAM at the current
settings of both StateDBs than their competitors — goleveldb and bbolt.

Let’s try to understand the reason for BadgerDB’s increased RAM usage. For the same total (al-
loc_space) bytes in the HLF with goleveldb and in the HLF with BadgerDB, we compared directly
the allocated volume of each StateDB. As expected for BadgerDB, this volume was significantly
larger: with the total same allocated bytes of the two HLF-StateDB networks, BadgerDB showed
a total allocated volume of 5GB more than goleveldb. This indicates that BadgerDB requires more
RAM to run.

BadgerDB functions showed increased allocations:

* badger.(*DB).flushMemtable,

* table.(*Builder).handleBlock,

* badger.(*levelsController).subcompact,
* badger.(*DB).writeRequests.

The amount of memory used in the moment (inuse_space) for BadgerDB was also higher by 300MB.
BadgerDB functions that used memory:

* badger.(*DB).flushMemtable,
* badger.(*DB).doWrites,

1550

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

* table.(*Builder).handleBlock.

Overall, there is no huge difference between total inuse space, which suggests also some hidden
use of RAM in BadgerDB. An analysis of online discussions on this topic reveals potentially several
reasons:

» Using BadgerDB’s default options, which can cause an increased cache size, for example. A
list of options which affect RAM is given in [55], which can also affect the amount of total
bytes allocated;

* The lack of the automatic garbage collector in Golang in BadgerDB [55].

7.2 Disk Writes for Create-Asset benchmark

The average write speeds shown in FIGURE 15 are well below the maximum possible write speeds
for this machine configuration (see Table 2). Analysing the metrics in grafana [56], it was found
that write speeds for all databases periodically reach their maximum value, but only for transaction
sizes of 24KB and above. Their average write speed, however, is still lower than the maximum
possible speed due to constant speed bumps — see FIGURE 16.

Disk Write Speed (MB/s)

| Al \,M }\
) \“\ M \ il m‘\ }

0 1l ‘W\“w (’
M‘J y

[VN IO —\/r“”” Y ‘\‘ \v‘ « { |
0 —JlJ V V L

23:00 23:05 23:10 23:15 23:20 23:25 23:30 23:35 23:40 23:45 23:50

Figure 16: The sequential change in disk write speed over time for each type of value in the Create-
Asset performance benchmark for one of the loaded StateDBs. From 23:01 and onwards
in 5 min intervals the values 100, 1000, 4000, 8000, 16000, 24000, 32000, 64000 bytes
were written to the StateDB in turn.

As already mentioned in 3, the efficient use of HLF resources leaves a lot to be desired, so there is
not a 100% load on disk and CPU consumption for any StateDB. On the other hand, the presence
of an abundance of locks is also the reason for not 100% CPU utilization.

8. RELATED WORK

Several studies have investigated the bottlenecks in Hyperledger Fabric with a specific focus on
enhancing scalability and optimizing the performance of the state database [57]. Thakkar et al.
[16] conducted an extensive analysis of configurable parameters and proposed optimizations to
improve throughput and transaction latency [58, 59]. They identified significant bottlenecks such

1551

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

as crypto operations, transaction validation, and multiple API calls to CouchDB. Nakaike et al. [60]
focused on the performance analysis of database systems used in Hyperledger Fabric, particularly
GoLevelDB. Their investigation revealed data compression and database size as major performance
bottlenecks. Additionally, accessing multiple values split from a single large value was observed to
be slower than accessing the single large value.

In a comprehensive analysis of the execute-order-validate transaction model in Hyperledger Fabric
v1.1, the authors in [61] examined the system’s scalability and performance. They highlighted the
communication overhead between the execution and ordering phase as a critical bottleneck and
demonstrated the impact of scaling the Kafka cluster used for ordering. Scalability analysis of
endorsing peers, ordering service nodes, and the performance characteristics of each phase of the
transaction life cycle were investigated in [62, 63]. The study [62] compared the performance of
three ordering services (Kafka, Raft, and Solo) and identified the validation phase as the system
bottleneck due to slow validation speeds.

To evaluate the performance impact of migrating classic workload-oriented applications to blockchain-
based distributed ledger technologies, a study by the authors in [64] introduced a full port of the
TPC-C benchmark to Hyperledger Fabric. The research emphasized the need for application-level
performance benchmarks and presented an open implementation of the TPC-C OLTP benchmark,
addressing the lack of comprehensive macrobenchmarks and workload composition considerations.

Collectively, these studies contribute to the advancement of Hyperledger Fabric’s performance
optimization. They offer valuable insights into parameter configuration, database performance,
transaction model analysis, scalability evaluation, and benchmarking approaches, facilitating the
development of efficient and scalable Hyperledger Fabric solutions for enterprise applications.
However, none of the studies attempted to rethink and replace the state database with a different
database engine to examine its impact on the overall performance of Hyperledger Fabric.

9. CONCLUSIONS AND FURTHER DIRECTION OF WORK

As a result of the research, several databases competing with goleveldb in terms of performance
and functionality were selected. The selected databases were embedded in HLF as StateDB. While
investigating HLF resource consumption, one of the reasons slowing down HLF with the default
of StateDB was discovered and eliminated. Furthermore, performance benchmarks were created
and conducted for each of the possible alternative StateDBs. In the end, a favorite of the potential
StateDBs was identified - BadgerDB.

BadgerDB demonstrated high performance results in the reviewed published papers, had a slight
advantage in the StateDB read performance benchmarks, and showed a decent advantage in the
StateDB write performance benchmarks. BadgerDB had the strongest advantage over goleveldb
for write values of 64KB (TPS is 1.5 times higher). In addition, BadgerDB provides StateDB with
features that were not implemented with goleveldb: it guarantees ACID properties and makes it
possible to use custom queries in HLF by implementing an additional tool [30].

The HLF source code with linked databases is available in the repositories: [48] (RocksDB), [49]
(bbolt), [50] (BadgerDB).

1552

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

To run the performance benchmarks, the HLF fabric-samples/test-network was modified to provide
the minimum required set of network components in order to test the performance of StateDB peer
with the new databases https://github.com/fubss/fabric-samples/tree/dbs_selector.

Based on the Hyperledger Caliper [53] demo, a custom repository was created for the HLF load,
adapted for OS Linux and OS X (in different branches) https://github.com/fubss/caliper-
workspace-3.

In further research, it is suggested that:

* Identify and eliminate other HLF components that slow it down and eliminate repetitive code
fragments;

* Eliminate the increased RAM usage of StateDB BadgerDB by finding the right configuration
with code changes;

» Implement an additional tool for StateDB BadgerDB allowing custom queries to the StateDB.

10. ACKNOWLEDGMENT

We thank Vladimir Chechetkin for embedding BadgerDB and other contributions to the work on
this paper.

References

[1] Manevich Y, Barger A, Assa G. Redacting Transactions From Execute-Order-Validate
Blockchains. In: IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
2021:1-9.

[2] Abou Jaoude J, Saade RG. Blockchain Applications — Usage in Different Domains. IEEE
Access. 2019;7:45360-45381.

[3] Nor SM, Abdul-Majid M, Esrati SN. The Role of Blockchain Technology in Enhancing Islamic
Social Finance: The Case of Zakah Management in Malaysia. foresight. 2021;23:509-527.

[4] Fedorov IR, Pimenov AV, Panin GA, Bezzateev SV. Blockchain in 5-G Networks: Perfomance
Evaluation of Private Blockchain. In: Wave Electronics and Its Application in Information and
Telecommunication Systems (Weconf). IEEE Publications. 2021:1-4.

[5] https://hyperledger-fabric.readthedocs.io/en/latest/
[6] https://www.hyperledger.org/learn/case-studies

[7] Barger A, llina O, Zemtsov A, Tagirova K. Trustful Charity Foundation Platform Based on
Hyperledger Fabric. In: IEEE International conference on omni-layer intelligent systems
(COINS). IEEE Publications. 2022:1-6.

[8] https://www.hyperledger.org/use/fabric

1553

https://github.com/fubss/fabric-samples/tree/dbs_selector
https://hyperledger-fabric.readthedocs.io/en/latest/
https://www.hyperledger.org/learn/case-studies
https://www.hyperledger.org/use/fabric

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

[9] Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, et al. Hyperledger Fabric: A
Distributed Operating System for Permissioned Blockchains. In: Proceedings of the thirteenth
EuroSys conference. 2018:1-15.

[10] Barger A, Manevich Y, Meir H, Tock Y. A Byzantine Faulttolerant Consensus Library for
Hyperledger Fabric. In: IEEE International conference on blockchain and cryptocurrency
(ICBC).2021:1-9.

[11] Papadimitriou CH, Kanellakis PC. On Concurrency Control by Multiple Versions. ACM Trans
Database Syst. 1984;9:89-99.

[12] Nakaike T, Zhang Q, Ueda Y, Inagaki T, Ohara M, et al. Hyperledger Fabric Performance
Characterization and Optimization Using Goleveldb Benchmark. In: IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). 2020:1-9.

[13] https://github.com/syndtr/goleveldb
[14] https://lists.hyperledger.org/g/fabric/message/10357
[15] https://wiki.hyperledger.org/display/fabric/Fabric+Strategic+Priorities+-+2021+discussion

[16] Thakkar P, Nathan S, Viswanathan B. Performance Benchmarking and Optimizing Hyper-
ledger Fabric Blockchain Platform. In: 26th international symposium on modeling, analysis,
and simulation of computer and telecommunication systems (MASCOTS). IEEE Publications.
2018:264-276.

[17] https://hyperledger.github.io/caliper-benchmarks/fabric/performance/2.1.0/nodeContract/
nodeSDK/configuration/

[18] https://pkg.go.dev/net/http/pprof

[19] https://github.com/felixge/fgprof

[20] https://github.com/felixge/fgtrace

[21] https://github.com/hyperledger/fabric/commit/f17d1d934ca2{65740561106277b90c7eeecS5fa89
[22] https://github.com/hyperledger/fabric/compare/main...fubss:fabric:leveldb-tune-4

[23] https://couchdb.apache.org/

[24] Podgorelec B, Turkanovic M, Sestak M. A brief review of database solutions used within
blockchain platforms. In International Congress on Blockchain and Applications. Springer;
2020:121-130.

[25] https://github.com/facebook/rocksdb

[26] https://github.com/linxGnu/grocksdb

[27] https://github.com/smallnest/kvbench

[28] https://github.com/facebook/rocksdb/wiki/Features-Not-in-Level DB
[29] https://github.com/asdine/storm

[30] https://github.com/timshannon/badgerhold

1554

https://github.com/syndtr/goleveldb
https://lists.hyperledger.org/g/fabric/message/10357
https://wiki.hyperledger.org/display/fabric/Fabric+Strategic+Priorities+-+2021+discussion
https://hyperledger.github.io/caliper-benchmarks/fabric/performance/2.1.0/nodeContract/nodeSDK/configuration/
https://hyperledger.github.io/caliper-benchmarks/fabric/performance/2.1.0/nodeContract/nodeSDK/configuration/
https://pkg.go.dev/net/http/pprof
https://github.com/felixge/fgprof
https://github.com/felixge/fgtrace
https://github.com/hyperledger/fabric/commit/f17d1d934ca2f65740561f06277b90c7eee5fa89
https://github.com/hyperledger/fabric/compare/main...fubss:fabric:leveldb-tune-4
https://couchdb.apache.org/
https://github.com/facebook/rocksdb
https://github.com/linxGnu/grocksdb
https://github.com/smallnest/kvbench
https://github.com/facebook/rocksdb/wiki/Features-Not-in-LevelDB
https://github.com/asdine/storm
https://github.com/timshannon/badgerhold

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

[31] Henry G. Howard Chu on Lightning Memory-Mapped Database. IEEE Softw. 2019;36:83-87.
[32] https://github.com/LMDB/Imdb

[33] https://github.com/bmatsuo/Imdb-go

[34] https://github.com/boltdb/bolt

[35] https://github.com/etcd-io/bbolt

[36] https://medium.com/@smallnest/go-k-v-databases-benchmark-cd051279ef22

[37] https://github.com/akrylysov/pogreb

[38] https://github.com/tidwall/buntdb

[39] https://github.com/nutsdb/nutsdb

[40] https://github.com/dgraph-io/badger

[41] https://github.com/cockroachdb/pebble

[42] https://dgraph.io/blog/post/badger-lmdb-boltdby

[43] https://dgraph.io/blog/post/badger

[44] https://golangexample.com/rosedb-an-embedded-and-fast-k-v-database-based-on-Ism-wal/
[45] https://github.com/flower-corp/rosedb

[46] https://github.com/hyperledger/fabric/commit/6656f72563c73a806dee7068dd91b3acf2a286aa
[47] https://github.com/linxGnu/grocksdb/issues/62

[48] https://github.com/fubss/fabric/tree/grocksdb-30

[49] https://github.com/fubss/fabric/tree/bbolt-30

[50] https://github.com/fubss/fabric/tree/badger-30

[51] https://github.com/hyperledger/caliper

[52] https://www.hyperledger.org/learn/publications/blockchain-performance-metrics#definitions
[53] https://github.com/hyperledger/caliper-benchmarks

[54] https://github.com/fubss/caliper-workspace-3/blob/main/smart-contract/go/
FixedAssetContract.go

[55] https://dgraph.io/docs/badger/get-started
[56] https://grafana.com/

[57] Nasir Q, Qasse 1A, Abu Talib M, Nassif AB. Performance Analysis of Hyperledger Fabric
Platforms. Secur Commun Netw. 2018:2018:1-14.

[58] Sukhwani H, Wang N, Trivedi KS, Rindos A. Performance Modeling of Hyperledger
Fabric (Permissioned Blockchain Network). IEEE 17th International Symposium on Network
Computing and Applications (NCA). IEEE Publications. 2018:1-8.

1555

https://github.com/LMDB/lmdb
https://github.com/bmatsuo/lmdb-go
https://github.com/boltdb/bolt
https://github.com/etcd-io/bbolt
https://medium.com/@smallnest/go-k-v-databases-benchmark-cd051279ef22
https://github.com/akrylysov/pogreb
https://github.com/tidwall/buntdb
https://github.com/nutsdb/nutsdb
https://github.com/dgraph-io/badger
https://github.com/cockroachdb/pebble
https://dgraph.io/blog/post/badger-lmdb-boltdb/
https://dgraph.io/blog/post/badger/
https://golangexample.com/rosedb-an-embedded-and-fast-k-v-database-based-on-lsm-wal/
https://github.com/flower-corp/rosedb
https://github.com/hyperledger/fabric/commit/6656f72563c73a806dee7068dd91b3acf2a286aa
https://github.com/linxGnu/grocksdb/issues/62
https://github.com/fubss/fabric/tree/grocksdb-30
https://github.com/fubss/fabric/tree/bbolt-30
https://github.com/fubss/fabric/tree/badger-30
https://github.com/hyperledger/caliper
https://www.hyperledger.org/learn/publications/blockchain-performance-metrics#definitions
https://github.com/hyperledger/caliper-benchmarks
https://github.com/fubss/caliper-workspace-3/blob/main/smart-contract/go/FixedAssetContract.go
https://github.com/fubss/caliper-workspace-3/blob/main/smart-contract/go/FixedAssetContract.go
https://dgraph.io/docs/badger/get-started
https://grafana.com/

https://www.oajaiml.com/ | October 2023 Ivan Laishevskiy, et al.

[59] Swathi P, Venkatesan M. Scalability Improvement and Analysis of Permissioned-Blockchain.
ICT Express. 2021;7:283-289.

[60] Nakaike T, Zhang Q, Ueda Y, Inagaki T, Ohara M, et al. Hyperledger Fabric Performance
Characterization and Optimization Using Goleveldb Benchmark. In: IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). 2020:1-9.

[61] Nguyen MQ, Loghin D, Dinh TTA. ’Understanding the Scalability of Hyperledger Fabric.
2021. Arxiv preprint:https://arxiv.org/pdf/2107.09886.pdf

[62] Wang C, Chu X. Performance Characterization and Bottleneck Analysis of Hyperledger
Fabric. In 2020 IEEE 40th International Conference on Distributed Computing Systems
(ICDCS) IEEE Publications. 2020:1281-1286.

[63] Foschini L, Gavagna A, Martuscelli G, Montanari R. Hyperledger Fabric Blockchain:
Chaincode Performance Analysis. ICC 2020-2020 IEEE International Conference on
Communications (ICC). 2020:1-6.

[64] Klenik A, Kocsis I. Porting a Benchmark With a Classic Workload to Blockchain: Tpc-C
on Hyperledger Fabric. In: Proceedings of the 37" ACM/SIGAPP symposium on applied
computing. 2022:290-298.

1556

https://arxiv.org/pdf/2107.09886.pdf

	INTRODUCTION
	BACKGROUND
	Hyperledger Fabric
	State Database
	GoLevelDB
	CouchDB
	State Database Configuration
	Performance Baseline
	Profiler Analysis

	OPPORTUNITIES FOR LOW-EFFORT, HIGH-IMPACT IMPROVEMENTS
	Alternative Statedbs Selection
	Criteria for Choosing an Alternative StateDB
	Selecting RocksDB
	Selecting bbolt
	Selecting BadgerDB
	A Few Comments About Other Key-Value Storages

	ALTERNATIVE STATEDBS INTEGRATION
	Components Requiring Changes to the HLF
	stateNameOfDB.go file
	NameOfDB_provider.go file
	NameOfDB_helper.go file

	Embedding RocksDB into HLF
	Embedding bboltdb and BadgerDB into HLF

	BENCHMARKS FOR EMBEDDED STATEDB IN HLF
	Get-Asset Performance Benchmark
	Create-Asset performance benchmark

	ANALYSIS OF COLLECTED PERFORMANCE DATA
	RAM
	Disk Writes for Create-Asset benchmark

	RELATED WORK
	CONCLUSIONS AND FURTHER DIRECTION OF WORK
	ACKNOWLEDGMENT

