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Abstract
In this work, we aim to confirm the impact of the Fourier series on the quantum machine
learning model. We will propose models, tests, and demonstrations to achieve this objective.
We designed a quantum machine learning leveraged on the Hamiltonian encoding. With a
subtle change, we performed the trigonometric interpolation, binary and multiclass classi-
fier, and a quantum signal processing application. We also proposed a block diagram of
determining approximately the Fourier coefficient based on quantum machine learning. We
performed and tested all the proposed models using the Pennylane framework.

Keywords: Quantum computing, Quantum machine learning, Fourier series, QML, QSP,
Interpolation, Regression model, Quantum classifiers.

1. INTRODUCTION

The Fourier series, adept at decomposing complex functions into simpler trigonometric components,
aligns seamlessly with quantum computing’s intrinsic properties, such as superposition and interfer-
ence. This synergy results in a more effective and precise representation of quantum information,
significantly enhancing data processing, analysis, and exploring periodic patterns within quantum
data. This work delves into the profound advantages of Fourier series applications in Quantum
Machine Learning (QML), contrasting their unique alignment with quantum computing against
conventional methodologies.
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The Fourier series is a mathematical tool that allows us to model any arbitrary periodic signal with
a combination of sines and cosines. Its main advantage is that more signal information is needed
during the transformation from one domain to another. Indeed, this series does not exist for all
signals (Dirichlet conditions [1]); however, in various fields and sectors, the Fourier series is the
tool used to transform a signal from the time domain to the frequency domain, breaking it down into
harmonically related sinusoidal functions. In quantum computing and specifically in the branch of
quantum machine learning (QML), a quantum model is described by a parametric function 𝑓 (𝑥, 𝜃)
subject to some independent variables 𝑥 that could be our input data and some parameters 𝜃 that
help our function to attempt to generalize itself across the input data. Taking this into account and
knowing the tremendous impact that the Fourier series has on signal processing, it is therefore of
great interest to analyze and experiment to see how the Fourier series impacts the quantum models
thus, if it could help us in quantum trigonometric interpolation techniques, regression models, etc.
In this article, we will highlight the importance of the Fourier series in solving real problems with
quantum machine learning. We will also propose a generic quantum circuit that, with little change,
can help us solve classification problems, interpolation for banking problems, and signal processing,
among others. Complementing this, our method incorporates classical preprocessing techniques to
optimize the interplay between data and quantum algorithms. By normalizing and adapting data, we
ensure coherent and quantum-compatible inputs, thereby maximizing the efficiency of information
encoding within quantum circuits. This holistic approach not only elevates the performance of
quantum algorithms but also fosters innovation in the rapidly evolving domain of QML, highlighting
the integral role and potential of the Fourier series at the vanguard of this field.

The document is organized as follows. Section 2 presents our primary motivation behind this work.
Section 3 shows previous work on Fourier series-based quantum machine learning and the simula-
tion of the dynamical behavior of a system. Section 4 will present the quantum machine learning
framework and its connection to the Hamiltonian simulation. In section 5, we propose the scenarios
and the models we will implement to highlight the Fourier Series on quantum machine learning
applications. Section 6 analyses our model, taking into account some steps from the quantum
model’s universality. Section 7 presents the obtained results. Section 8 discusses practically relevant
results and their implications, and finally, Section 9 concludes the work carried out, and we open
ourselves to some future lines of the proposed model.

2. MOTIVATION

Our primary motivation is to understand the QML model as a Fourier series to join the area of
digital signal processing with quantum computing, both analytically and statistically, which is part
of quantum machine learning.

3. RELATEDWORK

In quantum computing, one of the most demanding problems is the simulation of the Hamiltonian.
Hamiltonian simulation is a problem that requires algorithms that efficiently implement a quantum
state’s evolution. Richard Feynman proposed the Hamiltonian simulation problem in 1982, where
he proposed a quantum computer as a possible solution since the simulation of general Hamiltonians
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seems to grow exponentially concerning the size of the system. Nowadays, this problem is reflected
in almost all the systems under study, where we want to analyze the physical design and dynamics
within a computational model.

The Hamiltonian simulation problem is defined by the Schrödinger equation, where it gives a
Hermitian matrix 𝐻 (2𝑛 × 2𝑛) that acts on 𝑛 qubits in a time 𝑡 and a maximum simulation error (𝜖),
whose goal is to find an algorithm that approximates an operator 𝑈 such that | |𝑈 − (𝑒−𝑖𝐻𝑡 ) | | ≤ 𝜖 .
Where 𝑒−𝑖𝐻𝑡 is the ideal evolution.

The quantum simulation of the dynamical behavior of a system is usually executed in polynomial
time 𝑃, 𝐵𝑄𝑃, etc. But its Hamiltonian matrix grows exponentially 2𝑛×2𝑛 relating to the 𝑛 qubits of
the systems under study. Thus, techniques are sought to tackle the best solution assuming an error.
There are two strategies, Julius Caesar (divide and conquer) and the quantum walk algorithm [2, 3].
A helper is a Local Hamiltonian for some specific Hamiltonians. A k-local Hamiltonian [4], is a
Hermitian matrix acting on 𝑛 qubits that can be represented as the sum 𝑚 of the Hamiltonian terms
acting on each of the qubits at most: 𝐻 =

∑
𝑖 𝐻𝑖. This also gives rise to d-sparse [5]. A Hamiltonian

is said to be d-sparse (on a fixed basis) if it has at most 𝑑 nonzero entries in any row or column.

From the Divide and conquer, the first step breaks down the Hamiltonian into a sum of small and
straightforward Hamiltonians, and the second step has the objective of recombining the sums of
small and straightforward Hamiltonians. To do this, there are three great techniques.

1. The first technique is one of the mature approaches, which is 𝑒−𝑖 (𝐴+𝐵)𝑡 where 𝐴 and 𝐵 are the
small and straightforward Hamiltonians in an approximation of (𝑒−𝑖𝐴𝑡/𝑟𝑒−𝑖𝐵𝑡/𝑟 )𝑟 for large a
real value 𝑟 [6].

2. The second technique combines a Linear Combination of Unitaries (LCU) [7–9], and the
Oblivious Amplitude Amplification (OAA) [10–12].

3. The latest newest technique is the Quantum Signal Processing (QSP) [13, 14].

In contrast, computing a system’s ground state energy optimizes a given system’s global property.
Usually, this problem is very demanding (NP-Hard). The most known problem is calculating the
minimum expectation value of a quantum circuit 〈𝜙 |𝐻 |𝜙〉 overall |𝜙〉.

There are two ways to solve this problem using the Top-Down philosophy and statistical methods.
On the one hand, the Top-Down is where analytical techniques are applied. Conversely, statistical
methods (like QML) are sought through the variational principle, where a model approximates the
solution. This paper will focus on the second case and highlight the relationship between the two
resolution approaches.

In this research, we build upon the foundational work [15], and [16], who have previously explored
the representation of quantum models as Fourier series. While several studies [15, 17–21], have
delved into techniques pertinent to our chosen approach, our work uniquely extends these concepts.
The existing literature, notably [16], offers an insightful framework for establishing foundational
intuitions in Quantum Signal Processing (QSP) and Quantum Machine Learning (QML). These
studies present intriguing practical approaches, yet they often grapple with the inherent complexities
of the subject matter, primarily focusing on the theoretical advantages of data processing. Our
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article aims to further this exploration in three critical ways. First, we seek to substantiate the natural
propensity of quantummodels to learn periodic patterns within data. Second, we explore the Fourier
series representation in the context of time series learning and signal processing tasks, asserting
its essential role in trigonometric interpolation for QML applications. Third, we experiment with
and propose a quantum circuit design similar to a neural network, adaptable for interpolation and
classification tasks. Advancing beyond the theoretical insights of [15, 16], our research significantly
contributes to the practical application of these theories. We offer a comprehensive methodology
for the pragmatic computation of Fourier coefficients, tailoring our approach to specific use cases
in classification and trigonometric interpolation. Our work bridges the gap between abstract mathe-
matical theories and real-world computational implementations in QML by harmonizing theoretical
rigor and practical applicability. It sets a new standard in the field. We aim to showcase the efficacy
and flexibility of our method, offering robust solutions to the intricate challenges of quantum data
processing and thereby establishing a new benchmark in the realm of Quantum Machine Learning.

4. QUANTUMMACHINE LEARNING

Quantum machine learning (QML) [3, 22, 23], explores the interplay and takes advantage of quan-
tum computing and machine learning ideas and techniques.

Therefore, quantum machine learning is a hybrid system involving both classical and quantum
processing, where computationally complex subroutines are given to quantum devices. QML tries
to take advantage of the classical machine learning does best and what it costs, such as distance
calculation (inner product), passing it onto a quantum computer that can compute it natively in the
Hilbert vector space. In this era of extensive classical data and few qubits, themost common use is to
design machine learning algorithms for classical data analysis running on a quantum computer, i.e.,
quantum-enhanced machine learning [3, 24–30]. The usual supervised learning processes within
quantum machine learning can be defined as follows:

• The quantum feature map: It is the data preparation. In the literature, this stage is recognized
as State preparation.

• The quantum model: It is the model creation. In the literature, it is recognized as unitary
evolution.

• The classical error computation: It is the stage of computing the error where the model best
approximates the input set; in machine learning, this stage is known as a prediction.

• Observable: Normally, this stage is included in the error computation. The observable mani-
fest as linear operators on a Hilbert space represents quantum states’ state space. The eigenval-
ues of observable are real numbers corresponding to possible values; the dynamical variable
defined by the observable can be measured. We use Pauli’s operators as observable. Never-
theless, we can use some linear combination 6 of these operators or some approximation 7
from them to deal with specific measurements.
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4.1 Feature Map

This article deals exclusively with classical data; we receive classical data, and a quantum computer
processes it and returns the outcome after the measurement. There are other (three additional)
approaches and combinations to process classical or quantum data with hybrid computation [3].
In quantum machine learning techniques, some fundamental operations called embedding are per-
formed to treat classical data. The embedding process is summarized as classical encoding inputs
into quantum states. In the literature, several techniques and their relative associated computational
costs are found in these references [3, 16, 20, 31, 32]. We call theFeatureMap the container carrying
out said mapping operation (embedding). The embedding encoding can be amplitude, phase, base,
or Hamiltonian, which is the crucial process of QML operations [3].

This work follows the data encoding Hamiltonians idea, which is described as follows: For any
unitary matrix 𝐴, there is a real vector (𝛼, 𝛽, 𝛾, 𝛿) such that 𝐴 = 𝛼𝐼 + 𝛽𝑋 + 𝛿𝑌 + 𝛾𝑍 . For large
enough 𝑟, the following equation holds 𝑒−𝑖 (𝐻𝐴+𝐻𝐵 )𝑡 ≈ (𝑒−𝑖𝐻𝐴𝑡/𝑟𝑒−𝑖𝐻𝐵𝑡/𝑟 )𝑟 using the Trotter Suzuki
formula [10], which implies that if 𝑟 scales as 𝑚2𝑡2/𝜖 , the error can be at most 𝜖 for any 𝜖 > 0.

More accurate approximations can be generated by constructing a sequence of exponential operators
such that the error terms cancel. Themost straightforward formula, which is the second-orderTrotter
Suzuki formula [33], takes the form as follows:

𝑈2(𝑡) :=
(

𝑚∏
𝑗=1

𝑒 (−𝑖𝐻 𝑗
𝑡

2𝑟 )
𝑚∏
𝑗=1

𝑒 (−𝑖𝐻 𝑗
𝑡

2𝑟 )
)𝑟
, (1)

where the error can be given to less than 𝜖 for any 𝜖 > 0 when choosing 𝑟 to scale as 𝑚3/2𝑡3/2/√𝜖 .

One of the alternative ways to encode the data is by amplitude into a quantum state given by
complex continuous data represented as complex values 𝑨 ∈ C2𝑁 :

𝑨 = (𝑎0, . . . , 𝑎2𝑁−1) ↦→
2𝑁−1∑
𝑘=0

𝑎𝑘 |𝑘〉, (2)

with:
‖𝑨‖ = 1. (3)

In the typical design of the quantummodel (see FIGURE 1), the feature map is usually seen fixed as
the only block at the beginning of the quantum circuit and without repetition. Said design/strategy
does not help the quantum model generalize the parameterized function better as a neural network,
and our proposed model will strongly consider this fact.

4.2 The model

This paper focuses on supervised learning applications to drive this section. Quantum models are
parameterizable univariate or multivariate functions. The quantum gates that help to define the
parameterizable functions are 𝑅𝑋 , 𝑅𝑌 , and 𝑅𝑍 . Considering a quantum computer is a stochastic
machine, to have a deterministic quantummodel, the output of our model must be an expected value
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Figure 1: This figure is the standard quantummachine learningmodel in the literature with only one
embedding block and an Ansatz as a parameterized quantum circuit with 𝑚 parameters.
This model has a limitation: in the worst case, when the input data is not very well coded,
for many parameters 𝑚 we add to our parametric function/circuit, we cannot find the best
model that generalizes the input data. There have been various design proposals for how
a quantum circuit should be [32, 34, 35].

(here, considering the computation basis 𝑝(0) − 𝑝(1)). That is, we must average the stochastic
quantum computer’s outcome. An example of a quantum model is given as follows:

𝑓𝜽,𝜷 (𝑥) = 〈0|𝑈†(®𝑥, 𝛽, ®𝜃)𝑂𝑈 (®𝑥, 𝛽, ®𝜃) |0〉 , (4)

Where 𝑂 is our observable,𝑈 (®𝑥, 𝛽, ®𝜃) the parameterized circuit with the input data ®𝑥, 𝛽, the scaling
factor and ®𝜃, the parameterized variable.

4.3 The Error Calculation

The error analysis of a QML is identical to the phases of the classical machine learning process.
Error analysis allows us to know how to improve the performance of our quantum model. Equation
5 helps to analyze the training errors.

𝑞_𝑒𝑟𝑟 =

√√(
1
𝑛

) 𝑛∑
𝑖=1

(𝑞_𝑚𝑜𝑑𝑒𝑙 (®𝑥, 𝜃𝑖) − 𝐿𝑎𝑏𝑒𝑙𝑖)2 (5)
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4.4 The Observable

In a quantum circuit, the observable determines the form and the function’s degree we use to classify
or interpolate. For example, in the case of linear classification, the observable defines the linear form
that the model will try to adapt to the input data better.

In our case, we use the computational basis 𝑍 . However, we can use the observable, such as above
mentioned:

𝑂 =
∑

𝑃∈{𝐼,𝑋,𝑌 ,𝑍 }⊗𝑛
𝛼𝑝𝑃, (6)

and
𝑂(low) =

∑
|𝑃 | ≤𝑘

𝛼𝑝𝑃. (7)

4.5 Limitations of the Proposed Quantum Machine Learning Framework

Despite the promising advancements presented in our QML framework, it is imperative to acknowl-
edge and address its inherent limitations. This critical examination provides a balanced perspective
of our work and paves the way for future research directions. The current state of quantum comput-
ing hardware [36, 37], is at the forefront of our limitations. The qubits’ scarcity and susceptibility
to errors and decoherence significantly cap the complexity and size of the models we can reliably
implement. Furthermore, the scalability of quantum hardware remains a paramount challenge, as
increasing the number of qubits often leads to heightened error rates and resource management
complexities. The design and implementation of QML algorithms pose their unique challenges.
Still in its nascent stages, Quantum programming requires a deep understanding of determining
the barren plateau [38]. Additionally, the optimal design of quantum algorithms that can fully
leverage the theoretical capabilities of quantum computing remains an area of ongoing research.
While these limitations delineate the current boundaries of our framework, they also highlight
critical areas for future investigation. Addressing these challenges will refine our existingmodel and
contribute significantly to the broader field of QML. Our ongoing research efforts are thus dedicated
to exploring these avenues to achieve more robust, scalable, and accessible quantum computing
applications [39, 40].

5. IMPLEMENTATION

The scenarios we follow to validate our experimentation are in FIGURE 2. The first scenario is a
univariate function. This function will be a sine, a cosine, a logarithm, and a rectangular pulse. The
second scenario is a multivariate function, an arithmetic operation on 𝑚 univariate functions. The
third scenario is where the input data is regrouped in a classical dataset. Said dataset results from
a study on classical machine learning models and statistical events. However, the data can be from
any analysis, even if quantum processes after being observed.
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Figure 2: Scenario (a) will be a univariate function. This function will be a sine, a cosine, a
logarithm, and a rectangular pulse. Scenario (b) is a multivariate function that can be
an arithmetic operation on 𝑚 univariate functions. Scenario (c) is where the input data is
regrouped in a classical dataset. Said dataset is the result of a study on classical machine
learning models. However, the data can be from any analysis, even if quantum processes
after being observed.

5.1 Our Quantum Model

Based on the following work [16], where the authors studied the expressivity of the quantum model
with a Pauli-rotation and later extended their study in the generality of the quantum model as a
Fourier series, we aim to extend said the investigation into a demanding quantum circuit for machine
learning. To realize our study, we have defined a quantum variational Feature Map together with a
quantum variational circuit that, taking advantage of its mixture, can behave like a proper quantum
neural network and, then verify the Fourier series’ weight in those quantummodels (see FIGURE 3).
With a few subtle changes in the created quantum model, we have performed regression operations,
classifications, and trigonometric interpolation. Let 𝐹 (®𝑥, 𝛽𝑖) be our feature map and 𝑉 ( ®𝜃𝑖) be the
variational quantum circuit, so the proposed model can be written as follow:

𝑈 (®𝑥, 𝛽, ®𝜃) = 𝐹 (®𝑥, 𝛽)𝑉 ( ®𝜃), (8)

where ®𝑥 is the input data, 𝛽, the scaling factor, and ®𝜃 the parameter.

5.2 Scalability and Adaptability of the Proposed Model

In addressing scalability and adaptability, our model represents a significant advancement in QML.
This section elucidates how our proposed framework scales with increasing data complexity and
adapts to various quantum computing architectures. Our model’s scalability is a pivotal feature
designed to handle the exponential growth of quantum states as system size increases. By leveraging
efficient quantum circuit designs and optimizing qubit usage, we ensure that our model remains
computationally feasible even as the number of qubits grows. Additionally, we discuss the imple-
mentation strategies employed to mitigate issues related to quantum noise and error rates, which
typically escalate with larger quantum systems. Our proposed model’s enhanced scalability and
adaptability mark a substantial contribution to the field of QML. By addressing these fundamental
aspects ( trigonometric interpolation and classifiers), we pave the way for more versatile and power-
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Figure 3: This is the model we use to analyze the weight of the Fourier series in quantum machine
learning. Depending on some scaling parameters 𝛽 and the input data ®𝑥, the Feature Map
will be responsible for coding our data. We rely heavily on the fact that the Feature Map
(𝐹 (®𝑥, 𝛽)) must be variational, that the data’s loading is repeated in all the layers, and
that the variational circuit (𝑉 ( ®𝜃)) searches the best function within the space of functions
that defines the capacity of the variational circuit (𝑈 (®𝑥, 𝛽, ®𝜃) = 𝐹 (®𝑥, 𝛽)𝑉 ( ®𝜃)). With
this configuration, we get closer to a quantum neural network that interpolates like a
trigonometric function or classifies depending on the problem.

ful quantum computing applications, responding to the burgeoning needs of this rapidly advancing
field.

6. FOURIER SERIES BASED ON QUANTUM CIRCUIT

In this session, we recover the work [16], on the quantum model’s universality and will adapt it to
our case.

Based on [16, 41], where the authors demonstrated the universality of their theorem, considering
the multivariate function of equation 4. We follow the steps described in said work and confirm that
𝑓 (𝑥) follows the Fourier series decomposition for one layer. For that, let us recall the equation 4,
which adapts it to the definition of the proposed feature map 𝐹 (®𝑥, 𝛽) and variation quantum circuit
𝑉 ( ®𝜃𝑖) as follow.

𝑓 (𝑥) = 〈0|𝑈†(®𝑥, ®𝜃, 𝛽)𝑂𝑈 (®𝑥, ®𝜃, 𝛽) |0〉 , (9)
where

𝑈 ( ®𝜃, 𝛽, ®𝑥) = 𝑉 (2) ( ®𝜃 (2) )𝐹 (®𝑥, 𝛽)𝑉 (1) ( ®𝜃 (1) ), (10)
with ®𝜃 (1) , ®𝜃 (2) ⊆ ®𝜃 and recalling the equation 8, we can re-write it as follows:

𝐹 (®𝑥, 𝛽) = 𝑒−𝑖𝑥1𝛽𝐻1 ⊗ . . . ⊗ 𝑒−𝑖𝑥𝑁 𝛽𝐻𝑁 . (11)

If we make the assumption that 𝐻𝑝 is diagonal and its eigenvalues are {𝜆𝑝
1 , . . . , 𝜆

𝑝
𝑁 }, so, 𝐻𝑝 =

𝑑𝑖𝑎𝑔(𝜆𝑝
1 , . . . , 𝜆

𝑝

2𝑑 ). Let us define Λ as follows:

Λ := (𝜆𝑝
𝑗1, . . . , 𝜆

𝑝
𝑗𝑁 ), (12)
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Let 𝑑 be the number of qubits of our quantum system, let ®𝑗 be { 𝑗1, . . . , 𝑗𝑁 } and ®𝑘 be {𝑘1, . . . , 𝑘𝑁 }
∈ [2𝑑]𝑁 , then, let us define [𝐹 (®𝑥, 𝛽)] as follows taking in account the previous definition:

[𝐹 (®𝑥, 𝛽)] ®𝑗 , ®𝑗 := 𝑒−𝑖 ®𝑥𝛽 · ®Λ ®𝑗 . (13)

Following the same assumption that we will confirm by experimentation on the trainable circuit
blocks 10, we ”drop” the explicit dependence on ®𝜃, and by absorbing 𝑉 (1) into the initial state |Φ〉,
and 𝑉 (2) into the observable 𝑂, consider the following model:

𝑓 (®𝑥) = 〈Φ|𝐹†(®𝑥, 𝛽)𝑂𝐹 (®𝑥, 𝛽) |Φ〉, (14)

where

|Φ〉 =
2𝑑∑

𝑗1,..., 𝑗𝑁=1
𝛼 𝑗1,..., 𝑗𝑁

| 𝑗1〉 ⊗ . . . ⊗ | 𝑗𝑁 〉. (15)

Let us note 𝛼∗®𝑗 and 𝛼®𝑘 as a complex nunmber as follows:

𝛼∗®𝑗 = 𝛼
∗
𝑗1,..., 𝑗𝑁

, (16)

𝛼®𝑘 = 𝛼𝑘1,...,𝑘𝑁 . (17)

Then let us re-write 15 as follows:

|Φ〉 :=
∑
®𝑗

𝛼 ®𝑗 | ®𝑗〉. (18)

Thus, the associated quantum model is defined as follows:

𝑓Fourier(®𝑥) =
∑
®𝑗

∑
®𝑘

𝛼∗®𝑗𝛼®𝑘
𝑂 ®𝑗 , ®𝑘

𝑒𝑖 ®𝑥𝛽 · (
®Λ ®𝑘−®Λ ®𝑗 ) , (19)

where the multi-indices ®𝑗 and ®𝑘 have 𝑁 entries that iterate over all 2𝑑 basis states of the 𝑑 qubit
subsystems. Let us define 𝜔𝐻 as the frequency spectrum of 𝐻 as 𝜔𝐻 = {Λ ®𝑗 − Λ®𝑘 | ®𝑗 , ®𝑘 ∈ [2𝑑]𝑁 }.

The equation 19 is, in fact, a partial multivariate Fourier series, with the accessible frequencies
entirely determined by the spectra of the coding Hamiltonians 𝐻𝑘 and the Fourier coefficients
determined by the unitary estimates.

The strategy we follow to compute the Fourier coefficients of a given function 𝑓 (𝑥) is measuring
the expectation value of the circuit (equation 20) and classically computing the 𝑐𝑛1,...,𝑛𝑁 as an
approximation. In our case, the expectation value of our circuit is given by equation 19, and the
result of the computation is the form of equation 22.

〈𝑂〉 = 〈0|𝑈†(®𝑥, ®𝜃, 𝛽)𝑂𝑈 (®𝑥, ®𝜃, 𝛽) |0〉 (20)

= 〈𝜓(®𝑥, ®𝜃, 𝛽) |𝑂 |𝜓(®𝑥, ®𝜃, 𝛽)〉. (21)

𝑓 (𝑥) =
∑

𝑛1∈𝜔1

· · ·
∑

𝑛𝑁 ∈𝜔𝑁

𝑐𝑛1,...,𝑛𝑁 𝑒
−𝑖𝑥1𝑛1 . . . 𝑒−𝑖𝑥𝑁𝑛𝑁 . (22)
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6.0.1 Our Model as a Trigonometric Interpolation

From the section 6 we can assume that 𝑓 (𝑥) has Fourier series decomposition. So, 𝑓 (𝑥) can be
written as follows:

𝑓 (𝑥) = 𝑐0 +
𝑛−1∑
𝑛=0

𝑐𝑛 (𝜃)𝑒𝑖𝑛𝑥 , (23)

where the Fourier coefficients 𝑐𝑛 are given by:

𝑐𝑛 =
1

√
2𝜋

∫ 2𝜋

0
𝑒−𝑖𝑤𝑥 𝑓 (𝑥)𝑑𝑥, (24)

We assume that the series converges uniformly to 𝑓 (𝑥) thus,

|𝑐𝑛 (𝑤) | ≤
const

|𝑤 |𝑝+1 + 1
. (25)

The Fourier series converges faster for smoother functions (equation 25), which is observed by
integrating equation 23. By increasing the smoothness one step, the Fourier coefficients decay one
step faster as functions of 𝑤. With 𝑝, the 𝑝𝑡ℎ derivative of Fourier coefficients. Which generalizes
with Parseval’s theorem [42].

In the results section, wewill have the test benches we did to confirm that trigonometric interpolation
can be done with the quantum model.

In this case, the number of the loading data, the depth of the quantum circuit, the layer (𝑙), or
repetitions 𝑟 is proportional to the degree of the function to be interpolated.

6.0.2 Hamiltonian Simulation

As we introduced above, the strategy used to encode the data is the Hamiltonian data encoding
defined by equation 1, which allows us to deal with quantum signal processing as a strategy to
recombine the Trotter-Suzuki action on the given Hamiltonian. To validate our quantum model, we
have used this test example: The time evolution of the time-independent Hamiltonian 𝐻 is given by
𝑒𝑖�̂�𝑡 . Considering that 𝐸𝜆 is the energy eigenvalues for eigenstate |𝜆〉, then

𝑒𝑖�̂�𝑡 =
∑
𝜆

𝑒𝑖𝐸𝜆𝑡 |𝜆〉〈𝜆 | =
∑
𝜆

(cos 𝐸𝜆𝑡 + 𝑖 sin 𝐸𝜆𝑡) |𝜆〉〈𝜆 |.

Thus our aim was simulating 𝑝(𝑥) = cos(𝑡𝑥) and 𝑔(𝑥) = sin(𝑡𝑥) for some instant 𝑡. We will discuss
the results obtained in the results 7 and discussion 8 sessions.

6.0.3 Our Model as a Classifier

This session will use the quantum model from equation 9 to achieve the multi-class classifier.
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Let 𝑛 be the number of qubits, let ®𝑥 be a vector of dimension 𝑚, let ®𝜃, a matrix of dimension 𝑛 ×𝑚,
let ®𝛽 the scaler, we can define our model as follows:

𝑈 (®𝑥, ®𝜃, 𝛽) =
𝑛−1⊗
𝑖=0

𝑈𝑖 (®𝑥, 𝛽𝑖 , ®𝜃𝑖), (26)

where:
𝑈𝑖 (®𝑥, 𝛽, ®𝜃𝑖) = 𝐹 ( ®𝑥𝑖 , 𝛽𝑖)𝑉 ( ®𝜃𝑖). (27)

With 𝐹 ( ®𝑥𝑖 , 𝛽𝑖) our feature map function and 𝑉 ( ®𝜃𝑖) our variational quantum circuit as it can be seen
in FIGURE 5.

Figure 4: This figure shows a quantum circuit of one qubit with only one repetition (Layer).
This circuit implements a trigonometric interpolation (Fourier series), where the repeat
frequency of the feature map, thus of the data, defines the angular frequency of the
Fourier series:

∑
𝜔 𝑐𝜔𝑒

𝑖𝜔𝑥 . Our Feature Map, which implements our data encoding
strategy, determines the frequencies 𝜔, and our variational quantum circuit determines
the coefficients 𝑐𝜔. In blue, the function that implements the feature map, with 𝛽, the
scaling hyperparameter, with 𝑥 the input data. Said data is encoded in the 𝑅𝑌 and
𝑅𝑍 parameterized gates. In green is the variational circuit that forms the proposed
parameterized function, with 𝜃, the parameter, one parameter per qubit. Without repeating
the layer and reloading the data 𝑥, this circuit will only learn a 𝑠𝑖𝑛𝑒 or 𝑐𝑜𝑠𝑖𝑛𝑒 function.

Let |𝜓(®𝑥)〉 be a functional quantum state and let 𝑓𝜃𝑖 (𝑥) : R𝑚 → C be complex function. Then,

|𝜓(®𝑥)〉 =
2𝑛−1∑
𝑖=0

𝑓𝜃𝑖 (®𝑥) |𝑖〉 , (28)

2𝑛−1∑
𝑖=0

| 𝑓𝜃𝑖 (®𝑥) |2 = 1. (29)

The circuitU(®𝑥, ®𝜃, 𝛽) approximates the state as

|𝜓(®𝑥)〉 ∼ U(®𝑥, ®𝜃, 𝛽) |0〉⊗𝑛 , (30)

with

U(®𝑥, ®𝜃, 𝛽) =
𝑘∏
𝑖=1

𝑈 (®𝑥 · 𝛽, ®𝜃𝑖), (31)
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Figure 5: This figure shows a quantum circuit of three qubits with only one repetition (Layer).
This circuit implements a trigonometric interpolation (Fourier series), where the repeat
frequency of the feature map, thus of the data, defines the angular frequency of the
Fourier series:

∑
𝜔 𝑐𝜔𝑒

𝑖𝜔𝑥 . Our Feature Map, which implements our data encoding
strategy, determines the frequencies 𝜔, and our variational quantum circuit determines
the coefficients 𝑐𝜔. Each qubit represents a variable of our multivariable function. The
function implements the feature map in blue, with 𝛽, the scaling hyperparameter, with 𝑥
the input data. Said data is encoded in the 𝑅𝑌 and 𝑅𝑍 parameterized gates. In green is the
variational circuit that forms the proposed parameterized function, with 𝜃, our parameter,
one parameter per qubit. We have three. The 𝐶𝑁𝑂𝑇 gates help us interleave the data
so we can only read in the first qubit. This allows us to reduce the effect of the barren
plateau in the case of a classifier.

with better results as the number of layers, repetition 𝑘 increases, and 𝑛 the number of classes.
®𝜃 = { ®𝜃𝑖} is found with classical optimization techniques. Our Cost function (CF) is calculated by
distance( |𝜓(®𝑥)〉 ,U(®𝑥, 𝛽, ®𝜃) |0〉⊗𝑛).

With all the last defined, the prediction of the quantum model for each 𝑥 can be defined as the
expectation value of the observable 𝜎𝑧 concerning the state |𝜓(®𝑥)〉 via our parametrized quantum
circuit as follows:

𝑓𝜽 (𝑥) = 〈0| U†(®𝑥, ®𝜃, 𝛽)𝑂U(®𝑥, ®𝜃, 𝛽) |0〉 , (32)

where 𝑂 is observable that can be one of the Pauli matrices (𝐼, 𝑋,𝑌 , 𝑍).

In the case of the binary classifier given by the FIGURE 4, we measure the expected value of the
proposed quantum circuit, and after the measurement, we make the sign of the output.

Two possible scenarios exist for the multiclass classifier given by FIGURE 5. First, we generalize
the binary classifier, or second, where we work with the probabilities so that, knowing the highest
probability, the class will be known. Although the problem requires many more qubits due to the
input data size, in this case, we use gates like 𝐶𝑁𝑂𝑇 , 𝐶𝑅𝑌 , etc., to entangle the qubits and only
read, for example, at qubit 0. Although the number of classes grows logarithmically, the effect of
the Barren Plateaus [38, 43], is less.
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7. RESULTS

Considering the proposed scenarios, this session will present the results obtained during our exper-
imentation.

7.0.1 Trigonometric Interpolation

This subsection presents the experiments’ results using our trigonometric interpolation model. To
test it, we operate as the input signal, the function sine, cosine, log, saw-tooth, and square. FIG-
URE 6 - FIGURE 8 show the results from the trigonometric interpolation experiments. We define
sample rate frequency to accomplish a Nyquist theorem [44]. Next, we present the results. We have
taken the opportunity to study the Gibbs phenomenon 1 in the square and saw-tooth signals.

7.0.2 Classifiers

In this subsection, we present the results of our experiments with our model in the classification
section. To test the classifier, we have generated four datasets (crown, circle, square, SWP [27, 45]).
FIGURES 12 and FIGURE 13 and TABLE 1 to 3 present the results of the experiments.

Table 1: We can observe from the table and from the outcomes that the proposed model can be used
to perform a classifier. This is the table from studying the binary classifier with two qubits.
In this study, we consider the circuit depth (𝑙), the number of the qubits 𝑛, and the number
of the parameterized gates 𝑚, the number of parameters calculated as 𝑛 ×m × 𝑙. Where 𝑚
is the summation of the parameterized gates of the feature map stage and the variational
quantum algorithm.

Quantum neural classifier (1 qubit)
#Layers #Parameters Accuracy

1 3 52.60
2 6 59.90
3 9 62.60
4 12 66.61
5 15 63.72
6 18 68.85
7 21 67.91
8 24 67.20
10 30 73.91

1 It describes the behavior of the Fourier series associated with a periodic piecewise-defined function in an unavoidable finite jump
discontinuity.
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Figure 6: These graphs show the experiment of four tests with the square signal of 20𝐻𝑧 with the
different number of layers (𝐿) and sample (𝑛) where the behavior of the trigonometric
model on the given input and the decomposition of harmonic frequencies and the Gibbs
phenomenon can be observed. With more high-frequency components, the reconstruction
of the squared signal is achieved. In the first image on the top left, we observe the effect
of the Fourier series approximation with a lower-order polynomial. In this case, with the
number of the layers 𝐿 = 3 and the number of the sample 𝑛 = 20. The second image
above to the right is the same scenario as the previous one but with 𝑛 = 100. In the third
image from the bottom left, we can observe the same input signal of 20𝐻𝑧, this time with
𝐿 = 20 and the number of points 𝑛 = 100. The fourth image from the bottom right shows
the same 20𝐻𝑧 input signal, with 𝐿 = 30 and 𝑛 = 100. We have a scaling parameter 𝛽 to
better interpolate with high-frequency harmonics in all these cases.

8. DISCUSSIONS

We delve deeper into the impactful outcomes of our study, building on the theoretical legacies
established by previous researchers such as [15], and [16]. Three core objectives drive our investi-
gation: firstly, to empirically substantiate the intrinsic capability of quantum models in discerning
and assimilating periodic patterns within datasets; secondly, to illuminate the crucial role of Fourier
series representation in time series analysis and signal processing, especially its critical application
in trigonometric interpolation for Quantum Machine Learning (QML). Additionally, our research
forays into the domain of quantum circuit design, drawing functional parallels with neural networks
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Figure 7: These graphs show the experiment of four tests with the sawtooth signal of 20𝐻𝑧 with
the different number of layers (𝐿) and sample (𝑛) where the behavior of the trigonometric
model on the given input and the decomposition of harmonic frequencies and the Gibbs
phenomenon can be observed. With more high-frequency components, the reconstruction
of the squared signal is achieved. In the first image on the top left, we observe the effect
of the Fourier series approximation with a lower-order polynomial. In this case, with the
number of the layers 𝐿 = 3 and the number of the sample 𝑛 = 20. The second image
above to the right is the same scenario as the previous one but with 𝑛 = 100. In the third
image from the bottom left, we can observe the same input signal of 20𝐻𝑧, this time with
𝐿 = 20 and the number of points 𝑛 = 100. The fourth image from the bottom right shows
the same 20𝐻𝑧 input signal, with 𝐿 = 30 and 𝑛 = 100. We have a scaling parameter 𝛽 to
better interpolate with high-frequency harmonics in all these cases.

and underscoring its practical viability in interpolation (FIGURE 6-FIGURE 8 and FIGURE 11) and
classification tasks (Fig. 13). This exploration validates the theoretical underpinnings of quantum
models and showcases their real-world applicability and versatility. A key accomplishment of our
work lies in bridging the theoretical and practical realms of quantum computing. We introduce a
groundbreaking methodology for calculating Fourier coefficients, meticulously adapted for specific
classification and trigonometric interpolation scenarios. This approach effectively narrows the
divide between abstract mathematical concepts and their practical computational implementations
in QML, harmonizing theoretical depth with pragmatic utility. Our efforts aim to establish new
benchmarks in QML. By demonstrating the effectiveness and adaptability of our methodology, we
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Figure 8: These figures show how the quantum model fits the sine and cosine input signal input.
Several different frequencies have been tested; amplitude modulations have been tested
to analyze how the model follows it. We realized the model limitation on the highest-
frequency input signal.

provide robust answers to the complex challenges of quantum data processing. This advancement
validates our theoretical models and places our approach at the vanguard of QML. Our contributions
will be a foundational reference, guiding future research and applications in the evolving intersection
of quantum computing andmachine learning. Moreover, the proposedmodel in our study introduces
a transformative approach tomachine learning, with a particular emphasis on hyperparameter tuning
as discussed in [28]. This model surpasses traditional limitations, facilitating a more effective and
expansive exploration of hyperparameter spaces. Utilizing the strengths of quantum computing, it
enables a quicker, more thorough search of potential configurations, offering distinct advantages
over classical methods, especially in situations constrained by time or computational resources.
Quantum computing also holds the potential to revolutionize optimization challenges by dimin-
ishing the search space and boosting performance. Its ability to handle vast solution spaces and
conduct intricate calculations more efficiently could significantly expedite the process. This not
only hastens the identification of solutions but also increases the probability of discovering optimal
or near-optimal results. The integration of this model in machine learning applications underscores
its significant impact in advancing computational techniques and addressing complex computational
problems.
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Figure 9: This graph illustrates the Fourier coefficients in the case of a 3𝐻𝑧 sinusoidal input signal,
sampled above the Nyquist frequency at 120𝐻𝑧, and with 12 repetitions, we can observe
that the Fourier coefficients are potentially, in this case, rather real than imagined. Taking
advantage of the Pennylane tool [46], we validate our model provided by figure 10.

Figure 10: This diagram illustrates the steps to find the Fourier series coefficients using a variational
model. The FFT block samples the Fourier coefficients 9 computing the first 2 ∗ 𝐾 + 1
one of a 2 ∗ 𝜋 periodic input signal, where 𝐾 ∈ 𝑁 .
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Figure 11: In this graph, we can analyze how we apply our model to data. We can observe how the
model allows us to better interpolate the data from the dataset. One possible application
is to find a continuous parameterized function from the discrete data. This approach can
solve several real problems based on extensive classical data.

Figure 12: In this graph, we can see the evolution of our cost function. In this case, the equation
described in 5.

Future work will apply the ideas developed here in an accurate model. Although intuition leads us to
think that the quantummodel is a Fourier series, basically because the parameterized gates define the
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Figure 13: These figures are parts of the experiments we did in the case of the model as a classifier.
In the first two graphs, we can observe that the figures above represent two circles. The
one on the left is the classifier’s result, and our model’s classification errors are on the
right. In this case, we are talking about 92.5% accuracy. In the second two graphs,
where the figure is to be classified in a square of others, we see the same in this case, an
accuracy of 92.2%.

ansatz are rotation gates, the demonstration of this intuition is not trivial. Calculating the Fourier
coefficients of the quantum model is also very challenging. In this paper, we have relied on an
approximation and classical with the fft to calculate them (see FIGURE 10). We have confirmed that
the proposed model is a partial Fourier series. The model can be used for trigonometric interpolation
(see FIGURE 6- FIGURE 11), as seen in the FIGURE 11. Also, with a few subtle changes, we have
been able to make a binary classifier (see FIGURE 12- FIGURE 13). It is worth determining the
sign for a binary classifier to know what class it is in. We can perform it with expectation value
(qml.expval) or with probabilities (qml.probs). In the case of having a multiclass classifier, what
can be done is to generalize the binary classifier or work with the probabilities so that, knowing the
highest probability of the measured outcome, the class will be known. Nevertheless, it is costly to
go from binary classifier to multiclass; one must run (𝑛 + 1)𝑛/2 quantum models.
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Table 2: We can observe from the table and from the outcomes that the proposed model can be used
to perform a classifier. This is the table from studying the binary classifier with two qubits.
In this study, we consider the circuit depth (𝑙), the number of the qubits 𝑛, and the number
of the parameterized gates 𝑚, the number of parameters calculated as 𝑛×m×𝑙 where 𝑚
is the summation of the parameterized gates of the feature map stage and the variational
quantum algorithm.

Quantum neural classifier (2 qubits)
#Layers #Parameters Accuracy

1 6 48.90
2 12 70.30
3 18 84.5
4 24 84.90
5 30 87.50
6 36 92.10
7 42 92.60
8 48 92.50
10 60 92.20

Table 3: We are solving the Social Workers’ Problem (SWP) [27, 45], with a quantum neural
network classifier.

The SWP leveraged the quantum neural classifier.
#Patients #SW #Layers Accuracy

3 2 2 70.3
4 3 2 63.2
5 2 2 57.7
5 3 2 48.1
5 4 2 47.2

We have not made a detailed study of the algorithm’s computational complexity; however, in case
of a volume of data that presents a trigonometric distribution, the proposed model will be able to
speed up the hyperparameter optimization process. This model can help to find hyperparameters
more optimally and can help to have a continuous function model from discrete function models,
thus offering more valuable solutions.

TABLE 1 and TABLE 2 give us detailed information on the quality of the classifier that we have
managed to have some classifiers with accuracy greater than 92%. From FIGURE 14, which
represents the amplitude modulation, we can analyze the limitation of the proposed model for the
highest frequencies where we can observe how the tail of the signal is seen to decay, and during the
experimentation, we decided to increase the number of repetitions (layers) to adapt the model to the
input signal.
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Figure 14: This graph presents the behavior experiment due to the limitations of high frequencies.
The tail of the signal is seen to decay, and we must considerably increase the number of
repetitions (layers) to solve it. In this graph, we multiply two quite different frequency
sines. This is the result of simulating an amplitude modulation.

9. CONCLUSION

In this paper, we have experimented with and demonstrated the weight of the Fourier series in
quantummachine learning. It also analyzed its impact on interpolations that can be used for banking
problems, airline companies, retail companies, hyperparameter search problems, etc. We have
also analyzed its impact on binary and multiclass classifiers, Hamiltonian simulation, and signal
processing applications. The results conclude that we can strongly consider the quantum computer
a Fourier series. However, we have also detected some limitations in better adapting the model to
the highest-frequency input signals. Also, it remains a challenge to finish determining with greater
precision the Fourier coefficients. Thewaywe have found to determine the Fourier coefficients from
the VQA model is given in FIGURE 10. As a line for the future, we want to apply this model to the
real problems in the banking sector, mobility, etc. We envision two promising directions for future
research, leveraging the insights gained from our study. The first path involves utilizing our findings
in the realm of hyperparameter optimization. By employing the strategy of search state reduction,
we can streamline the hyperparameter search process, potentially unlocking new efficiencies and
capabilities in quantum computing models. The second avenue for exploration stems from applying
Fourier coefficients in evaluating the efficiency of quantum circuits. When data is encoded through
Hamiltonian time evolution, it becomes possible to conceptualize the class of functions that quantum
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models can effectively learn as partial Fourier series. This approach highlights the natural propensity
of quantum models to grasp periodic functions in data intuitively. Consequently, this necessitates
the consideration of appropriate data re-scaling strategies, ensuring that the data aligns well within
the period of the function class being modeled. Furthermore, the role of classical pre-processing in
enhancing the expressivity of smaller quantum models cannot be overstated. By creating additional
features, classical pre-processing enriches the frequency spectrum of the data, thereby offering
quantum models a richer tapestry of information to learn from and interpret. This can lead to a
more nuanced and effective utilization of the quantum circuit’s capabilities. Lastly, the freedom
to adjust the entries of the observable has been a cornerstone in demonstrating the universality of
quantum circuits. This approach to the quantum computing process enables the circuits to adapt
and respond more effectively to the specific requirements of the data and the learning task at hand.
As we look forward, these areas not only present fascinating opportunities for further research but
also hold the potential to advance the field of Quantum Machine Learning significantly, bridging
the gap between theoretical possibilities and practical applications.

10. CODE

The reader can find the code in the followingGitHub repository: https://github.com/pifparfait/
Fourier_Based_QML to reproduce the figures and explore different settings of the proposed model.
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