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Abstract
Very deep convolutional neural networks (CNNs) have been firmly established as the pri-
mary methods for many computer vision tasks. However, most state-of-the-art CNNs are
large, which results in high inference latency. Depth-wise separable convolution has been
proposed for image recognition tasks on platforms with limited computation power, such as
robots and self-driving cars. Any regular deep CNN has a depth-wise separable counterpart,
which is faster, but less accurate, when equally trained. In this paper, we propose a novel
decomposition approach based on SVD, namely depth-wise decomposition, for converting
regular convolutions into depth-wise separable convolutions post-training, while maintaining
high accuracy. We show that our approach generalizes to the multi-channel and multi-layer
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cases, by applying Generalized Singular Value Decomposition (GSVD). We conduct thor-
ough experiments with the ShuffleNet V2 model on a large-scale image recognition dataset:
ImageNet. Our approach outperforms the baseline, channel decomposition. Moreover, our
approach improves the Top-1 accuracy of ShuffleNet V2 by ∼2%.

Keywords: Computer vision, Efficient convolutional neural networks, Neural network
acceleration, Neural network compression.

1. INTRODUCTION

In recent years, very deep convolutional neural networks (CNNs) [1–3], have led to a series of
breakthroughs in many image understanding problems [4–8], such as image recognition [9–13],
object detection [14–22], semantic segmentation [23–26], and tracking [26–28]. However, most
state-of-the-art CNNs have very high inference latency, limiting their applications on platforms
with tight computational budget, such as smartphones, wearable systems [29, 30], surveillance
cameras [31, 32], and self-driving cars [33, 34].

Driven by the increasing need for faster CNN models, research focus has been moving towards
reducing CNN model size and computation cost while achieving acceptable accuracy instead of
purely pursuing very high accuracy. One trend is to train CNNs with efficient architectures. For
example, MobileNets [35], proposed a family of lightweight convolutional neural networks based
on depth-wise separable convolution. ShuffleNets [36, 37], proposed channel shuffle to reduce the
parameter number and FLOPs (floating point operations per second). Pushing further, ShiftNet [38],
proposed shifting feature maps as an alternative to spatial convolution. The other trend is to com-
press large regular CNN models after training, shown in FIGURE 1 (a). For example, channel
decomposition [39], and spatial decomposition [40], proposed to decompose regular convolutional
layers, shown in FIGURE 1 (e) and FIGURE 1 (d). Channel pruning [41–43], proposed to prune
channels of convolutional layers, shown in FIGURE 1 (c). Deep compression [44, 45], proposed to
sparsify the connections of fully-connected layers, shown in FIGURE 1 (b).

Representative compact CNN model designs mentioned above share a common component: depth-
wise separable convolution, initially introduced by [46]. As is pointed out in MobileNets [35],
3 × 3 depth-wise separable convolutions use between 8 to 9 times less computation than standard
convolutions, with the same number of input and output channels. However, the accuracy is in-
evitably sacrificed. Although many efforts have been put on searching optimal hyper-parameters
for the compact models [3, 47], it remains a question whether we could improve the performance
of depth-wise separable convolution as it is.

Motivated by this, in this paper, we propose a method for mitigating the performance degradation
of depth-wise separable convolution. Inspired by channel decomposition work [39], which decom-
poses a standard CNN post-training to a lighter version without much degradation (shown in FIG-
URE 1 (e)), we propose to decompose a regular convolution into a depth-wise separable convolution
post-training, while minimizing the performance degradation. Specifically, we start from a ”heavy”
CNN (created by replacing all depth-wise separable convolutions in a ”light” convolutional neural
network, like ShuffleNet V2 [36], with regular convolutions). The ”heavy” CNN is trained from
scratch on ImageNet. Then, the regular convolutions are decomposed by our method into depth-
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Figure 1: Different types of compression algorithms.
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wise separable convolutions. This produces the same original ”light” architecture, yet we show it
outperforms the ”light” CNN trained from scratch with the same data.

To show the generality of our approach, we conduct rich experiments on ShuffleNet V2 and Xcep-
tion with the large-scale ImageNet dataset. With equally high speed-up ratio (9 times), our approach
consistently outperforms the baseline, channel decomposition [39], in terms of accuracy, with dif-
ferent setups including single/multiple channels/layers. Moreover, a CNNwith ShuffleNet V2 [36],
architecture acquired by our decomposition method achieves ∼ 2% better Top-1 accuracy than the
original ShuffleNet V2.

We summarize our contributions as follow:

1) We propose a novel decomposition approach, namely Depth-wise Decomposition, for converting
regular convolution into depth-wise separable convolution.

2) Our approach achieves a better speed/accuracy trade off than channel decomposition.

3) Our approach brings 2% Top-1 accuracy improvement to the original ShuffleNet V2 model.

2. RELATEDWORK

Since LeCun et al. introduced ”optimal brain damage [48, 49]”, there has been a significant amount
of works on accelerating CNNs [50]. Many of them fall into several categories: designing efficient
architectures [35, 36], optimized implementation [51], quantization [52], and structured simplifica-
tion [40].

2.1 Designing Efficient Architecture

Depth-wise separable convolution is widely used in efficient networks like MobileNets [35], Shuf-
fleNets [37], and MnasNets [3]. [53] proved that a regular convolution could be approximated by
a combination of several depth-wise separable convolutions. ShiftNets [38] proposed to use shift
operation as an alternative to 3-by-3 convolution. AddressNets [54, 55] proposed three shift-based
primitives for further improving performance on GPUs (Graphics Processing Units).

2.2 Sparse Connection

Shown in FIGURE 1 (b), connection pruning eliminates connections between neurons [56–60].
XNOR-Net [52], binarized the connections. [61] prunes connections based on weights magni-
tude. Deep compression [44], could accelerate fully connected layers up to 50×, in theory. How-
ever, in practice, the actual speed-up largely depends on implementation. The standard library
like CUDNN [62], highly optimizes large dense matrx multiplication, limiting the headroom for
sparcifying network connections.
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2.3 Channel Pruning

Shown in FIGURE 1 (c), channel pruning aims at removing inter-channel redundancies of feature
maps. There were several training-based approaches: [63–65], regularize networks to improve
accuracy. Channel-wise SSL [64], reaches high compression ratio for the first few convolutional
layers of LeNet [66], and AlexNet [67]. [65] could work well for fully connected layers. However,
training-based approaches are more costly, and their effectiveness on very deep networks on large
datasets is rarely exploited.

Inference-time channel pruning is challenging, as reported by previous works [68, 69]. Channel
pruning [41], proposed to prune neural networks layer-by-layer using LASSO regression and linear
least square reconstruction. Some works [70–73], focus on model size compression, which mainly
operate the fully connected layers. Data-free approaches [74, 75], results for speed-up ratio (e.g.,
5×) have not been reported, and requires long retraining procedure. [75] select channels via over
100 random trials. However, it needs a long time to evaluate each trial on a deep network, which
makes it infeasible to work on very deepmodels and large datasets. AMC [76, 77], improves general
channel pruning approach by learning the speed-up ratio with reinforcement learning.

2.4 Tensor Decomposition

Tensor factorization methods [40, 78–80], aim to approximate the original convolutional layer
weights with several pieces of decomposed weights. Consider a convolutional layer with 3 × 3
kernel size. As shown in FIGURE 1 (d), spatial decomposition [40], factorizes it into a 3 × 1 and
1 × 3 combination, driven by spatial feature map redundancy. As shown in FIGURE 1 (e), channel
decomposition [39], factorizes it into the combination of a 3 × 3 layer with less output channels,
and a 1 × 1 layer that restores the original channel number, driven by channel-wise feature map
redundancy. [81–83] accelerate fully connected layers with truncated SVD.

Aforementioned methods first train regular neural networks, then decomposes them into lighter
versions. It’s straightforward to consider not doing so, but directly training the light version from
scratch. In [39], this has been empirically verified to perform worse. This motivates us to decom-
pose regular convolution into depth-wise separable convolution post-training, which may improve
the performance of popular compact neural networks building on top of depth-wise separable con-
volution.

2.5 Implementation-Based Acceleration

Though convolution is a well-defined operation, the run-time can vary a lot depending on imple-
mentations. Optimized implementation methods [51, 84–87], accelerate convolution, with special
convolution algorithms like FFT [85]. Quantization [52, 88], reduces floating point computational
complexity, which is usually followed by fine-tuning and Huffman coding [44]. BinaryNet [88, 89],
proposed to binarize both connections and weights. Recently, HAQ [90], automated this process,
which further compressed deep neural networks. These methods also depend on the hardware and
library implementation.
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3. APPROACH

In this section, we first briefly review how a regular convolution layer and a depth-wise separable
convolution layer works (Section 3.1). Then we introduce channel decomposition (Section 3.2),
which our method is built upon. Following that, we describe our method in detail. We start from
the special one-layer, single-input-channel case (Section 3.3), then generalize it to the multi-input-
channel case (Section 3.4 3.5). Finally, we cover the multi-layer case, which is used to decompose
an entire neural network (Section 3.6).

3.1 Regular and Depth-wise Separable Convolutions

FIGURE 2 (a) illustrates how a regular convolutional layer works. It takes a feature map 𝑋 with
shape [𝑐, ℎ, 𝑤] as input, then applies a bank of filters 𝑊 shaped [𝑛, 𝑐, 𝑘, 𝑘] to produce the output
feature map𝑌 , shaped [𝑛, ℎ, 𝑤]. Here, 𝑐 and 𝑛 are the number of input/output channels, respectively;
ℎ and 𝑤 are feature map height/width in pixels; 𝑘 is filter size. The coloring of the figure shows
which input channel each filter is applied to, and how each output channel is produced.

The filters slide across the feature map 𝑋 and process it patch-by-patch. Therefore, a regular
convolutional layer can be seen as a matrix multiplication:

𝑌 = 𝑊𝑋

[𝑛, 𝑁] = [𝑛, (𝑐, 𝑘, 𝑘)] × [(𝑐, 𝑘, 𝑘), 𝑁]; (1)

The shape of each tensor is annotated underneath for clarity. Here, 𝑁 is the total number of patches.
The dimensions in (·) are combined into one, so it’s a matrix multiplication of [𝑛, 𝑐𝑘2] × [𝑐𝑘2, 𝑁].
We rely on this notation to present our method. For simplicity, we assume filters are square, and
omit paddings and bias.

FIGURE 2 (c) illustrates the depth-wise separated version of FIGURE 2 (a). The regular convolu-
tional layer is decomposed into a depth-wise convolutional layer with [𝑘, 𝑘] filter size, and a point-
wise layer with [1, 1] filter size. In the depth-wise layer, each of the 𝑐 filters is applied to its own
input channel, and produces one output channel (notice that this differs from a regular convolution).
The point-wise layer then projects the 𝑐-channel feature map into the original 𝑛 output channels.
It’s straightforward that the depth-wise separated version needs much less computation. The goal
of our method is to decompose already-trained regular convolutions into depth-wise separable ones,
achieving speed-up while maintaining accuracy.

3.2 A Brief Introduction of Channel Decomposition

FIGURE 2 (b) illustrates channel decomposition, where a regular convolutional layer is decomposed
into a smaller regular convolution layer (with fewer 𝑐′ output channels) and a point-wise layer that
restores the original 𝑛 output channels. As described in [39], this is viable because regular CNNs
has redundancy in their channels. Formally, 𝑌 mostly resides on a lower-dimension manifold:
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(c) Depth-wise decomposition.

Figure 2: Illustration of a regular convolution and its decompositions. Best viewed in color. The
colors of the filters indicate which channel they are applied to. The colors of the filter
groups indicate which channel they produce.
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𝑌 ≈ 𝑀𝑌

[𝑛, 𝑁] ≈ [𝑛, 𝑛] × [𝑛, 𝑁];
s.t. rank(𝑀) ≤ 𝑐′

(2)

We assume that 𝑌 has its mean subtracted. Finding the optimal 𝑀 equivalents to the following:

arg min
𝑀

∥𝑌 − 𝑀𝑌 ∥;

s.t. rank(𝑀) ≤ 𝑐′
(3)

Where ∥ · ∥ denotes the sum of L2 distance. This can be solved by Singular Value Decomposition
(SVD), or in fact Principal Component Analysis (PCA):

SVD(𝑌 ) = 𝑈𝑆𝑉𝑇

[𝑛, 𝑁] = [𝑛, 𝑛] × [𝑛, 𝑁] × [𝑁, 𝑁];
𝑀 = 𝑈𝑐′𝑈

𝑇
𝑐′

[𝑛, 𝑛] = [𝑛, 𝑐′] × [𝑐′, 𝑛];

(4)

Where𝑈𝑐′ means the first 𝑐′ columns of𝑈. Plugging this into Eq. 2:

𝑌 ≈ 𝑈𝑐′ (𝑈𝑇
𝑐′𝑊)𝑋

[𝑛, 𝑁] ≈ [𝑛, 𝑐′] × ([𝑐′, 𝑛] × [𝑛, (𝑐, 𝑘, 𝑘)]) × [(𝑐, 𝑘, 𝑘), 𝑁];
𝑌 ≈ 𝑊2𝑊1𝑋

[𝑛, 𝑁] ≈ [𝑛, 𝑐′] × [𝑐′, (𝑐, 𝑘, 𝑘)] × [(𝑐, 𝑘, 𝑘), 𝑁];

(5)

Eq. 5 can be then interpreted as first applying a regular convolutional layer𝑊1 with 𝑐′ output chan-
nels, followed by a pointwise layer𝑊2 that projects them into 𝑛 channels, as shown in FIGURE 2
(b). 𝑐′ is adjustable, which provides different speed-up ratios.

It’s worth noting that, in the optimization problem of Eq. 3, the 𝑁 dimension doesn’t have to include
all possible patches from the training dataset (which can be a forbiddingly large number). Instead,
according to the channel decomposition work [39], it’s enough to randomly sample 10 patches per
image and 300 images in total. Therefore, 𝑁 = 300 × 10. This also applies to our approach.

3.3 Single-Layer Depth-Wise Decomposition: Single-Input-Channel Case

We now introduce our depth-wise decomposition method for a special case: a regular convolutional
layer with 𝑐 = 1 input channels and 𝑛 output channels. It is converted into a single-channel depth-
wise convolution𝐷 with 𝑐 = 1 filter of [𝑘, 𝑘], followed by a [1, 1] point-wise convolution projecting
the one channel into 𝑛. Meanwhile, the output approximates the original 𝑌 :

1706



https://www.oajaiml.com/ | December 2023 Depth-wise Decomposition

𝑌 ≈ 𝑃𝐷𝑋

[𝑛, 𝑁] ≈ [𝑛, 1] × [1, (1, 𝑘, 𝑘)] × [(1, 𝑘, 𝑘), 𝑁]; (6)

Given section 3.2, this case equivalents applying channel decomposition, with 𝑐 = 1 input channels
and 𝑐′ = 1 intermediate channels.

3.4 Single-Layer Depth-Wise Decomposition: Multi-Input-Channel Case

Now consider a regular convolutional layer with multiple 𝑐 input channels. In fact, this can be seen
as 𝑐 single-input-channel convolutions applied to each input channel individually, then having their
results summed up:

𝑌𝑖 ≈ 𝑃𝑖𝐷𝑖𝑋𝑖

[𝑛, 𝑁] ≈ [𝑛, 1] × [1, (1, 𝑘, 𝑘)] × [(1, 𝑘, 𝑘), 𝑁];

𝑌 ≈
𝑐∑
𝑖=0
(𝑌𝑖)

(7)

As a result, a naive solution for multi-input-channel depth-wise decomposition is simply applying
the single-input-channel case for each input channel, as shown in algorithm 1.

Algorithm 1 Depth-wise Decomposition
𝑋𝑖 is the 𝑖th channel of the input feature map (shape: [(1, 𝑘, 𝑘), 𝑁]). 𝑊𝑖 is the filters applied to 𝑋𝑖

(shape: [𝑛, (1, 𝑘, 𝑘)]).
Initialize 𝐷, the depth-wise filters shaped [𝑐, (1, 𝑘, 𝑘)], to all-zero.
initialize 𝑃, the point-wise weights shaped [𝑛, 𝑐], to all-zero.
for 𝑖 ← 0 to 𝑐 − 1 do

𝑌𝑖 = 𝑊𝑖𝑋𝑖

𝑈, 𝑆,𝑉𝑇 = 𝑆𝑉𝐷 (𝑌𝑖)
𝐷 [𝑖, :] = 𝑈𝑇

1 𝑊𝑖,𝑈1 is the first column of𝑈.
𝑃[:, 𝑖] = 𝑈1

end for
return 𝐷, 𝑃

3.5 Multi-Input-Channel Case With Inter-Channel Error Compensation

A caveat with the naive solution of algorithm 1 is the accumulation of error. Each channel con-
tributes accumulation error 𝐸𝑖 = 𝑌𝑖−𝑃𝑖𝐷𝑖𝑋𝑖. If not accounted for, the total error would be

∑𝑐
𝑖=0(𝐸𝑖),

which hurts accuracy of the decomposed network. Viewing the decomposition as reconstructing the
output 𝑌𝑖 given 𝑋𝑖 with sparser weights, we can address the problem by performing an asymmetric
reconstruction, the target of which is 𝑌𝑖 + 𝐸 ′𝑖 , with 𝐸 ′𝑖 offsetting the accumulated error of previous
channels. This is further explained by TABLE 3.5, where the accumulated error is confined.
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Table 1: Correcting the inter-channel accumulated error by asymmetric reconstruction.

Iteration 𝑖 Reconstruction target Reconstructed value Accumulated error
0 𝑌0 𝑌0 − 𝐸0 𝐸0
1 𝑌1 + 𝐸0 (𝑌1 + 𝐸0) − 𝐸1 𝐸1
2 𝑌2 + 𝐸1 (𝑌2 + 𝐸1) − 𝐸2 𝐸2

Acquiring 𝐸𝑖 is practical, because the activation of the original network is always accessible. Ac-
cordingly, the optimization problem changes from Eq. 3 to:

arg min
𝑀

∥(𝑌𝑖 + 𝐸𝑖−1) − 𝑀𝑌𝑖 ∥;

s.t. rank(𝑀) = 1
(8)

This problem still has a closed-form solution, with Generalized SVD (GSVD) [39, 91]:

𝑈, 𝑆,𝑉𝑇 = GSVD(𝑌𝑖 + 𝐸𝑖−1, 𝑌𝑖);
𝑀∗ = 𝑈1𝑆11𝑉

𝑇
1

[𝑛, 𝑛] = [𝑛, 1] × [1, 1] × [1, 𝑛];
(9)

Where 𝑈, 𝑆,𝑉 are all shaped [𝑛, 𝑛], 𝑈1, 𝑉1 denotes their first column, and 𝑆11 denotes the top-left
element of 𝑆. Replacing the SVD with GSVD in algorthim 1, we have multi-input-channel depth-
wise decomposition with inter-channel error compensation, in alogrithm 2:

Algorithm 2 Depth-wise Decomposition with error compensation
𝑋𝑖 is the 𝑖th channel of the input feature map (shape: [(1, 𝑘, 𝑘), 𝑁]). 𝑊𝑖 is the filters applied to 𝑋𝑖

(shape: [𝑛, (1, 𝑘, 𝑘)]). 𝐸𝑖 is the error of each step.
Initialize 𝐷, the depth-wise filters shaped [𝑐, (1, 𝑘, 𝑘)], to all-zero.
initialize 𝑃, the point-wise weights shaped [𝑛, 𝑐], to all-zero.
for 𝑖 ← 1 to 𝑐 do

𝑌𝑖 = 𝑊𝑖𝑋𝑖

𝑈, 𝑆,𝑉𝑇 = 𝐺𝑆𝑉𝐷 (𝑌𝑖 + 𝐸𝑖−1, 𝑌𝑖)
𝐷 [𝑖, :] = 𝐷𝑖 = 𝑉𝑇

1 𝑊𝑖

𝑃[:, 𝑖] = 𝑃𝑖 = 𝑈1𝑆11
𝐸𝑖 = 𝑌𝑖 − 𝑃𝑖𝐷𝑖𝑋𝑖

end for
return 𝐷, 𝑃
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3.6 Multi-Layer Depth-Wise Decomposition

Finally, our approach can be applied to deep convolutional neural networks layer-by-layer (Experi-
ments in Section 4.3). Notice that this also introduces accumulated error from each layer. Let the 𝑖th
layer’s activation of the original network be𝑌 𝑙, the decomposed version then outputs𝑌 𝑙−𝐸 𝑙, where
𝐸 𝑙 is the approximation error. This error further affects subsequent layers, which harms accuracy.
To compensate for this error, asymmetric reconstruction can be applied similar with Section 3.5.
Specifically, since the ground-truth 𝑌 𝑙 is always accessible, regardless of how the input 𝑋 𝑙 of each
layer 𝑙 changes due to approximation error, GSVD can always find an optimal decomposition such
that 𝑌 𝑙 is reconstructed as close as possible, taking previous errors into account. Therefore, for the
multi-layer case, we simply apply algorithm 2 to each layer of the network, while changing the
optimization problem in Eq. 8 into:

arg min
𝑀

∥(𝑌𝑖 + 𝐸𝑖−1) − 𝑀𝑊𝑖𝑋
′
𝑖 ∥;

s.t. rank(𝑀) = 1
(10)

Where 𝑋 ′𝑖 is the changed input of the current layer due to the errors in previous layers. GSVD gives
the closed-from solution for this in the same way as in Section 3.5.

3.7 Fine-Tuning

Following channel decomposition [39], after a deep CNN is fully decomposed, it can be fine-
tuned for ten epochs with a small learning rate 1𝑒−4 to obtain better accuracy (Section 4.3). In
the experiment results, we specify it in the names when this is applied.

4. EXPERIMENTS

We conduct rich experiments on ImageNet [4], 2012 classification dataset. ImageNet is a very
large image classification dataset which consists of 1000 classes. We use the 1.3 million training
images to train our models, and evaluate them with with top-1 error rate and relative error on the
50,000 validation images. Our neural networks implementation is based on TensorFlow [92]. Our
implementation of the baseline approach channel decomposition [39], is based on pure Python1.

4.1 Sanity Check

To check the correctness of our implementation, we created a randomweights matrix of size 128×64
and the corresponding random input feature of size 64 × 3000. The resulting output response is,
therefore, a 128 × 3000 matrix. Our baseline is channel decomposition [39]. Our Depth-wise
Decomposition decomposes a convolutional layer into a depth-wise convolution followed by a

1 github.com/yihui-he/channel-pruning

1709



https://www.oajaiml.com/ | December 2023 Yihui He, et al.

Table 2: Sanity check. Using random data, our approach performs as good as channel
decomposition [39]. Standard deviations and relative errors are obtained after 10 runs

single layer 9× acceleration with random data
relative error

Channel Decomposition [39] 0.887 ± 1.34𝑒−6

Depth-wise Decomposition (ours) 0.914 ± 3.21𝑒−7

Depth-wise Decomposition (ours) 0.906 ± 2.78𝑒−7

with compensation

point-wise convolution, which accelerates the convolutional layer by around 9 times. For a fair
comparison, we adjust channel decomposition to get the same 9-times acceleration.

To measure the correctness of our approach, we measure the relative error of the resulting output
activation between those of decomposing algorithms(including baseline [39], Depth-wise Decom-
position and Depth-wise Decomposition with inter-channel compensation) and the ground-truth
output response. As is shown in TABLE 4, our Depth-wise Decomposition is comparable to channel
decomposition [39].

We further tested the reconstruction error of Depth-wise Decomposition with inter-channel error
compensation. As expected, the relative error of this method is smaller than the basic approach.

4.2 Single Layer Decomposition

Firstly, we want to evaluate the reconstruction error of Depth-wise Decomposition for a single
layer. We conduct experiments on decomposing five different convolutional layers of ShuffleNet
V2 [36]. We decompose each 3-by-3 convolutional layer with the baseline method [39], Depth-
wise Decomposition and Depth-wise Decomposition with error compensation. FIGURE 3 shows
the relative error of reconstructing each of the five convolutional layers. As shown in the FIGURE,
Depth-wise Decomposition results in lower reconstruction error for all five layers. Furthermore, the
Depth-wise Decomposition with inter-channel compensation results in even smaller reconstruction
error. This proves that both Depth-wise Decomposition and Depth-wise Decomposition with inter-
channel error compensation are better at preserving the accuracy of the network while achieving the
same level of effectiveness in terms of accelerating the network.

Secondly, we want to measure the effectiveness of Depth-wise Decomposition. Thus we measure
how much the top-1 error of the resulting network has increased when decomposing a single con-
volutional layer in ShuffleNet V2 [36]. We demonstrate the effectiveness of Depth-wise Decom-
position by showing the top-1 error of the networks resulting from decomposing each of the four
convolutional layers in stage 4 of ShuffleNet V2 [36], along with the top-1 error achieved by the
original ShuffleNet V2 [36], model . As shown in FIGURE 4, the baseline method [39], when
accelerating one convolutional layer by around 9 times, largely increases the top-1 error of the
resulting network. In contrast, Depth-wise Decomposition, along with Depth-wise Decomposition
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Figure 3: Relative error for decomposing a single conv layer in ShuffleNet V2. ShuffleNet consists
of 4 stages, each stage contains a number of blocks. Here, we decompose the core 3x3
conv layer of a certain block. The appendix of [36], shows the detailed architecture.

with error compensation do not have such a significant impact on the top-1 error of the resulting
network.

4.3 Whole Model Decomposition

Lastly we want to measure the effect of decomposing the whole model. First we train a ”folded”
ShuffleNet V2 [36]. In this model we replace all depth-wise separable convolutional layers with
their regular convolution counterparts. It’s dubbed as ”folded” because the depthwise conv and
channelwise conv layers are combined back together. We train this model with the exact same
settings as the original ShuffleNets V2 paper. Our implementation is based on TensorPack [93]2.
Shown in TABLE 4.3, the Top-1 accuracy of ”folded” ShuffleNet V2 is 3.1% higher than the
original ShuffleNet V2, which serves as the upper bound of our proposed algorithm.

Then we decompose each convolutional layers in the folded ShuffleNet V2 [36], using our multi-
layer channel decomposition method with inter-channel error compensation (Section 3.6). This
decomposed model has the exact same architecture as the original ShuffleNet V2. Then the decom-
posed model is further fine-tuned on ImageNet training dataset for 10 epochs (Section 3.7).

As a baseline, we perform channel decomposition [39], under the same 9× acceleration ratio on
ShuffleNet V2 and fine-tune for the same number of epochs as our model. Interestingly, channel
decomposition does not work well for high acceleration ratio in our case. As shown in TABLE 4.3,
it even performs worse than the original ShuffleNet V2. The inherently worse accuracy-speed trade-
off of regular conv layers may have contributed to this.

2 github.com/tensorpack/tensorpack
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Figure 4: Top-1 testing error for decomposing a single convolutional layer in ShuffleNet V2 [36]

Table 3: Comparisons on compressing ”ShuffleNet V2 0.5x”, the main architecture of [36].

Whole Model Decomposition with ImageNet
top-1 error

Folded ShuffleNet V2 [36] 36.6%
ShuffleNet V2 [36] 39.7%

Fine-tuned Channel Decomposition (our impl.) 40.0%
Depth-wise Decomposition with compensation (ours) 43.9%

Fine-tuned Depth-wise Decomposition with compensation (ours) 37.9%
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Table 4: Top-1 error for compressing ShuffleNet V2 family and Xception. ”Baseline” are their
performance as originally proposed, ”ours” are the performance of the same architectures
obtained from our depthwise decomposition method.

top-1 error baseline ours
ShuffleNet V2 0.5× [36] 39.7% 37.9%
ShuffleNet V2 1.0× [36] 30.6% 28.0%
ShuffleNet V2 2.0× [36] 25.1% 23.4%

Xception [1] 21.0% 20.1%

As is shown in TABLE 4.3, our Depth-wise Decomposition with inter-channel error compensation
has ∼ 2% lower top-1 error than the original ShuffleNet V2 [36]. It proves that our method is able
to achieve a better level of accuracy under the same computational complexity. Another benefit is
that our method only needs fine-tuning, instead of training from scratch.

To test the generalizability of our approach, we further test on other ShuffleNet V2 architectures and
Xception. Shown in TABLE 4.3, The results are consistent with ShuffleNet v2 0.5× in TABLE 4.3.
For ShuffleNet v2 1×, our approach improves the Top-1 accuracy by 1.6%. For ShuffleNet v2 2×,
the Top-1 accuracy improvement is 1.7%. For Xception, the model performs 1.6% better. This
shows our method is applicable to various architectures. In fact, any future network design with
depthwise separable conv layers can benefit from this approach.

5. CONCLUSION

In conclusion, very deep convolutional neural networks (CNNs) are widely used by many com-
puter vision applications, while many have headroom for latency improvement. This is especially
important on computation-limited platforms. We propose a novel method to decompose regular con-
volutions into highly-efficient depth-wise separable convolutions. Given a pre-trained ”heavy” con-
volutional neural network, our method optimizes its latency with one-off decomposition and cheap
fine-tuning, with minor accuracy loss. Through experiments with the ShuffleNet V2 model [36],
on ImageNet [4], we demonstrate the method to achieve a superior acceleration/accuracy trade-off.
This is particularly valuable for applications like autonomous vehicles, wearable devices, smart
phones, and many more. For future work, our approach may be applied to other vision tasks, like
object detection, semantic segmentation, keypoint detection, etc.
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