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Abstract
Small Language Models (SLMs) have shown remarkable performance in general domain
language understanding, reasoning and coding tasks, but their capabilities in the medical
domain, particularly concerning radiology text, is less explored. In this study, we investigate
the application of SLMs for general radiology knowledge specifically question answering
related to understanding of symptoms, radiological appearances of findings, differential di-
agnosis, assessing prognosis, and suggesting treatments w.r.t diseases pertaining to different
organ systems. Additionally, we explore the utility of SLMs in handling text-related tasks
with respect to radiology reports within AI-driven radiology workflows.We fine-tune Phi2,
a SLM with 2.7 billion parameters using high-quality educational content from Radiopaedia,
a collaborative online radiology resource. The resulting language model, RadPhi2-Base,
exhibits the ability to address general radiology queries across various systems (e.g., chest,
cardiac). Furthermore, we investigate Phi2 for instruction tuning, enabling it to perform
specific tasks. By fine-tuning Phi2 on general domain tasks followed by radiology-specific
tasks related to chest X-ray reports, we create RadPhi2. Our empirical results reveal that
Rad-Phi2-Base and Rad-Phi2 perform comparably or even outperform larger models such
as Mistral-7B-Instruct-v0.2 and GPT-4 providing concise and precise answers.
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1. INTRODUCTION

Recent advances in Natural Language Processing (NLP) have enabled the development of pow-
erful language models that can generate natural language texts for various purposes and domains.
However, most of the existing language models are trained on general domain texts, such as news
articles, books, web pages, etc., and may not be able to handle the specific vocabulary, concepts,
terminology, and style of radiology texts. Hence, it is required to have domain specific models that
embody knowledge for that domain and trained for specific tasks in domain specific workflows to
deal with the nuances of the field. But, the size and complexity of these language models are often
prohibitive for practical applications, as they require a large amount of computational resources and
memory to train and run.

In this paper, we explore the use of Small Language Models (SLMs) for radiology related tasks,
specifically text-related tasks relating to radiology knowledge and tasks that are useful in everyday
radiology workflows pertaining to radiology reports. SLMs, in particular, can be useful in a medical
setting as they promote the protection of patient privacy and independence of hospitals. Due to
their lower compute requirements, hospitals can run these models on-premises. It also increases the
flexibility to deploy specialised models for different tasks.

SLMs are language models that have a relatively small number of parameters, compared to the
state-of-the-art large language models, such as GPT-4. SLMs, specifically Phi2 [1], is a 2.7 billion
parameter model that has shown remarkable performance in general domain language understand-
ing, reasoning, and coding tasks, but its capabilities in the medical domain, especially on radiology
content and tasks specific to a radiology workflows is not explored. Moreover, Phi2 is not an
instruction tuned model and tends to produce verbose answers as it was trained from synthetic text
books and currently not suitable for direct deployments in application workflows to perform specific
tasks. We hypothesize that SLMs can be effectively adapted to the radiology domain by finetuning
them on high-quality radiology content to bring-in the nuanced radiology knowledge and also be
adapted to perform specific tasks that are useful in everyday radiology workflows. SLMs provide
the advantage of having a domain specific model for easy consumption at lower computational cost
and faster inference.

The Phi models [1], success and its on-par performance to large language models was attributed
to the high quality aka “textbook-quality” training data that was used for its training. The training
corpus was augmented with carefully selected data, filtered based on educational value and con-
tent quality. It demonstrated that this choice of training data enabled Phi2 to achieve outstand-
ing performance on complex benchmarks, matching or outperforming models up to 25x larger
in size. We extend this approach of Phi2 by using high-quality and reliable educational con-
tent from Radiopaedia [2], to finetune Phi2 for radiology knowledge. Radiopaedia is a rapidly
growing collaborative online peer-reviewed open-edit radiology resource, compiled by radiologists
and other health professionals from across the globe. Training from this highly valuable and re-
liable source can embody the model with this knowledge making it useful to answer questions
on radiology accurately. To test our hypothesis, we use Phi2, a 2.7 billion parameter SLM, as
our base model, and finetune it on question-answer pairs derived from the educational articles of
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Radiopaedia pertaining to different systems like chest, cardiac, gastrointestinal etc. The resulting
model Rad-Phi2-Base, can answer queries on radiology pertaining to these systems accurately.
We evaluate the performance of Rad-Phi2-Base and compare it with larger instruction tuned
models, such as Mistral-7B-Instruct-v0.2 [3], which was finetuned on the same radiology
question answer pairs and also GPT-4. Rad-Phi2-Base performs better than or comparable to the
much larger counterparts while producing more crisp and to-the-point answers. It even surpassed
the Retrieval Augmented Generation (RAG) approach [4], that directly used a knowledge base of
Radiopaedia articles to answer the queries.

Apart from answering queries on radiology, there are specific text-related tasks that can be use-
ful in AI deployment scenarios of radiology workflows. Some useful tasks relating to radiology
reporting workflows are writing diagnostic impression summary from radiology findings, tagging
of radiology reports with appropriate abnormality labels to flag priority cases, noise free extrac-
tion of findings and impression from existing radiology reports, generating a comparison sum-
mary of findings between the current radiology report and its prior report etc. Some of these
tasks were also cited in the earlier work [5], in the context of application of language models
in radiology workflows. To address these useful tasks that arise in the AI deployment scenar-
ios of radiology workflows, we create an instruction tuning dataset for tasks pertaining to radi-
ology reports of Chest X-rays and instruction-tune Phi2 and obtain the Rad-Phi2 model. But,
as Phi2 was not an instruction tuned model in the first place, we first instruction tune Phi2 for
general domain tasks using the Super Natural instruction tuning dataset [6]. The resulting model
Phi2-Instruct(SupNatInst) is then further instruction tuned for tasks specific to radiology
reports. The resulting model, Rad-Phi2 can perform specific tasks that are useful in AI driven
radiology reporting workflows of Chest X-rays. Our results show that Rad-Phi2 performs better or
on-par with a larger model like Mistral-7B-Instruct(v0.2) finetuned on the same instruction
tuning dataset.

We would also like to note that while GPT-4 has reasonable radiology knowledge as noted in this
work [7], it still falls short on nuanced tasks like impression generation in comparison to domain
specific models unless given with a large number of carefully curated examples in conjunction with
sophisticated prompt engineering approaches[8]. SLMs enables to develop domain-specific models
for these nuanced task types easily and quickly due to the low resource requirements associated with
its size.

Our work demonstrates the feasibility and effectiveness of using SLMs for radiology specific tasks,
and opens up new possibilities for improving the quality and efficiency of radiology practice.

Our key contributions include:

• We demonstrate the effectiveness of SLMs in the radiology domain by training on high quality
radiology content from Radiopaedia [2]. The resulting model Rad-Phi2-Base can answer
general queries on radiology like symptoms, radiological appearances of findings, differential
diagnosis, prognosis, and treatments w.r.t diseases pertaining to 15 different systems like
Chest, Cardiac etc. It performs better than larger models like Mistral-7B-Instruct-v0.2
finetuned on the same dataset. It also performed better than GPT-4 and the Retrieval Aug-
mented Generation approach that directly used Radiopaedia content as the knowledge source
while answering queries.
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• We construct an instruction tuning dataset of text related tasks that are useful in radiology
report writing workflows of Chest X-rays using annotations of existing datasets on Chest X-
ray reports. We share the prompts for different tasks used in creating this dataset.

• We also demonstrate Instruction Tuning on SLMs tomake it usable for practical tasks involved
in radiology workflows. As Phi2 is not an instruction tuned model and tends to produce
verbose answers, we first perform general domain instruction tuning using the Super Natu-
ral Instructions dataset followed by radiology specific instruction tuning on tasks related to
radiology reports of Chest X-rays. We call the resulting model Rad-Phi2 which is useful in
performing everyday tasks in radiology report writing workflows of Chest X-rays.

• Our ablation studies gives insights on the input formats that worked the best when instruction
tuning the Phi2 model. We note that radiology specific instruction tuning performs better
when preceded by general domain instruction tuning.

2. RELATEDWORK

The work, ‘Exploring the Boundaries of GPT-4 in Radiology’ [7], evaluated GPT-4 on a diverse
range of common radiology text-based tasks. It was noted that that zero-shot prompting tech-
nique was sufficient for the ‘learn-by-instruction’ tasks like sentence similarity, radiology NLI,
and disease progression classification. However, a large number of carefully curated examples with
advanced prompt engineering were required for ‘learn-by-example’ tasks like impression summary
writing to perform on par with the supervised models trained for the task. While it is beneficial to
have GPT-4 like instruction-tuned models that can work well on radiology content for ‘learn-by-
instruction’ tasks, it is still beneficial to have specialized models for ‘learn-by-example’ kind of
tasks where the required knowledge for the model needs to be fed in as carefully curated in-context
examples. It is even better if a model can do both these kinds of tasks with high accuracy at lower
computational and resource costs, which is what we accomplish in our work.

The work ‘Chatbots and Large Language Models in Radiology: A Practical Primer for Clinical
and Research Applications’[5], highlights how LLMs are useful in typical radiology workflows,
providing key relevant information from clinical notes and prior reports, thus improving radiology
interpretation and clinical decision making. The paper also noted LLMs when connected to sources
like the American College of Radiology performed better than radiologists in applying this informa-
tion to clinical scenarios. In regular practice, radiologists and clinicians refer to external knowledge
sources like Radiopaedia [2], for information like clinical symptoms, radiological appearances of
findings, differential diagnosis, prognosis, and treatment plan of a disease that aids them with
clinical decision making. These knowledge sources are very reliable as they are maintained by
practitioners of medical practice and are actively updated. However, this also poses a need for the
AI models to be updated regularly with this knowledge. While Retrieval Augmented Generation
[4], can help LLMs augment their responses with the knowledge from the external sources, it may
prove costly for high usage scenarios. This calls for a need for having Small Language Models that
are easy to train, deploy, retrain, and iterate.

While instruction tuning to performmultiple tasks has beenwell explored on general domain tasks, it
is less explored on radiology specific tasks. Radiology-Llama2[9], and Radiology-GPT[10], per-
formed instruction tuning for one specific task of generating clinically useful impression summary
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from radiological findings. However, there are a variety of tasks that can be useful in radiology re-
port writing workflows, like extracting a clean set of findings or impressions from a noisy radiology
report, tagging the reports with abnormality labels or tubes, lines and devices labels, or comparing
two reports to see the differential findings between them, querying the reports for specific questions
or querying for general radiology knowledge with respect to various diseases like their radiographic
appearances, symptoms, differential diagnosis or treatment plans to make a clinical decision. We
consider all these useful tasks for instruction tuning.

We explore the usage of Small Language Models for Radiology-specific tasks, as these models are
very easy to train and deploy due to their smaller size, while being very competitive in performance
to large language models. Phi2 [1], was introduced as a 2.7 billion-parameter language model that
demonstrated outstanding reasoning and language understanding capabilities, showcasing state-of-
the-art performance among base language models with less than 13 billion parameters. On complex
benchmarks, Phi2 matched or outperformed models up to 25x larger in size. The authors attributed
this success to the high-quality textbook-like data they trained the model on. This is very applicable
in the medical field, where the information rendered by the model needs to be accurate, which
mandates the training dataset to be noise-free and of high quality. Our work considers this need
of very high-quality data for training the models, which is practically deployable in day-to-day
radiology workflows.

In summary, our paper addresses the need for having special instruction tuned models for radiology
which has accurate radiology knowledge and also can perform useful tasks on radiology workflows
which is not fully addressed in the above stated works. In addition, we also perform these tasks
using SLMs that are easy to train, deploy and iterate on without compromising on quality.

3. METHOD

3.1 Dataset and Tasks

General domain instruction tuning We performed minimal general domain instruction tuning
before we performed radiology specific finetuning using the Super Natural Instructions dataset [6].
This dataset is a benchmark of 1,616 diverse NLP tasks including non-english tasks and their expert-
written instructions. The collection covers 76 distinct task types. We used only the english specific
tasks with a total of 757 tasks and 2,410,002 training records corresponding to these tasks.

Radiology specific instruction tuning We create two datasets for radiology specific finetuning,
one for general radiology question answering and another for instruction tuning for tasks specific
to radiology reports of Chest X-rays.

For radiology question answering task, we create question answer pairs by sending the Radiopaedia
article content as context to GPT-4. This was done for all the articles pertaining to 15 different
systems. GPT-4 was specifically instructed to source the question and answer pairs only from the
article content sent as context. The temperature parameter was set as 0 to make the generations
deterministic. Every system had summary articles which we reserved for validation. We manually
verified all the samples in the validation set and some random samples from the training set. The

2306



https://www.oajaiml.com/ | June 2024 Mercy Ranjit, et al.

Table 1: Radiopaedia question answering data statistics

Systems Article Counts QA Pair Counts
Chest 1741 9695
Cardiac 771 5188
Central Nervous System 2846 16557
Urogenital 705 4171
Oncology 391 2782
Breast 357 1929
Musculoskeletal 3804 24026
Not Specified 1579 10880
Hepatobiliary 470 2956
Vascular 423 2304
Gastrointestinal 1240 7342
Obstetrics 568 3157
Interventional 149 1003
Trauma 85 483
Spine 94 490
Forensic 18 105

Total 15076 93068
Count of total articles and respective question answer
pairs by system.

count of question answer pairs w.r.t different systems is detailed in TABLE 1. This dataset was used
to train the Rad-Phi2-Base model.

The instruction tuning dataset for tasks specific to radiology reports was constructed from the
radiology reports of Mimic-CXR dataset [11], that contains radiology reports pertaining to Chest X-
rays. We use the annotations from existing datasets derived from Mimic-CXR dataset. Specifically
annotations from Medical-Diff VQA dataset [12], and ChestImagenome dataset [13], were used.
Both these datasets are derived from the Mimic-CXR dataset [11], dataset and contains fine-grained
region-level annotations for chest-related pathologies including temporal annotations (comparisons
with prior reports). Medical-Diff VQA annotations were used to construct the QA Temporal Find-
ings and QA comprehension tasks and ChestImagenome annotations were used for the rest of the
tasks. We used GPT-4 processing to remove the noisy details like mention of doctor names, dates,
follow-up recommendations from the findings and impression. The prompts used to construct the
dataset from the annotations are defined in TABLE 2. This dataset was used to train the Rad-Phi2
model. We use the same split defined by the Mimic-CXR dataset [11], for our instruction tuning
dataset. The number of records in the the train, test and validation split for different tasks is detailed
in TABLE 3.

3.2 Training Workflow

The training workflows of the Rad-Phi2-Base and the Rad-Phi2 models are depicted in FIGURE
1 and FIGURE 2, respectively. Both the models are trained in 2 steps. We started with the Phi2
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Table 2: Prompt design - instruction tuning dataset for radiology reports.

Task Name Prompt
EXTRACT FINDINGS <instruct>Given the radiology report below:

FULL REPORT
Output the impression of the radiology report. Each
sentence in the output should describe an observation or
a finding about the image. Do not mention any changes
in observations, follow-up suggestions, doctor names, or
noisy details.
<output>Answer<endoftext>

CLEANUP REPORT TEXT <instruct>Given the text from a radiology report:
RADIOLOGY REPORT TEXT
Update the impressions or findings such that each sen-
tence in the output describes an impression or observation
about the image. Remove any mention of change of an
observation and just state its presence. Do not include any
follow-up suggestions or advice, and avoid mentioning
any doctor names or other noisy details.
<output>Answer<endoftext>

IMPRESSION PREDICTION <instruct>Given the findings from a radiology report:
FINDINGS
Based on the above findings from a radiology report,
write an impression.
<output>Answer<endoftext>

ABNORMALITY LABELS <instruct>Given the below radiology report:
FULL REPORT
What abnormality labels can be tagged to these findings?
<output>Answer<endoftext>

QA COMPREHENSION <instruct>Answer the question using the radiology report
below as context:
FULL REPORT
Question:
<output>Answer<endoftext>

QA TEMPORAL FINDINGS <instruct>Given the below radiology report for an image
and its prior report for reference:
FULL REPORT
PRIOR REPORT
What findings are added and what findings are re-
moved in the current radiology report for an image,
compared to its reference report from before? <out-
put>Answer<endoftext>
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Table 3: Radiology reports instruction tuning dataset

Task Train Test Validation Total
QA TEMPORAL PROGRESSION 50000 17639 7078 74717
ABNORMALITY LABELS 221035 3403 1959 226397
QA TEMPORAL FINDINGS 100000 2939 1308 104247
TUBES AND LINES DEVICES LABELS 94915 3403 1959 100277
IMPRESSION PREDICTION 208876 2523 1647 213046
EXTRACT FINDINGS 50000 3844 2103 55947
EXTRACT IMPRESSION 50000 3283 2295 55578
CLEANUP RADIOLOGY TEXT 75000 7127 4398 86525
QA COMPREHENSION 467057 9179 3878 480114

Total 1316883 53340 26625 1396848
Rad-Phi2 Instruction Tuning Dataset Statistics: Count of task wise splits for
train, test and validation sets.

model and first instruction tuned it using the general domain tasks defined in the Super Natural
Instructions dataset [6]. We refer the resulting version as Phi2-Instruct(SupNatInst) . This
was further finetuned for Radiology domain to produce two different models, Rad-Phi2-Base for
answering radiology specific questions pertaining to 15 different systems defined in TABLE 1, and
Rad-Phi2 for the tasks specific to radiology reports defined in TABLE 3.

Figure 1: Rad-Phi2-Base Training

3.3 Experimental Design

The experiments are grouped under two categories.

In the first set of experiments, we finetune Phi2-Instruct(SupNatInst) for Radiology Question
Answering. We consider three baseline experiments for this task - The baseline performance of
Phi2 for answering Radiology related questions, the baseline performance of GPT-4 for answering
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Figure 2: Rad-Phi2 Training

Table 4: Experimental design - Radiology question answering

Model Description
Phi2 Baseline Baseline performance of Phi2 on Radiology Question

Answering without instruction tuning.
GPT-4 Baseline Baseline performance GPT-4 on Radiology Question

Answering. We instruct GPT-4 to answer in less than 50
words as otherwise it produced verbose answers.

RAG Baseline(GPT-4) Performance of Retrieval Augmented Generation ap-
proach for Radiology Question Answering. Index is
createdwith Radiopaedia articles pertaining to 15 systems
which was queried with questions from the summary
articles.

Rad-Phi2-Base Performance on Radiology Question Answering af-
ter finetuning Phi2-Instruct(SupNatInst) with QA
pairs from Radiopaedia articles.

Mistral-7B-Instruct-v0.2 Performance on Radiology Question Answering after
finetuning Mistral-7B-Instruct-v0.2 with QA pairs
from Radiopaedia articles.

Experiments conducted with respect to measuring the performance of further Instruction
Tuning Phi2-Instruct(SupNatInst) for Radiology Question Answering. The resulting
model is Rad-Phi2-Base.

Radiology related questions and Retrieval Augmented Generation(RAG) approach using GPT-4 that
uses an index of Radiology articles from Radiopaedia [2], to answer queries. We finetune Phi2 for
Radiology Question Answering using QA pairs extracted from the Radiopaedia articles pertaining
to 15 different systems defined in TABLE 1. We call this model Rad-Phi2-Base. We also finetune
Mistral-7B-Instruct-v0.2 using the same dataset for comparison. We reserve the summary
articles of Radiopaedia for evaluation. TABLE 4, documents the related experiments.
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Table 5: Experimental design - Radiology report tasks

Model Description
Phi2 Baseline Baseline performance of Phi2 on tasks related to

radiology reports.
GPT-4 Baseline Baseline performance of GPT-4 on tasks related to

radiology reports. We exclude the extract findings
and cleanup radiology text tasks as GPT-4 was used to
generate the training data for these tasks.

Rad-Phi2 Performance after Instruction tuning
Phi2-Instruct(SupNatInst) for radiology report
related tasks. The resulting model is Rad-Phi2.

Mistral-7B-Instruct-v0.2 Performance after Instruction tuning
Mistral-7B-Instruct-v0.2 for radiology report
related tasks.

Experiments conducted with respect to measuring the performance of further Instruction
Tuning Phi2-Instruct(SupNatInst) with tasks related to radiology reports. The resulting
model is Rad-Phi2.

In the second set of experiments we finetune Phi2-Instruct(SupNatInst) for tasks that are
useful in Radiology report writing workflows we defined in TABLE 3. TABLE 5, documents the
related experiments.

Is GPT-4 sufficient for radiology workflows? As we noted in the related work section , that
while GPT-4 perform extremely well on learn-by-instruction tasks like sentence similarity, RadNLI
[14], and disease progression classification, it required a large number of carefully curated examples
for learn-by-example tasks like impression summary writing to perform on par with the supervised
models trained specifically for the task. We measure the baseline zero-shot performance of GPT-4
for the learn-by-example tasks like Impression prediction to elicit the need for specialised models
that are better suited for real radiology workflows.

4. RESULTS

4.1 Evaluation Metrics

Lexical metrics We use the lexical NLP metrics that measures the overlap between the predicted
and reference texts. ROUGE-L [15], measures the length of the longest common word sub sequence
relative to the lengths of predicted and reference reports. BLEU-1 [16], is based on uni-gram
precision with a brevity penalty to discourage too short predictions. F1-score is a harmonic mean
of unigram precision and recall. We use the implementation of LlaVA-Med [17], for F1-score
evaluations.

GPT-4 based evaluation In-addition to lexical metrics, we also used GPT-4 based evaluation for
QA comprehension related tasks as lexical metrics does not always necessarily provide an accurate
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evaluation for all cases, for example in a QA comprehension task where the model has to give an
answer based on the context given, the predicted answer may be accurate in terms of semantics but
the wording may be slightly different which results in a less accurate evaluation. To counter this, we
use GPT-4 based evaluation for QA comprehension tasks following the work of [18], where GPT-4 is
used to come up with relevancy and accuracy scores to measure hallucinations in the predictions in
a instruction tuning setting. The relevancy score measures the compliance of the predicted response
to the instruction given by the user and the accuracy score measures the correctness of the response
in accordance with the context given. We pass the context, ground truth and predicted answers to
GPT-4 to measure the accuracy of the predictions. Both relevancy and accuracy is scored in a scale
of 1-10, 1 being the least accurate or relevant answer and 10 being the most accurate or relevant
answer.

Clinical metrics As we deal with radiology text generation, for tasks like impression prediction,
we also use a clinical metric named RadGraph F1 that measures the accuracy and completeness
of the clinical facts generated by the model. The RadGraph F1 is based on the RadGraph model
[19], that parses the radiology reports into graphs containing clinical entities like anatomy and
observations and relations between them.

Radiologist evaluation We also performed evaluation by a board certified radiologist for the
impression prediction task for a sample set of fifty records for both the Rad-Phi2 and Mistral-7B
models. The radiologist evaluated the predictions for errors under 4 different categories - Omission
of Findings, False Prediction of Findings, Incorrect Position of Findings and Incorrect Severity of
Findings. These categories were defined by radiologists in a previous work [20].

We derive bootstrap confidence intervals for our evaluations by creating 10 resamples with replace-
ment from the test dataset, where each resample is the size of the original test set.

4.2 Evaluation Results

4.2.1 Radiology QA performance

Table 6: RAD-PHI2-BASE - Radiology QA metrics (All systems)

Model F1-Score Recall BLEU-1 RougeL
Phi2-Baseline 15.08 [13.18, 16.95] 10.27 [8.78, 11.78] 2.02 [1.38, 2.88] 9.46 [8.48, 10.48]

Rad-Phi2-Base 34.86 [30.26, 39.59] 39.48 [33.05, 45.38] 22.84 [18.54, 27.47] 25.13 [21.3, 29.24]

Mistral-7B-Instruct-v0.2 29.4 [25.43, 33.19] 35.53 [29.78, 40.39] 17.76 [14.59, 20.89] 20.88 [18.04, 23.88]

GPT-4 31.54 [28.36, 33.87] 28.28 [24.7, 30.62] 18.52 [15.61, 21.07] 21.64 [19.2, 23.6]

RAG(GPT-4) 29.93[26.97, 32.4] 30.98 [26.79, 35.12] 18.7 [15.83, 22.04] 22.42 [19.21, 25.82]

Comparison of the Rad-Phi2-Base performance on Radiology-QA with that of
Mistral-7B-Instruct-v0.2, both trained on the same dataset of QA pairs from Radiopaedia
articles, along with GPT-4 and RAG, using an index of Radiopaedia article Q&A pairs.RAG
leverages GPT-4 with text-embedding-ada-003.
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The evaluation performance of the Radiology Question Answering task based on the summary
articles of Radiopaedia is available in TABLE 6. Rad-Phi2-Base performed better on all the met-
rics when compared to Mistral-7B-Instruct-v0.2 finetuned on the same dataset of radiology
QA pairs.Rad-Phi2-Base also performed better on all metrics when compared to GPT-4 and even
Retrieval Augmented Generation approach using GPT-4 where an index of question-answer pairs
derived from the Radiopaedia articles was queried to answer queries on the summary articles.

The stratified metrics of Radiology QA w.r.t to 10 different systems like Chest, Cardiac etc. is
available in TABLE 7. As seen from the stratified metrics, models like GPT-4 while performing
reasonably well on more prevalent categories like Chest and Cardiac shows a huge gap in the
performance of less prevalent categories like Urogenital and Forensic related questions.

Sample output of Radiology QA from different models is available in TABLE 8. The training and
inference statistics for Rad-Phi2-Base and Mistral-7B-Instruct-v0.2 are available in TABLE
9. RadPhi-2 Base requires significantly lesser training time and GPU memory for inference when
compared to Mistral-7B.
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Table 7: RAD-PHI2-BASE - Radiology QA metrics by system

System Metrics Rad-Phi2-Base Mistral-7B-
Instruct-v0.2

GPT-4 RAG(GPT-4)

Chest

F1-Score
Recall
Bleu-1
Rouge L

34.92 [34.52, 37.35]

40.9 [39.52, 43.72]

23.09 [22.64, 25.75]

24.33 [23.83, 26.14]

29.31 [28.15, 30.56]

37.41 [35.71, 38.41]

17.59 [16.71, 18.37]

20.21 [19.62, 21.47]

34.65 [34.01, 36.34]

33.05 [31.65, 34.6]

21.57 [20.79, 23.05]

22.85 [22.25, 24.9]

31.38[29.71, 33.62]
29.24[27.46, 32.06]
17.82[16.51, 19.7]
21.48[20.1, 23.6]

Cardiac

F1-Score
Recall
Bleu-1
Rouge L

26.93 [23.27, 30.3]

29.12 [25.14, 33.74]

14.95 [12.65, 18.88]

16.97 [13.99, 19.79]

24.13 [20.87, 28.79]

30.17 [24.94, 31.98]

14.42 [11.99, 18.86]

14.56 [12.47, 17.99]

28.93 [25.53, 29.88]

26.1 [22.91, 27.32]

14.63 [12.48, 15.47]

18.12 [15.32, 19.09]

24.88[22.96, 28.19]
23.91[20.31, 29.7]
10.55[8.53, 14.03]
14.8[13.77, 16.79]

Gastrointestinal

F1-Score
Recall
Bleu-1
Rouge L

32.6 [30.43, 33.18]

39.21 [35.85, 40.89]

20.04 [18.8, 20.32]

22.29 [20.52, 22.64]

31.03 [29.42, 32.64]

38.61 [37.03, 39.87]

19.5 [17.6, 20.88]

21.66 [19.73, 23.16]

31.37 [30.38, 31.7]

28.59 [27.34, 29.43]

18.31 [17.51, 18.51]

20.54 [20.07, 20.89]

33.31[32.19, 35.33]
30.64[29.54, 32.6]
18.23[17.04, 19.57]
22.99[21.64, 24.7]

Musculoskeletal

F1-Score
Recall
Bleu-1
Rouge L

37.17 [35.46, 37.7]

43.29 [41.79, 44.79]

23.87 [22.52, 24.17]

26.45 [25.16, 26.71]

32.4 [31.62, 35.06]

36.09 [35.38, 39.02]

20.84 [19.89, 22.95]

23.01 [22.17, 24.89]

34.33 [33.15, 34.89]

31.4 [29.39, 31.94]

20.28 [18.77, 21.17]

23.29 [22.2, 23.68]

35.21[34.55, 35.66]
32.32[31.75, 32.83]
20.47[20.35, 21.07]
25.02[24.76, 25.52]

Central Ner-
vous System

F1-Score
Recall
Bleu-1
Rouge L

32.52 [31.16, 34.43]

39.87 [38.3, 41.69]

20.83 [19.6, 23.09]

22.16 [21.0, 24.19]

27.78 [25.05, 30.82]

37.08 [34.27, 39.0]

17.87 [15.88, 20.44]

19.09 [17.41, 21.53]

30.95 [29.86, 32.32]

29.42 [28.35, 31.24]

19.09 [18.19, 20.36]

20.53 [19.48, 22.03]

28.1[26.46, 29.82]
26.78[25.37, 28.73]
15.52[13.96, 17.24]
19.28[17.69, 20.41]

Breast

F1-Score
Recall
Bleu-1
Rouge L

35.43 [24.39, 47.16]

39.3 [23.85, 52.49]

26.53 [19.22, 35.69]

27.04 [20.99, 37.42]

21.52 [10.38, 30.92]

20.44 [7.92, 27.98]

11.91 [4.19, 17.81]

15.18 [6.29, 20.87]

33.59 [27.6, 37.84]

27.69 [21.78, 31.63]

19.51 [14.54, 22.35]

23.37 [20.68, 26.22]

27.17[22.01, 28.94]
21.89[15.81, 23.18]
13.43[7.57, 14.02]
19.68[15.86, 21.3]

Urogenital

F1-Score
Recall
Bleu-1
Rouge L

38.23 [34.99, 44.62]

43.65 [37.36, 54.74]

23.53 [21.35, 27.69]

24.64 [22.48, 27.32]

27.76 [22.32, 29.92]

31.74 [23.95, 37.13]

15.68 [11.21, 17.69]

18.2 [15.67, 19.8]

31.93 [25.6, 36.34]

27.83 [22.05, 31.35]

17.86 [14.87, 22.01]

20.3 [16.96, 23.49]

34.03[29.33, 36.55]
29.19[24.29, 31.28]
18.07[15.34, 19.25]
22.66[18.36, 24.64]

Vascular

F1-Score
Recall
Bleu-1
Rouge L

32.76 [27.07, 37.45]

34.12 [26.86, 39.93]

20.82 [16.74, 26.23]

22.99 [17.79, 28.18]

27.58 [22.09, 29.97]

34.36 [27.25, 40.04]

14.73 [11.48, 16.15]

18.91 [15.6, 21.02]

30.3 [26.95, 34.33]

26.4 [22.73, 29.98]

17.31 [15.48, 21.67]

19.97 [17.86, 22.64]

31.62[24.32, 34.39]
31.04[20.48, 31.83]
19.5[13.79, 21.0]
22.94[17.6, 28.98]

Forensic

F1-Score
Recall
Bleu-1
Rouge L

46.22 [33.66, 53.0]

45.79 [27.74, 52.64]

36.29 [18.95, 44.69]

42.68 [29.44, 48.74]

39.2 [37.74, 43.41]

47.79 [39.21, 64.17]

23.91 [20.92, 27.1]

34.6 [33.6, 38.62]

28.35 [21.86, 32.44]

22.46 [15.4, 27.33]

16.59 [7.43, 23.73]

26.28 [17.97, 29.83]

27.46[24.44, 30.02]
20.56[16.97, 23.23]
12.56[6.28, 18.39]
24.88[22.94, 27.27]

Hepatobiliary

F1-Score
Recall
Bleu-1
Rouge L

31.81 [27.64, 40.7]

39.51 [34.06, 49.19]

18.46 [12.89, 28.23]

21.74 [17.81, 31.29]

33.26 [26.64, 39.77]

41.57 [32.09, 46.25]

21.14 [16.03, 28.62]

23.33 [17.83, 29.43]

31.02 [28.62, 32.6]

29.89 [25.36, 31.35]

20.06 [16.0, 22.43]

21.16 [19.25, 23.24]

26.17[23.72, 31.51]
24.42[21.55, 27.99]
13.85[10.37, 15.23]
17.74[15.11, 24.53]

System Wise Metrics for Radiology Question Answering on Radiopaedia Summary Articles. For
Retrieval Augmented Generation, the index was created using Radiopaedia Articles for all the
systems and queries were based on the summary articles. GPT-4 lacks in systems like Urogenital,
Forensic, Musculoskeletal and Gastrointestinal as seen from its recall metrics.
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Table 8: Example - radiology QA

User What are the acute indications for ultrasound carotids?
Ground Truth Assessment of carotid stenosis in cases of TIA (Transient Ischemic Attack)

or stroke.
Phi2 Baseline The most common indication for ultrasound carotids is to evaluate the

presence of carotid stenosis . Carotid stenosis is a narrowing of the carotid
artery, which supplies blood to the brain. This narrowing can be caused
by atherosclerosis, a buildup of plaque in the artery. Ultrasound carotids
can also be used to evaluate the presence of carotid aneurysms, which are
bulges in the artery wall that can rupture and cause a stroke .What are the
chronic indications for ultrasound carotids? The most common chronic
indication for ultrasound carotids is to evaluate the presence of carotid
stenosis. Carotid stenosis is a narrowing of the carotid artery, which supplies
blood to the brain. This narrowing can be caused by atherosclerosis, a
buildup of plaque in the artery. Ultrasound carotids can also be used to
evaluate the presence of carotid aneurysms,

Rad-Phi2-Base Acute indications for ultrasound carotids include
acute stroke, transient ischemic attack , and carotid artery dissection .

GPT-4 Acute indications for ultrasound carotids include sudden onset of neurologi-
cal symptoms like weakness, numbness, difficulty speaking, loss of balance,
severe headache, blurred vision - signs potentially indicating stroke . It may
also be used in cases of suspected carotid artery stenosis or dissection .

Mistral-7B-
Instruct-v0.2

Acute indications include: trauma to the head or neck, acute neurological
symptoms, and suspected arterial occlusion.

RAGwithGPT-4 The acute indications for ultrasound carotids include evaluating
carotid stenosis , assessing the macroscopic appearance of plaques,
and analyzing flow characteristics. Doppler ultrasound is the first choice
for carotid stenosis screening and can help determine if further CTA or
MRA studies are needed.

Rad-Phi2-Base answers to the point. The Phi2 model though gives a relevant answer, it does
not answer to the point and repeats itself. GPT-4 does give relevant answers, the answers were
very verbose and hence restricted by adding an instruction to the prompt to answer in less than
50 words. Mistral-7B-Instruct-v0.2 gives a related answer but did not predict the expected
technical terms.

Table 9: Training and inference statistics - Radiology QA

Model Micro Batch Size
(Training)

Training Time
(1 epoch)

GPU Memory
(Inference)

Mistral-7B-Instruct-v0.2 2 26.6 <15.5G
Rad-Phi2-Base 8 3.35 <6.2G
Micro Batch Size, Training Time in hours and GPU Memory Usage during
Inference on a A100 80 GB compute.
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4.2.2 Radiology report tasks - Impression prediction

Impression writing from a set of findings is an important task in Radiology Report Writing work-
flows. We measure the impression prediction performance using a clinical metric called Rad-
Graph F1 [19], which measures the completeness and accuracy in the extraction of clinical en-
tities(anatomies and observations) from the radiology reports and the relationship between them.
Radgraph F1 score is calculated using the official python package. We use the reward_level as
partial while using the package. The performance comparison of the models is available in TABLE
10. Rad-Phi2 performs slightly better than the larger Mistral-7B-Instruct-v0.2 which was
also finetuned on the same dataset. Examples of Impression Prediction outputs from the models is
available in TABLE 12.

The radiologist evaluation results are available in TABLE 11. The missed findings category had
the most number of errors for both the models. Out of 149 unique findings in the 50 sampled
impressions, RadPhi-2 and Mistral-7B missed, 16 and 14 findings respectively.

Table 10: Impression prediction

Model RadGraph F1 RougeL F1-score
Phi2-Baseline 0.09 [0. , 0.09] 5.8 [5.7, 5.91] 8.05 [7.88, 8.22]

Rad-Phi2 46.12 [45.81, 47.36] 49.43 [48.86, 49.63] 56.63 [55.99, 56.64]

Mistral-7B-Instruct-v0.2 45.8, [44.1 , 46.56] 48.61 [47.69, 49.11] 56.36 [55.68, 56.85]

GPT-4 Zero-shot 16.69 [0.43 , 16.29] 14.12 [13.95, 14.37] 18.9 [18.69, 19.43]

Impression GPT (Few Shots
with GPT-4)

Not Available 47.93 Not Available

Rad-Phi2 has the best performance on all the metrics when compared to other models.
Impression GPT is a SOTA impression prediction approach which uses an iterative
optimization algorithm for dynamic impression prompt generation using GPT-4.

Table 11: Radiologist evaluation - Impression prediction

Model Missed Findings False Findings Position Related Severity Related
Rad-Phi2 16 1 2 0
Mistral-7B-Instruct-v0.2 14 2 1 0
Error counts by category for the impression prediction task performed by a board certified radiologist.

GPT-4’s performance on impression prediction While it is well established that GPT-4 follows
instructions quite well and has a reasonable radiology knowledge, is it good enough for nuanced
tasks like impression writing when compared to models that are specifically trained for these tasks to
be able to be deployed in real radiology workflow. We measure the zero-shot performance of GPT-4
on impression prediction task from the findings of the radiology report. The results are available in
TABLE 10. The zero-shot performance of GPT-4 is inferior. The best performance from GPT-4 on
impression prediction was reported in the work Impression GPT [8], which leverages the in-context
learning capability of LLMs by constructing dynamic few-shot examples from semantically similar
examples from existing data and iteratively improving upon it. To conclude, a careful selection of
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large number of examples using sophisticated prompt engineering approaches is required to elicit a
comparable performance from GPT-4 when compared to models specifically trained for these tasks.
The RougeL performance of ImpressionGPT is reported in the TABLE 10.

Table 12: EXAMPLE - IMPRESSION PREDICTION
User Given the findings from a radiology report:The endotracheal tube terminates

no less than 3.4 cm above the carina. An orogastric tube terminates within the
stomach with the side port near the gastroesophageal junction. A left internal
jugular central venous line terminates in the mid SVC. A right subclavian
triple-lumen catheter terminates in the lower SVC. There has been interval
reduction in heart size as well as marked improvement in pulmonary edema.
Small bilateral pleural effusions are slightly smaller. There is a persistent left
retrocardiac opacity. There is no pneumothorax. Based on the above findings
from a radiology report, write an impression.

Ground Truth Endotracheal tube is appropriately positioned, 3.4 cm above the carina. The
orogastric tube is beyond the gastroesophageal junction. There is retrocardiac
opacity representing consolidation or atelectasis.

Phi2 Baseline Solution 0:An impression is a summary of the main findings and observations
from a radiology report. It is usually written by a radiologist or a physician
who interprets the images and provides a clinical assessment of the patient’s
condition. An impression can help guide the management and treatment of the
patient, as well as communicate the results to other healthcare providers.An
example of an impression based on the given radiology report is:The patient
has a severe case of Acute Respiratory Distress Syndrome (ARDS), which
is a life-threatening condition that causes fluid accumulation in the lungs
and impaired gas exchange. The patient has multiple complications, such
as pulmonary edema, pleural effusions, and a retrocardiac opacity, which are
signs of lung injury and infection. The patient also has a large heart size, which
indicates cardiac dysfunction and poor perfusion. The patient has received
mechanical ventilation and vasopressor support, which are interventions to
improve oxygenation and blood pressure.

Rad-Phi2 Endotracheal tube terminates no less than 3.4 cm above the carina.
Orogastric tube terminates within the stomach with the side port near the
gastroesophageal junction. There is a persistent left retrocardiac opacity.

Mistral-7B-
Instruct-v0.2

Mild pulmonary edema is present. There is a persistent left retrocardiac
opacity. Small bilateral pleural effusions are present.

Rad Phi2 predicts the impression correctly. Mistral-7B-Instruct-v0.2 does not include the
line and tubes details in the impression. Phi2 hallucinates.

4.2.3 Radiology reports tasks - others

The other radiology report related tasks were divided into three groups based on the evaluation
metrics: Tasks related to comprehension, tasks related to extraction or generation and tasks related
to label prediction.
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QA Comprehension tasks For instruction tuning tasks related to QA comprehension, GPT-4
based evaluation was employed to measure the capabilities of the model in following an instruction
and if the answers are provided in accordance to the context provided. QA comprehension may
be based on a single report or two reports. For example, the Temporal Findings task generates a
differential set of findings by comparing the current report and a prior report. The performance of
experiments w.r.t to comprehension tasks is available in TABLE 13. The relevancy and accuracy
scores are measured in a scale of 1-10 with 10 being the most relevant or accurate answer and 1
being the least relevant or accurate answer. The results shows that Rad-Phi2 performs on par with
larger Mistral-7B-Instruct-v0.2.

Table 13: Radiology report tasks - QA comprehension

Model Score
(max 10)

QA
Comprehension

QA
Temporal
Findings

QA
Temporal
Progression

Phi2-
Baseline

relevance
accuracy

5.21 [4.96, 5.57]

4.05 [3.71, 4.60]

1.92 [1.76, 2.18]

1.33 [1.25, 1.42]

3.30 [2.91, 3.49]

3.04 [2.76, 3.25]

Rad-Phi2 relevance
accuracy

9.03 [8.76, 9.19]

9.03 [8.85, 9.23]

8.37 [8.14, 8.76]

8.27 [8.15, 8.54]

8.38 [8.11, 8.86]

8.16 7.93, 8.41]

Mistral-7B-
Instruct-v0.2

relevance
accuracy

9.43 [9.20, 9.59]

9.77 [9.72, 9.92]

8.68 [8.49, 8.99]

9.28 [9.18, 9.48]

9.05 [8.80, 9.34]

9.15 [8.90, 9.37]

GPT-4 relevance
accuracy

9.99 [9.98, 9.99]

8.32[8.04, 8.52]
10 [10, 10]

4.62 [4.44, 4.79]

9.87 [9.80, 9.97]

8.73 [8.39, 9.09]

The Relevance and Accuracy Scores from the GPT-4 evaluation of QA Comprehension tasks
related to Radiology Reports. Rad-Phi2 is slightly lower in performance when compared to
Mistral-7B-Instruct-v0.2. GPT-4 has the best instruction following capabilities while its
accuracy is lower.

Label prediction tasks Label prediction tasks like prediction of abnormality labels and tubes,
lines and device labels from the findings of the radiology reports, being a multi-label classification
problem, we report the f1-score, precision and recall. The results are in TABLE 14.
Mistral-7B-Instruct-v0.2 is slightly better than Rad-Phi2 in the label prediction tasks as seen
from the error bars of the metric.

Extraction tasks For tasks related to extraction like the extraction of findings from the radiology
report, or generating a paraphrased set of findings to produce a clean radiology text without noise,
we use lexical metrics to measure the performance. The performance metrics for these tasks is
available in TABLE 15. As seen from the metrics Rad-Phi2 performs slightly better or is on-par to
Mistral-7B-Instruct-v0.2.
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Table 14: Radiology report tasks - Label prediction

Task Metrics Phi2-
Baseline

Rad-Phi2 Mistral-7B-
Instruct-v0.2

GPT-4

Abnormality La-
bels

F1-Score
Recall
Precision

56.07 [55.84, 56.6]

57.26 [56.99, 57.78]

56.87 [56.65, 57.38]

94.68 [94.57, 94.87]

94.88 [94.82, 95.0]

95.54 [95.4, 95.79]

95.17 [94.99, 95.62]

95.63 [95.38, 96.11]

95.72 [95.67, 96.09]

81.46 [80.98, 81.65]

79.87 [79.30, 80.15]

85.97 [85.44, 86.16]

Tubes/Lines/Devices
Labels

F1-Score
Recall
Precision

77.85 [76.96, 78.34]

77.8 [76.84, 78.29]

78.63 [77.8, 79.13]

95.54 [95.16, 95.2]

95.82 [95.43, 95.51]

95.49 [95.12, 95.15]

94.88 [94.05, 95.62]

95.14 [94.34, 95.54]

94.83 [94.97, 95.24]

88.95 [88.53, 89.46]

89.50 [89.04, 89.98]

89.10 [88.65, 89.63]

Label prediction performance for the abnormality labels and tubes, lines and devices labels.
ChestImagenome labels pertaining to findings, diseases, tubes/lines and devices were used.
Mistral-7B-Instruct-v0.2 performs slightly better than Rad-Phi2 in abnormality prediction
and Rad-Phi2 performs slightly better than Mistral-7B-Instruct-v0.2 in tubes and lines label
prediction.

Table 15: Radiology report tasks - Extract findings & cleanup tasks

Task Metrics Phi2-Baseline RadPhi2-Instruct Mistral-7B-
Instruct-v0.2

Cleanup Radiology
Text

F1-Score
Recall
Bleu-1
Rouge L

24.26 [23.97, 24.38]

16.93 [16.69, 17.06]

5.64 [5.47, 5.79]

18.11 [17.86, 18.26]

89.72 [89.56, 90.09]

90.79 [90.63, 91.15]

83.44 [83.33, 83.99]

84.55 [84.37, 84.79]

89.06 [88.88, 89.26]

90.06 [89.85, 90.29]

82.53 [82.4, 82.88]

84.0 [83.81, 84.3]

Extract Findings

F1-Score
Recall
Bleu-1
Rouge L

29.7 [29.15, 30.07]

21.73 [21.34, 22.08]

9.52 [9.29, 9.8]

23.67 [23.23, 23.99]

89.83 [89.5, 89.8]

90.6 [90.33, 90.59]

83.23 [82.85, 83.27]

84.87 [84.54, 85.01]

89.2 [89.28, 89.41]

89.68 [89.83, 89.84]

82.45 [82.51, 82.63]

83.95 [84.01, 84.11]

Lexical metrics of extract findings task and cleanup radiology text tasks. Rad-Phi2 performs
on-par or better than Mistral-7B-Instruct-v0.2.

4.3 Ablation Studies

We perform ablation studies on the below areas:

Input Format We compare the Phi2 default input format with a token based input format that
includes special tokens for instruction and output. The input formats are defined in TABLE 16. We
find that the token based format works better than the default input format. The evaluation was
performed on the Radiology QA task for Chest related articles. The metrics are available in TABLE
16.
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Table 16: Ablation study - Default input format vs token based format

Format of Prompt Prompt F1-Score
Default Format Instruct: <prompt>< 𝑛𝑒𝑤𝑙𝑖𝑛𝑒 > Output: 5.4 [5.08, 5.71]

Our proposed format <instruct><prompt>< 𝑛𝑒𝑤𝑙𝑖𝑛𝑒 > <output> 29.17 [27.81, 30.09]

Input Format for Phi2 v/s format we used for Rad-Phi2. We introduce two new tokens instruct
and output to mark the start of instruction and start of output for the model. The ablation is
performed for chest only articles. Token based format performs better than the default format.

General Domain Instruction Tuning We also note that general domain instruction tuning im-
proves Radiology specific instruction tuning. Thiswas consistently noted both for the Rad-Phi-Base
model which was trained for the Radiology Question Answering task and also for the Rad-Phi2
model that was trained for tasks specific to radiology reports. The results are noted in TABLE 17.
The general domain instruction tuning refers to the instruction tuning performed with the Super
Natural Instructions dataset.

Table 17: Ablation study - Dmpact of general domain instruction tuning

Model setting F1-Score
Rad-Phi2 with General Domain Instruction Tuning 83.07 [82.55, 83.68]

Rad-Phi2 without General Domain Instruction Tuning 48.81 [48.15, 49.65]

General Domain Instruction Tuning improves the metrics for Radiology specific Instruction
Tuning.

5. DISCUSSION

We have presented results on Rad-Phi2-Base and Rad-Phi2, radiology-specialised small language
models to perform radiology question answering and specific tasks that are useful in radiology report
writing workflows respectively.

Rad-Phi2-Base was finetuned from Phi2 [1], using high quality and reliable article content from
Radiopaedia [2], a trusted resource used by radiologists throughout the world. It can answer queries
related to radiology with respect to 15 different systems(chest, cardiac etc) about diseases like
symptoms, radiographic appearances of findings, prognosis, treatments etc. and can aid radiologists
and clinicians in their day-to-day clinical decision making. Rad-Phi2-Base performed better than
larger models like Mistral-7B-Instruct-v0.2 which was also finetuned on the same dataset and
also GPT-4. GPT-4while it has excellent radiology knowledge on various systems can still fall short
on specific categories like Urogenital, Forensic, Musculoskeletal, Gastrointestinal etc as seen from
metrics of the Radiology QA task stratified by system.

Our work also explored the possibility of having a multi-task instruction tuned radiology model
that can perform tasks useful in radiology report writing workflows of chest X-rays which has
not been addressed in earlier works in a multi-task instruction tuning setting . This includes tasks
like impression writing, temporal comparisons of reports for differential findings, extraction of a
clean set of findings from radiology reports and tagging of reports with appropriate abnormality
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labels, tubes and lines labels or disease progression labels. Our work also highlighted areas where
small language models like Rad-Phi2 can be valuable in-comparison with GPT-4. While GPT-4
is extremely good at following instructions, it still lacks on nuanced tasks like impression writing
in a zero-shot setting. It requires advanced approaches like Impression GPT [8], which uses an
advanced prompt engineering algorithm with an iterative dynamic prompt optimisation approach to
be comparable in performance with models finetuned for specific tasks like Rad-Phi2. We believe
that specialised small language models like Rad-Phi2, which enable multi-tasking in radiology,
can aid radiologists in their day-to-day report writing workflows and are easy to improve and iterate
upon.

Rad-Phi2-Base and Rad-Phi2, being smaller models still performs on-par with larger instruction
tuned LLMs like Mistral-7B-Instruct-v0.2. A minimal general domain instruction tuning was
performed with the Super Natural Instructions dataset before the radiology specific fine tuning
as Phi2 was not an instruction tuned model and tends to produce verbose content. We note that
general domain instruction improves Radiology specific instruction tuning. In addition, our work
brings insights into token input formats that worked better than the default instruction format while
finetuning Phi2. Future work can explore the possibilities of further instruction tuning with diverse
instruction sets and other prompt strategies like few-shot and chain-of-thought.

6. CONCLUSION

We have presented the Small Language Models for Radiology, Rad-Phi2-Base and Rad-Phi2
models, that can be useful to answer queries and perform multiple text-related tasks relevant in radi-
ology report writing workflows respectively. As Rad-Phi2-Base was trained from high quality arti-
cle content from Radiopaedia, a trusted radiology resource, it can provide accurate response to user
queries. Despite being smaller and minimally instruction-tuned, Rad-Phi2-Base and Rad-Phi2
shows competitive performance when compared with the larger instruction-tuned counterparts thus
making language models more accessible for clinical utility in real-life radiology workflows.
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