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Multi-layered transformer architectures have lately dominated the domain of vision-language
tasks. However, massive transformer architectures can often be inaccessible to many re-
searchers due to their sheer model sizes, and they are often treated as black boxes with poor
interpretability. In this paper, we examine the weaknesses of such architectures and propose
our own solutions. In particular, we select one of the state-of-the-art models called Oscar and
apply distilling techniques and attention visualization to address the aforementioned issues.
Moreover, we attempt to improve the overall effectiveness of the Oscar model by making
its inferred object tags more useful. We show with detailed experimentation that we can
both improve the performance of vision-language tasks and make them more transparent
and accessible to all researchers. We discuss the findings with detailed analysis, including
the effects of tags and confidence, the training behavior of distillation, and point out future
directions in the end.

Keywords: Vision-language tasks, Multimodal machine learning, Multi-layered trans-
former.

1. INTRODUCTION

Vision-Language (V+L) tasks have long been a category of tasks that can easily apply to serve for
social good and has gathered research attention; exemplary tasks include visual question answering,
image-text retrieval, image captioning, etc. Learning a cross-modal representation between images
and words is crucial to all these tasks, since classic encoder-decoder end-to-end methods have all
been relying on such a basis. Typically, to learn such a set of embedding for both the text and image
domains, proper pre-training is conducted, and then the model is fine-tuned to a specific task defined
by the input and expected output of the given dataset.

Recent studies [1, 2], on vision-language pre-training have significantly improved the performances
of most Vision-Language tasks through learning from massive sets of image-text pairs, and many
of them [2–7], are based on multi-layer transformers. It has been shown that Visual-Language tasks
can benefit from sharing embedding spaces when aligning inter-modal correspondences between
images and texts. Nevertheless, pre-trained V+L models are usually memory intensive & computa-
tionally expensive given the nature of transformers recording multiple sets of weight and attention
parameters, which makes back-propagation a memory-demanding job. Even the model-to-go for
language generation task, BERT [8], has several hundred million trainable parameters and takes
days to converge using an enormous cluster of top-tier graphics cards that most individuals and
small companies cannot afford, let alone environmental concerns due to exponentially increasing
use of power. Also, it has been not easy enough for humans to understand the way a particular
model uses to extract, focus and make decisions in a multi-modal setting; it is hard to gauge what
neural networks learn about vision and language space.

In this paper, based on the strong generalization power of the transformers and the discoveries
we have made in one of the state-of-the-art models, which uses extrinsic tag information as a
supplement, we want to make the model better utilizes information from the image side, especially
through more proper use of related labeled information. On this path we test two ideas, one being
reordering, removing and reorganizing input tags, and including confidence scores; the other being
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the copy mechanism. This helps us understand how such models work and make decisions in the
multimodal domain, and also find ways to make the model lighter.

Under these considerations, our main contributions to the work include the following points:

• Make the SoTA Vision-Language model faster by reducing model size via knowledge distil-
lation while maintaining accuracy performance.

• Make the performance of the SoTA Vision-Language model stronger by re-engineering the
input features using two methods: object tag confidence incorporation and object tag copy
mechanism.

• Make the SoTAVision-Languagemodelmore interpretable via visualizing its attentionmech-
anisms through different design decisions on extrinsic information.

2. RELATEDWORK

Transformers. Transformers, as proposed in [9], is a relatively new network structure that has the
capacity to replace the long-standing rockstars of Convolutional and Recurrent neural networks. It
can capture long-term dependencies between input tokens, through a self-attention mechanism.

The calculation of the attention function depends on three parts of input: Queries, Keys, and Values.
Query and Key values conduct matrix multiplication together, the result goes through a softmax
layer, and the output is multiplied to the value matrix.

Multi-head attention is defined by concatenating the attention heads from different representation
subspaces:

MultiHead(𝑄, 𝐾,𝑉) = Concat(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊,
where ℎ𝑒𝑎𝑑𝑖 denotes the i-th attention head as in all ℎ heads, calculated from each of the cor-
responding attention functions; the matrix W acts as a linear transformation, thus being called a
“Transformer”.

Pre-training transformer-based language models, then fine-tuning for downstream tasks has become
a new norm for Natural Language Processing, considering this kind of model’s powerful perfor-
mance and its enormous cost of training from scratch. Pre-trained language models such as BERT
[8], XLNet [10], RoBERTa [11], etc., have proven themselves to be successful in the language-only
domain, but the many layers of transformers and up to hundreds of millions of parameters are a
burden even for inference and fine-tuning.

Vision-Language Pre-Training. Guided by the trend from the release of BERT [8], there is a
growing research trend in building pre-training large, generic models to solve a variety of Vision-
Language problems, such as Visual Question Answering (VQA), image-text retrieval, image cap-
tioning, etc. Many existing methods, for example, VLP [12], bottom-up attention [13], LXMERT
[5] andVL-BERT [3], employBERT-like objectives to learn cross-modal embeddings/representations
from visual region features and language token embeddings concatenated together (e.g. VL-BERT),
or cross-referred in parallel (e.g. LXMERT). These models heavily rely on the self-attention mecha-
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nism of Transformers [9], across and within modalities; the goal and effect is to learn joint represen-
tations that are appropriately aligned between themodalities. Typically researchers would use Faster
RCNN to train and extract objects in the picture to be served, and when these items are recognized,
a tag will also be guessed about the object. Compared to the prior, we make model changes that
better utilize this precious enriched data source, and use it as a guide to make transformers focus
more on specific on the saliently recognized objects with high confidence.

Knowledge Distillation. Knowledge distillation [14], is a model compression technique in which
a more compact model - the student - is trained to reproduce the behavior of a larger model - the
teacher - or an ensemble of models, so that comparable performance is retained while parameter size
is greatly reduced. In practice, the teacher feeds the student with distribution losses at all levels.

A series of Knowledge Distillation papers around BERT, namely DistilBERT [15], TinyBERT [16],
and Simplified TinyBERT [17], follow the same path of shrinking the original BERT [8], model
through using smaller parameters, fewer layers and dropping sub-layers. These models use the
soft output from Embedding, Attention, Hidden, and finally, Fully-connected Prediction layers to
generate soft losses for the student model. In some cases, the hard label is also used as another loss
term.

There are also knowledge distilled models that move beyond retaining the original structure. In
[18], knowledge distillation is done through contrastive loss, in which the marginal representation
between the teacher and student models is maximized in mutual information when a joint represen-
tation is provided. In [19], many other cross-modality methods are introduced, which include ways
of learning from many teachers as in [20]. Compared to prior work, our work is among the first
trials to introduce knowledge distilling in any form for a multimodal transformer model, built upon
training concatenated field of representation for images and language.

3. PROPOSED APPROACH AND DESIGN

3.1 Problem Statement

Although our main focus of the problem is image captioning, the more essential task we are dealing
with is training a multimodal model across image and language. We define the multimodal dataset
as [w, v], in which w denotes the caption tokens, and v denotes the extracted features of the image.
The two modalities of data pair together, often in a many-to-one form, since very often we have
many descriptions provided for a given image in the dataset.

To pretrain a multimodal model for the united language-image domain, a typical approach is to
randomly mask part of the input tokens, and maximize the possibility that the model guesses out the
right missing words, or 𝑓 ([w’, v]) → [w]. On the other hand, the task of image captioning would
require a separate objective; training uses the same masking method, while during inference, only
the image and a starting token are supplied; the model needs to generate text output corresponding
to the input image, or 𝑓 ([[𝐶𝐿𝑆], v]) → [w]. Typically language generation is done through beam
search to maximize the joint probability of the tokens.
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3.2 Baseline

Compared to other aforementioned Visual-Language Pre-Training methods, the most outstanding
difference of themodel as in Oscar [4] is the use of auto-recognized object tags that connect elements
in the two modalities. The pre-training objective for Oscar is defined into two parts according to
the focus of loss with respect to the tags: Masked Token Loss in the Dictionary view, in which
some input tokens are masked and the model is asked to train to predict them using the remaining
input, minimizing the negative log-likelihood on word tokens; Contrastive Loss in the Modality
view, in which tags are randomly replaced as a whole and the model is asked to predict whether the
input contains polluted tags or not, minimizing the negative log-likelihood on the binary prediction.
Application of loss functions like these are widely seen in other tasks as well [21]. A figurative
view of this structure is shown in FIGURE 1.

Figure 1: Structure of the Oscar model. The three input components across two modalities are
concatenated and sent into the layers of transformers.

3.3 Proposed idea 1: Investigation of feature contribution and re-engineer feature

With the goal of understanding what factors contribute to cross-modal transformer’s success and
failure cases and re-engineering the features to make the model better accordingly, in this idea, we
first designed ablation studies to study the effect of image features and object tags (along with object
tags’ order) onmodel performances on image captioning tasks. We used pre-trained the Oscar model
Bert-base that is trained with both image region features and object tags. The image region features
are extracted by the Faster R-CNN with ResNet-101, using object and attribute annotations from
the Visual Genome dataset. The object tags are from the same Visual Genome model.

Then after the ablation study and error analysis, we found that object tags are crucial to the cross-
modal transformer’s success, however, the object tags information is not fully utilized during the
fine-tuning stage because identified salient object tags with high confidence are not present in the
predicted caption. In particular, in the implementation of Oscar, the confidence of each object tag is
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Table 1: Performance of the baseline shown above. We compare the threemodels on the accuracy
of the VQA and COCO Image Captioning task.

Model VQA test-dev IC CIDEr IC SPICE

VL-BERT 70.50 120.5 21.3
LXMERT 72.42 122.3 22.4
Oscar 73.61 123.7 23.1

not utilized in the current Oscar model. We thought that if we were to incorporate the tag confidence
into the training process, it would be effective in improving the performance. We thus propose to
fine-tune the model for image captioning by incorporating confidence information for each object
tag into the feature. We experimentedwith this approach by two different configurations: (1) reorder
object tags based on descending confidence. (2) concatenating the confidence value for each object
tag directly into the embedding.

Specifically, to represent objects in images, we encode not only its object tags, and image region
features (Oscar’s approach), but also added its predicted confidence value from Fast R-CNN results
to the input embedding. The input samples are processed to quadruplets (𝑤, 𝑜, 𝑐, 𝑖) consisting of
captions 𝑤, object tag tokens 𝑜, and object tags confidence values 𝑐, and image region features 𝑖 in
the same way and dimensions as that during the Oscar pre-training [4].

Each of these experiments (FIGURE 2) took approximately 50 hours on 4 NVIDIA Tesla V100
GPUs.

3.4 Proposed Idea 2: Adding Copy Mechanisms Over Object Tags

Image captions tend to describe the most salient objects in the images and these salient objects are
also the most important components in our captions. Oscar extracted object tags from Faster RCNN
and used them to help align the visual modality and text modality. According to our dataset analysis,
we found that more than 20% tokens are within these object tags and the tokens used in tags tend
to be consistent with the ones used in the ground truth. We found that when Oscar tried to generate
a token, it only attended previously generated tokens and visual features while ignoring the object
tags. This leads to two error examples. First, when an object can be described with multiple names,
Oscar may try to select tokens from the vocabulary, but the tokens used in the ground truth tend to be
included in our object tags. Second, Oscar may miss some salient objects in its captions. Therefore,
in order to improve the caption quality, it can be intuitive to directly copy tokens from object tags
instead of predicting tokens from the large fixed vocabulary.

Specifically, the approach for idea 2 is to apply a weighted probability average over object tags.
At each time step t, 𝑃𝑡 = (1 − 𝛼) ∗ 𝑃(𝑣𝑜𝑐𝑎𝑏) + 𝛼 ∗ 𝑃(𝑡𝑎𝑔) where 𝛼 is the probability of whether
the generated token at the current step t is from object tags. The simplest way to estimate 𝛼 is
using the ratio of tags in our ground truth in the training set which is about 20%. But this naive
approach will make the probability of object tags much higher than others. Therefore, we need to
estimate a context-dependent 𝛼. One option we used is to check the top k predictions at the current
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Figure 2: Fine-tuning Oscar with different configurations

step. If the top k predictions overlap with our object tags, we will add the probability distribution
of object tags to the original distribution. Otherwise, we will set 𝛼 to 0 since it is not reasonable to
increase the probability of object tags when we want to generate some stop tokens. A more general
solution for approximating 𝛼 is applying a linear layer over the final representation of the model
and using the normalized output of this linear layer as our 𝛼. This 𝛼 is more context-dependent and
can be trained with our model. The probability distribution of the object tags can be approximated
by 𝑃(𝑣𝑜𝑐𝑎𝑏) = 𝑧𝑡𝑡𝑒𝑥𝑡 ∗ (𝑧𝑡𝑎𝑔𝑠)𝑇 where 𝑧𝑡𝑡𝑒𝑥𝑡 is the representation of the decoder output at the current
timestep t and 𝑧𝑡𝑎𝑔𝑠 is the representation of our object tags.

3.5 Proposed Idea 3: Distill the Network

We follow suit from the design of [15], which has proven itself to be a valid distillation of the
original BERT model. The distilled Oscar model uses the same structure and input configurations
as the original Oscar, except that the token-type embeddings and pooling layers are not kept, and
only six layers are kept compared to the original design of 12 layers.
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To properly initialize the student model, we use the pre-trained Oscar model checkpoint and se-
lected the 1, 3, 5, 8, 10, 12th layers’ weights as the initial weights of the six transformer layers in
the distilled student. Our consideration is that using a proper and similar initialization weight
should greatly accelerate the progress of fitting. Considering the fact that we do not have enough
computation power to fit from scratch, we fit the distilled model directly on the image captioning
task, using the trained image captioning checkpoint as the teacher, and initialize weights from the
same checkpoint.

The image captioning task uses masked word prediction as the training measure. We use four losses
to force the student to produce similar results to the teacher:

• Cross Entropy Loss of the student’s generated output compared to ground truth target. This
aims to train the model to properly interact with designated input, as being actually used in
Oscar’s fine-tuning on image captioning task;
𝐿𝑂𝑟𝑖𝑔 =

∑
𝑖 𝑡̂𝑖 ∗ 𝑙𝑜𝑔(𝑠𝑖)

• Mean Squared Error Loss between the student’s full logits and the teacher’s generated logits;
𝐿𝑀𝑆𝐸 =

∑
𝑖, 𝑗 (𝑡𝑖, 𝑗 − 𝑠𝑖, 𝑗)2

• Cosine Embedding Loss for the last hidden states output compared to the teacher’s hidden
states;
𝐿𝐶𝑂𝑆 =

∑
𝑖 1 − 𝑐𝑜𝑠(ℎ𝑖𝑑𝑑𝑒𝑛𝑡 ,−1,𝑖 , ℎ𝑖𝑑𝑑𝑒𝑛𝑠,−1,𝑖)

• Distillation Loss between the student’s and the teacher’s soft target loss.
𝐿𝐶𝐸 =

∑
𝑖 𝑡𝑖 ∗ 𝑙𝑜𝑔(𝑠𝑖)

The resulting loss is a linear combination of the four, and for the latter three distillation losses an
alpha 𝛼𝑚𝑠𝑒, 𝛼𝑐𝑒, 𝛼𝑐𝑜𝑠 is assigned to each to adjust its ratio in the total loss.

4. EXPERIMENT SETUP

Dataset. The dataset we are going to use is the MS-COCO dataset [22]. MS-COCO, or the
Microsoft Common Objects in COntext dataset, is a large-scale object detection, segmentation,
and captioning dataset. Depending on the tasks it’s aiming for, MS-COCO has six variants, namely
Detection and Stuff (for object detection), DensePose and KeyPoints (for human pose detection),
Panoptic (for scene segmentation), and last, Captioning, which is the only multi-modal task in all,
which cross the modalities of language and vision.

The training part of the MS-COCOCaptioning dataset has 112K images and 560K text descriptions.
All these sets, including other datasets of the same structure, are used in the pre-training of the Oscar
paper [4], so we also want to make sure whether a limited training set in pre-training would hamper
model performance to what extent. In the meantime, in the subtasks we would like to explore, the
datasets are used separately to make the pre-trained model familiar with the problem and answer
settings.

Following [4], we adopt the widely used Karpathy split on the COCO caption dataset to conduct
our experiments. Specifically, the dataset consists of 113, 287 images for training, 5, 000 images
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for validation, and 5, 000 images for testing. Each image is associated with 5 human-generated
captions.

Baseline models. We have seen a variety of language-vision pretrained transformer models, how-
ever, Oscar [4], includes the use of auto-recognized object tags that connect elements in the two
modalities, and supply extrinsic information. This has inspired us on potential room for improve-
ment, while we find it only to a limited degree, and the main challenge is how to organize the tags
for maximum effect. Other similar models we have chosen as a comparison are VL-BERT [3], and
LXMERT [5], both utilizing BERT-like layers to take both sides of information.

Methodology. Image Captioning is essentially a language generation task, and the generated text is
compared against ground truth tokens for precision and recall. The metrics include BLEU@4 [23],
CIDEr [24], METEOR [25], and SPICE [26]. These are all automatic metrics that try to mimic
human judgments towards generated text; BLEU and METEOR are n-gram comparison metrics to
gold standards that are more text-derived, whereas CIDEr compares the text with several reference
texts using tf-idf and SPICE matches synonyms in the auto-detected scene-graphs [27]. In the
following sections, we mainly report the CIDEr score, since it focuses more on the appearance of
certain critical words, compared to other metrics that focus more on coherence.

In training, we follow the training parameters outlined in the original Oscar model: We use adamW
as our optimizer with an initial learning rate of 0.00003, weight decay of 0.05, and an epsilon value
of 1e-8. We trained on 4 NVIDIA Tesla V100 GPUs with a batch size of 64 for 40k steps for most
of our experiments.

5. RESULTS AND DISCUSSION

5.1 General Performance

Since VL-BERT and LXMERT are both pre-trained language models but are mainly tested on the
VQA task instead of image captioning, to properly compare the models’ performance we decide
to compare both the VQA scores (accuracy% of the right answers) and also the score for the two
models when they are adapted and fine-tuned to accept image captioning tasks. Performancemetrics
can be seen in Table 1.

Since all three models are transformer-inspired, it is expected that they have similar results, while
Oscar outperforms through adding additional image-tag information.

5.2 Idea 1: Investigation of Feature Contribution and Re-Engineer Feature

Ablation: Image region features contribution To study the contribution of image region fea-
tures to the model’s performance, we removed image features at the fine-tuning stage and compared
their performance with the Oscar baseline model. We found this results in significant deterioration
in image-captioning quality as shown in the blue line finetune_noImgFeat in FIGURE 2, which
signifies image region features are indeed crucial to the model’s success.
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Ablation: Object tags contribution To study the contribution of object tags to the model’s
performance, we removed object tags at the fine-tuning stage and compared their performance with
the baseline model. We found this results in consistent deterioration in image-captioning quality at
all fine-tuning steps, which signifies object tags are useful to the model’s success. As should be in
the purple line finetune_noObjectTag in FIGURE 2, in this case, the performance deterioration is
not as significant as that of removing the image region features, which is expected.

Shuffling object tags We are also interested in, as an input to the transformer models, whether
switching the order of object tags would influence its performance. We experimented with this
idea by switching the order of the object tags randomly at inference time, and see how much does
performance change. As the orange line randomOrder_conf in FIGURE 2 demonstrates, randomly
order object tags actually achieves similar performance as the baseline model, meaning the model
does not derive significant information from object tags’ order at inference time.

Removing object tags by confidence level Then, since object tags generated by Faster R-CNN
include confidence information. We are interested in if the model’s performance could be influenced
by the confidence of object tags that are passed in. We experimented with this idea by removing
some of the tags at inference time, to keep only the object tags with more than 30% confidence, then
ordering these object tags by confidence and taking the top k% (experimented with k=50 and k=30).
As the olive line confOver30_top50_object_tag and dark green line confOver30_top10_object_tag
in FIGURE 2 demonstrates when we keep the top 50% object tags that have at least 30% confidence,
it achieves the similar performance as the baseline where all object tags are passed in, whereas, if
we only keep the top 10%, the performance is much worse. This suggests that object tags with lower
confidence passed in at inference time do not contribute much to improving performance.

Confidence as a feature In our experiments, we found that a significant amount of salient objects
identified by the object tags are not present in the predicted caption. This tells us that Oscar fails to
fully utilize the information provided by the object tags. We thought that if we were to incorporate
the tag confidence into the training process, it would be effective in improving the performance.
We thus fine-tuned the Oscar model for image captioning by incorporating confidence information
for each object tag in the input. We explored this by mainly two ways: (1) to reorder object tags
based on descending confidence. From the magenta line descendingOrder_conf in FIGURE 2, we
see that this allowed the training to converge faster, but ultimately was not able to beat the Oscar
baseline (2) the second way involves injecting the confidence value for each object tags directly into
the word embedding during the fine-tuning stage. The yellow line embedded_conf in FIGURE 2
shows that this approach did not work well for us, but we suspect that this is due to insufficient
training time.

Error Analysis For our Confidence as a feature approach, we compiled a list of generated
captions that demonstrates the most significant differences in terms of CIDEr score. TABLE 3
compares the baseline model against the model we trained that uses confidence-based ordering.
TABLE 4 compares the baseline model against the model we trained that injected the confidence
value for each object tag. We see that the errors are mostly caused by the model focusing on an
irrelevant section of the image, even if the generated caption is “technically” correct.
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Table 2: Performance of different copymechanisms. We compare CIDEr scores among different
copy mechanisms.

Model 𝛼 CIDEr

Oscar baseline 123.7
Weighted average 0.2 34.9
Weighted average 0.2 if top k overlap 119.6
Weighted average linear layer 124.1

Table 3: Error Analysis: Baseline vs. Conf-order (Incorrect captions highlighted)

Baseline Confidence-ordered Model Ground Truth

a man standing on a baseball
field holding a bat. a man standing in the middle

of a parking lot
a fire hydrant in the middle of
the parking lot.

a group of horses that are
standing in the sand. a herd of horses standing on

top of a sandy beach.
a herd of horses are roaming
free on the shore of a beach.

a man holding a cell phone
up to his ear. a man talking on a cell phone

in a restaurant.
a man talking on a cell phone
in a building.

a truck is parked on the side of
the road.

a truck parked next to a stone
wall with a kite a truck is parked in a recre-

ation area.

a brown and white dog wear-
ing a tie.

a dog that is wearing a tie in
a room. a brown and white dog wear-

ing a neck tie.

a polar bear playing with a ball
in the water.

a couple of bears are swim-
ming in the water a polar bear playing with a

ball in a small pond area.

5.3 Idea 2: Copy Mechanism Over Object Tags

We tried different copy mechanisms over the object tags and the result is shown in TABLE 2. We
found simply averaging the probability distribution between object tags and vocabulary was harmful
to our model. In this method, the model will generate object tokens at some unexpected time steps.
After the model generated some unexpected tokens and conditioned on this context, the model failed
to generate the rest of the sentence. For example, it would generate some terrible repeated patterns
since it hasn’t seen such unexpected context in the training time and didn’t know what to predict
next. The perplexity of generated captions in this method is relatively low. The performance of the
Top-K overlap copy mechanism is similar to the baseline model. Here we choose 10 as our K. We
found that this approach mitigated the issue in the first approach. In this method, our model will
skip many time steps where we need to predict some stop words. In other words, Top-K overlaps
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Table 4: Error Analysis: Baseline vs. Conf-embedded (Incorrect captions highlighted)

Baseline Confidence-embedded
Model

Ground Truth

a close up of a person holding
a hair dryer a close up of a woman brush-

ing her teeth
a girl with blonde curly hair
brushing her teeth.

a woman walking out of the
ocean with a surfboard. a woman carrying a surfboard

on a beach.
a surfer runs along the beach
with a white board.

a red fire hydrant sitting on
the side of a road. a fire hydrant on the side of

the road.
a fire hydrant on the side of a
street.

a purple and white bus driving
down a street.

a bus that is parked on the
side of the road. a purple andwhite bus driving

down a street.

a man in a black shirt and
orange bow tie.

a close up of a person wear-
ing a suit and tie a close up photo of a manwith

an orange bow tie.

a woman blow drying her hair
in a bathroom.

a woman taking a selfie in
a bathroom mirror. a woman stands in a bathroom

blow drying her hair

copy mechanism will attend to the object tags according to the given context. Only when we need
to generate an object at the current step, our model will attend object tags. The third method is to
use a linear layer over the final representation of our model to approximate the 𝛼. This can better
utilize the context information and thus generate better captions. More importantly, this 𝛼 is learned
instead of simply estimated by our dataset.

5.4 Idea 3: Training Curves and Losses for the Distilled Model

The original training setting for the parts of losses are 𝛼𝑚𝑠𝑒 = 0.2, 𝛼𝑐𝑒 = 0.5, 𝛼𝑐𝑜𝑠 = 0.2. We have
trained the distilled model to a much lower loss, however, the model still cannot properly generate
sentences given the tokens. After training for 10 epochs, the resulting model can still only generate
consecutive random words. Thus we would want to analyze how loss has been reduced through the
epochs.

In Figure 3, each step represents a 64-size batch; thus each epoch represents about 8200 steps. We
have tested different batch sizes under the acceptable memory constraints of V100 graphics cards,
and discovered that larger batch sizes than 64 won’t save time but generalizes worse; smaller batch
sizes help reduce loss quicker but takes too long to train.

As shown in Figure 3, when the alpha of MSE loss and CE loss are set into the same multitude,
the loss is mainly guided by MSE loss. Other parts of the losses are in the lower hand and can not
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Figure 3: Parts of losses in distillation. Since the loss is very high on the MSE loss side, we use
the logarithm scale for comparison.

contribute enough to training. Based on the current low-loss model, we suppressed the weights of
MSE loss to 1e-4 and trained for another epoch; The results bounced back to regular levels. After
40k steps, we reached a CIDEr score of 80.4. This has proven that our student model has learned
some features from its teacher model.

This has given us the following insights:

• Balancing the losses is a crucial part of combining the losses for model distillation; we have
to properly suppress the losses that are too high.

• Token-type embeddings, compared to the implementation of BERT, introduce more informa-
tion in Oscar, so removing this would hinder some extra performance.

• Even despite the suppression from other loss components, the other losses still get trained and
can recover from the suppression.
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Figure 4: Image features visualization for error analysis case study
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Figure 5: Attention weights when Oscar generated motorcycle for the first image
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Figure 6: Attention weights when Oscar generated table for the second image
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5.5 Investigation of Interpretability via Attention

Besides the ablation study, we also analyze the failure cases. Two examples are shown in Figure 4.
For the first example, the Oscar model missed ‘helmet’ in its prediction although ‘helmet’ explicitly
exists in the object tags with high confidence. And ‘candle’ is also missed in the prediction for the
second example. Also, Oscar used ‘motorcycle’ in its prediction since the frequency of ‘motorcycle’
is quite high in our training set. However, ‘motorcycle’ is not in the object tags. These two
observations in our error analysis indicate a potential problem that Oscar didn’t make full use of
object tags.

So we continue to analyze the attention weights during the generation process, as shown in FIG-
URE 5. Here Oscar tries to predict [MASK] and will generate ‘motorcycle’ in this position. All
tokens above [MASK] are previously generated tokens and tokens below [MASK] are object tags.
Ideally, we hope to observe that [MASK] attends to ‘bike’ in the object tags. However, in most
layers, especially for the deeper layers, [MASK] only attends previously generation captions. Only
in the second and the third layers, [MASK] attends our object tags, as shown in FIGURE 5 right.
But these attended tags such as trees, ground, and grass seem to be irrelevant or not directly relevant
to the predicted tokens. In fact, we found [MASK] has no interaction with the ‘bike’ tag. FIGURE 6
shows a similar result, only a few tags are attended in the limited layers. This observation means
when Oscar predicts the next token, it mainly focuses on its context and selects a token from the
whole vocabulary instead of from the set of object tags which can bemore consistent with the ground
truth.

According to our ablation study and failure case analysis, we found object tags are actually used in
Oscar and can help improve the performance of image captioning tasks. However, Oscar did not
explicitly make full use of object tags for the generation process. So one of the potential directions
is to better utilize the object tags. Also, how to obtain better object tags can be another promising
direction.

6. CONCLUSION AND FUTURE DIRECTIONS

This paper focuses on improving image captioning task on the baseline model Oscar comprehen-
sively from three different aspects: (1) using distillation to make the model faster (2) re-engineering
input features involving object tag confidence incorporation and adding copy mechanisms over
object tags to make the model stronger (3) providing a standardized approach to visualize the
attention weights, which is the foundation of all transformer-based models, to make the modelmore
interpretable.

The contribution of object tag confidence incorporation is the finding that object tag confidence
might be a good feature according to our analysis that salient objects with high confidence are
sometimes not present in the predicted caption. But it is difficult to leverage the tag confidence
effectively. One promising future direction of this approach is in the line of finding ways to leverage
the object tag information more effectively: to directly embed coordinates of identified object tags
to help better align the image features and object tags; better alignment of these two modalities
could lead to promising results.
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One promising future direction for the copy mechanism approach is applying a dynamic pointer
network. Since the object tags are dynamic among different data points, we cannot simply add
the vocabulary size. Instead, we should use a dynamic network to predict the copy score for each
object tag with bilinear interaction between the decoder output and object tags’ output representation
which is similar to the way we estimate the tag probability distribution in the first approach. The
key difference is that in our current approach for idea 2, we only calculate the tag distribution at the
inference time while we could modify the loss function and train the model with a new objective
in this approach for future work. Specifically, 𝑦𝑡𝑎𝑔𝑡,𝑛 = (𝑊 𝑡𝑎𝑔𝑧

𝑡𝑎𝑔
𝑛 + 𝑏𝑡𝑎𝑔)𝑇 (𝑊 𝑡𝑒𝑥𝑡 𝑧𝑡𝑒𝑥𝑡𝑡 + 𝑏𝑡𝑒𝑥𝑡 )

where 𝑦𝑡𝑎𝑔𝑡,𝑛 is the probability of tag n at time step t. Then we concatenate 𝑦𝑡𝑎𝑔𝑡 with 𝑦𝑣𝑜𝑐𝑎𝑏𝑡 and
take the argmax from the whole token sets. Since this approach will turn the objective into a multi-
label classification task, we need to tune the hyperparameters to fit this new setting. Meanwhile
these mechanisms can be further implemented with hardware accelerators [28], to achieve better
performance.

On the distillation side, this time we mostly borrow the methods used in the distilled version of
BERT. Considering the nature of BERT-like transformer-based pretrainedmodels that consider input
from other modalities as just another type of embedding input, it might at first look not particularly
“multimodal”, but developing distilling methods and training goals that work distinctly for such
vision-languagemodels is a valid consideration of future work, and can also serve research in related
fields that equip pretrained models.

We found the attention weights visualization method very helpful for both successful and failed case
analyses. In this work, we just used the simplest raw attention weights for such visualization. In
the future, more advanced approaches such as [29], and [30], can be incorporated. We hope our
contribution can be helpful to other tasks and important applications in general like [31–33], etc.
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