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Abstract
Convolutional neural networks (CNNs), the most important deep learning networks for com-
puter vision, have undergone a series of developments and improvements for image-related
tasks such as object recognition, image classification, semantic segmentation, etc. However,
in the field of natural language processing (NLP), the novel attention-based network Trans-
former had a profound impact on machine translation, which subsequently led to a boom
in attention-based models for computer vision. State-of-the-art models with attention have
already shown good performance for computer vision tasks due to the sophisticated design of
network architectures and advanced computational efficiency techniques. For example, self-
attention learns relationships between segments or words in different positions compared
to the current performance of convolutional neural networks. Inspired by Vision Trans-
former (ViT), we propose a simple novel transformer architecture model, called Flexible
Transformer, which inherits the properties of attention-based architectures and is flexible for
inputs of arbitrary size. Besides self-attention, the inputs in ViT are not pre-processed, such
as resizing or cropping, but kept intact without altering them, which could lead to distortion
or loss of information. In this paper, we want to present a novel and simple architecture
that meets these requirements. Compared to state-of-arts, our model processes inputs with
arbitrary image sizes without any pre-processing and pretraining costs. Also, the results of
the experiments show that the model can potentially provide good results with high accuracy
despite limited resources. Even though the results of Flexible Transformer are not as accurate
as those of Vision Transformer, they show the potential of a model with high performance
in image classification tasks with variable size images. The significance of the research
opens up possibilities for dealing with primitive images in deep learning tasks. Based on the
original inputs, reliable results with good accuracy could be obtained if the proposed model
is optimized and further trained on large datasets.
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1. INTRODUCTION

Inspired by the BERT model [1], for machine translation in NLP, Vision Transformer [2], was
introduced for image-related tasks by using self-attention techniques as a paradigm and foundation
for further research on self-attention models in computer vision. Inspired by Vision Transformer,
various transformer-based self-attention models such as Swin Transformer [3], CrossFormer [4],
and Pyramid Vision Transformer [5], have achieved good performance on image tasks with derived
architectures. Compared to the CNN architecture and its variants, self-attention models attempt to
learn relationships among pixels in combination with additional position information. Like NLP
tasks such as machine translation and text recognition [6], the relative positional relationship is also
a critical factor for models to understand images, as semantically different positions of objects can
influence the decision of models in computer vision tasks, which is not considered or highlighted
in classical CNN models due to their inherent convolutional architecture.

Compared to classical CNN models, instead of combining convolution with pooling algorithms
for feature extraction, Transformer-based models proposed a novel idea that performs embedding
[1, 6], for patches after pre-processing and subsequently self-attention for the embedded patches in
the transformer block. During self-attention, each patch pays attention to the others by following
a certain rule [2–5, 7] (e.g., shifted window [2]). On the other hand, each patch should pay more
attention to the related patches, revealing the importance of those related patches to it. Adding
positional encodings such as Transformer [1, 2, 6], also learns the impact of positions for each
element of an input on performance. Transformer with self-attention brings substantial benefits to
computer vision and novel feature extraction strategies that are excluded from CNN counterparts.

To circumvent the limitations of CNN models, researchers are devoted to proposing decent trans-
former or attention-based architectures [1–6], tomake a breakthrough in the field of computer vision.
However, designing fantastic models is complicated and requires thoughtful concepts. Since it is
a new concept in the field of computer vision, despite the release of some delicate transformer
models with good performance, there is still much room for improvement in terms of accuracy,
computational efficiency, power, learning performance, etc.

Research into Transformer-based architectures for deep learning is still in the early stages. Exist-
ing models are equipped with some more exquisite designs, such as shifted windows and spatial
reduction attention [3], which are more efficient for self-attention and allows some tolerance in
accuracy compared to the state-of-the-art. Nevertheless, these sophisticated models may sacrifice
some accuracy when it comes to variable-sized inputs due to their reliance on fixed positional
encoding strategies (either global [2], or local [3–5]). Hence, the adaptability to variable size input
images not only allows the models to avoid laborious pre-processing steps, but also to keep the
original input images intact without resizing, which may lead to the loss or distortion of some key
features. With the ability to handle input images of different sizes, it takes less or even no effort in
image pre-processing steps such as resizing and scaling. In this paper, we aim to present a novel
and simple architecture that meets these requirements.
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Transformer-based architectures attained great success in recent years with fantastic state-of-arts.
However, prerequisites for success of these models are sufficiently reliable data with identical size.
Tomeet this requirement, raw data needs to be pre-processed prior to learning procedure. Regardless
of any pre-processing fashions, information in data may potentially be lost or be corrupted in order
to fix the size, and if a titanic dataset is required, pre-processing steps would be laborious and
expensive. Thus, such dilemma motivates the design of novel architectures that take advantage of
transformer. With sufficient datasets in arbitrary size for pre-training, the performance of model is
expected to be further improved and adapt to different downstream tasks.

The purpose of the research is to explore a transformer-based model for images in different sizes for
image classification tasks with competitive accuracy in performance within a certain tolerance. In
other words, themain goal is to explore a flexible transformer-basedmodel that adapts to the variable
size of inputs without losing too much accuracy compared to other de-facto transformer-based
models instead of pursuing the most accurate results in performance. The following contributions
are expected from this research:

• It proposes a simple, but novel Transformer-based model for image classification tasks, that
can be applied to other image tasks.

• It proposes a model with a novel self-attention strategy for addressing problems with inputs
of different sizes of images in image classification.

• It conveys a signal for considering problems with variable sizes in image tasks as a reference
for future related topics.

• The ideas underlying the research encourage researchers to develop new advanced models for
image-related tasks.

• It improves models with flexibility in processing arbitrary-size inputs and no cost for input
preprocessing and pretraining.

The rest of the paper is organized as follows: We give a description of the research background
and related architectures in the next section. Then, the architecture for models in the research is
elaborated, which is followed by the section for experiments and results. Following the experimental
results, we show the analysis and summary of research experiments. Finally, we end the paper with
the research conclusions and outlooks for future works.

2. RELATEDWORK

Convolutional neural networks have dominated in the realm of computer vision in the past decades,
with considerable research focusing on advanced CNN-based models [8–11]. GoogleNet[12, 13],
ResNet[14], AlexNet[15], are designed with a large number of convolutional layers and resid-
ual networks, optimizing learning progress and improving performance tasks. For instance, Deep
Residual Network gains accuracywith increase in depth by using residual networks for optimization.
Optimization techniques like Batch Normalization [16–18], Layer Normalization [19, 20], speeds
up performance for achieving high accuracy in image tasks. Meanwhile, Transformer-based archi-
tectures like BERT has become a state-of-the-art standard for natural language processing [1, 6].
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The idea for self-attention mechanism learns relationships among all components or segments in
the inputs to extract features, reflecting how related each component is to the others.

Inspired by the attention [6], in machine translation [1], Vision Transformer [2], was introduced
for large-scale image classification tasks, pre-training with gigantic image datasets JFT-300M [21–
23]. It simply applies the standard Transformer Encoder architecture with as few modifications as
possible. In the scenario for input images, input words are substitutedwith image patches fed into the
Transformer Encoder after the sequence of linear embeddings combined with positional encoding
that contains information about the positions. However, the highly accurate results produced by
the Vision Transformer is at the price of large amount of pre-training and high computational costs
owing to the immense number of parameters in the training models. To mitigate those problems,
some algorithms were developed to speed up the performance or save computational resources.
Instead of global self-attention for all patches in ViT, [3] proposed a new Vision Transformer
architecture with hierarchical structure for feature representation by a shifted window for local self-
attention, which only produces linear computational complexity. Alternatively, DeiT [24], applies
self-attention in knowledge-distillation strategy [24–27], for effective training with smaller image
datasets. Other variants such as Pyramid Vision Transformer [5], CrossFormer [4], etc. proposed
unique architectures for feature representation to replace attention layers in the Transformer Encoder
block. Compared to the original Vision Transformer, subsequent variants optimized models by
modification of self-attention layers (e.g., from global to local and long-short distance attention [4])
as well as patch embedding architectures [2–5], for feature representations.

Success in attention-based architectures improves models for image-related tasks in many aspects
such as computational efficiency and quality of output result. It even extends the discussion of
image data intro video frames [28], that consist of images in continuous time and add time di-
mension based on image data. Models with high quality of input data would give even better
results in specific tasks. After introductions to self-attention architectures [1, 2, 6], in images,
to deal with demand in high-quality image data, explorations in image tasks with transformers
also expand to focus on super-resolution images [29, 30], and video data [31]. Based on vision
transformer, [28] proposes video vision transformer for video classifications based on success in
image classification and attains state-of-art results with multiple video data. Subsequently, with the
possibility in video tasks, much research succeeds in generating high-quality images and videos.
For instance, in the field of video inpainting, [31] introduces a transformer-based network Flow-
Guided Global Local Aggregation Transformer (FVIFormer) modules based on self-attention and
optical features. Similarly, it is worthwhile in producing and restoring super-resolution images for
different purposes. For example, in the field of medical diseases, [29] proposes a novel Reinforced
Transformer Network that attempts to learn local part of coronary in Coronary CT Angiography
and improves the diagnosis of cardiovascular diseases based on progressive reinforcement learning
and transformer-based architecture. To generate high-resolution images, [30] proposes multi-scale
attention network that considers spatial relationship and optimizes computation based onmulti-scale
attention and gated spatial attention.

Asmentioned above, successful Transformer architectureswere built upon sufficiently large datasets
for a huge set of training parameters (millions or even billions like JFT-300M). However, when the
massive amount of data is unavailable or the data is insufficient for large models for good perfor-
mance, one solution is to pre-train the model with larger datasets and then conduct a regular learning
process with the target dataset. However, it is not always available for large pre-training datasets like

3219



https://www.oajaiml.com/ | January 2025 Zijiang Yang and Tad Gonsalves

JFT-300M. To address the problem of limited size of datasets, various data augmentation techniques
[26, 32, 33], or other policies [34–37], for optimization such regularization [38], were proposed for
deep learningmodels in computer vision. Specifically, [24] proposed a novel knowledge-distillation
technique to avoid noise or distortion by data augmentation, allowing tolerance for class-level
similarities with semantically similar labels with the ground truth as a result of teacher model’s
supervision or guide for student model. AutoAugment [32], introduced a simple procedure for
searching for proper data aug-mentation policies from the given datasets.

3. MODEL DESCRIPTION

Our model, similar to other attention-based architectures [6], is inspired fromBERT and ViTmodels
[2]. Rather than altering the internal layers and self-attention algorithm in the transformation block,
we maintain a similar structure and layers to ViT model but make a small modification to handle
varying input image sizes. The new model, benefiting from self-attention from the ViT model, can
process input images of varying sizes. Additionally, in order to handle varying sequence lengths for
classification, an additional layer is added before the classification layer. This section delves into
the intricacies of our model, providing a thorough examination of each layer and the accompanying
algorithms. The overall algorithm for flexible transformer is shown below, with definition of each
key component demonstrated later in this section.

Algorithm 1 Flexible Transformer
1: procedure FlexTrans(𝑑, 𝑝, ℎ𝑒𝑎𝑑, 𝑑𝑖𝑚, ℎ𝑖𝑑𝑑𝑒𝑛𝑑𝑖𝑚, 𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠, [𝑏1, 𝑏2, 𝑏3], 𝑆𝑃_𝑑𝑖𝑚)
2: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑃𝑎𝑡𝑐ℎ𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑑, 𝑝, 𝑑𝑖𝑚)
3: for 𝑖 ← 1, ℎ𝑒𝑎𝑑 do
4: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑇𝑟𝑎𝑛𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐵𝑙𝑜𝑐𝑘 ( 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑑𝑖𝑚, ℎ𝑖𝑑𝑑𝑒𝑛_𝑑𝑖𝑚)
5: end for
6: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑃𝑜𝑜𝑙𝑖𝑛𝑔( 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, [𝑏1, 𝑏2, 𝑏3], 𝑆𝑃_𝑑𝑖𝑚)
7: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝑀𝐿𝑃_𝐻𝑒𝑎𝑑 ( 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠)
8: return 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
9: end procedure
10:
11: procedureMLP_Head(𝑖𝑛𝑝𝑢𝑡𝑠, 𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠)
12: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑖𝑛𝑝𝑢𝑡𝑠)
13: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(𝑜𝑢𝑡𝑝𝑢𝑡𝑠)
14: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝐷𝑒𝑛𝑠𝑒(𝑜𝑢𝑡𝑝𝑢𝑡𝑠, 𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠)
15: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑜𝑢𝑡𝑝𝑢𝑡𝑠)
16: return 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
17: end procedure

3.1 Flexible Transformer

As mentioned earlier, our approach involves adopting the structure and architecture of the ViT
model, but with modifications for variable-sized images. We named our new model Flexible Trans-
former because it can adapt to varying input sizes in image-related datasets.
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Figure 1: Vision Transformer Model Architecture

An overview of the ViT model is shown in FIGURE 1. Input image is first split into small patches
based on pre-defined patch size. Then patches are aligned and fed into linear projection layer
with specific dimensions. Afterwards, each embedded patch denoted by the blue box is attached
with positional information in the pink box that is embedded into the same dimension based on
the position of the input patch. Specifically, the first positional information (represented as 0)
with embedded patch represents class information for input image. Combination of positional
information and embedded patches is further processed in transformation encoder with multi-head
self-attention. Similar to the Vision Transformer, our model consists of layers for patch extraction,
linear projection, transformer encoder, MLP head as well as the output layer, except that we remove
the position embedding component after the linear projection of the flattened patches. FIGURE 2
shows the architecture of our Flexible Transformer model. Besides, prior to patch extraction, the
model takes a 2D input image 𝑥 ∈ R𝐻×𝑊×𝐶 , where 𝐻 and 𝑊 are the height and width of the
original image in pixels, and 𝐶 is the number of channels. To extract patches, the input images
are reshaped into 2D image patches 𝑥𝑝 ∈ R𝑁×(𝑝

2 ·𝐶 ) where (𝑝, 𝑝) is the size of each patch and
𝑁 = 𝐻𝑊/𝑝2 is the number of patches after extraction. However, instead of reshaping an input
image into a patch by a given patch size 𝑝, the input images are divided into groups of patches with
different patch sizes. For example, given a 2D input image 𝑥 ∈ R𝐻×𝑊×𝐶 and a set of 𝑛 patch sizes
𝑃 = {𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑛}, the input image is reshaped into 𝑛 groups of patches 𝑥𝑝1 ∈ R𝑁1×(𝑝2

1×𝐶 ) ,
𝑥𝑝2 ∈ R𝑁2×(𝑝2

2×𝐶 ) , 𝑥𝑝3 ∈ R𝑁3×(𝑝2
3×𝐶 ) ,..., and 𝑥𝑝𝑛 ∈ R𝑁𝑛×(𝑝2

𝑛×𝐶 ) , where 𝑁1 = 𝐻𝑊/𝑝2
1, 𝑁2 =

𝐻𝑊/𝑝2
2, 𝑁3 = 𝐻𝑊/𝑝2

3, ..., and 𝑁𝑛 = 𝐻𝑊/𝑝2
𝑛 are the number of patches after extraction in patch
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sizes (𝑝1, 𝑝1), (𝑝2, 𝑝2), (𝑝3, 𝑝3), ..., (𝑝𝑛, 𝑝𝑛). All patches are aligned separately in 1D sequences
of lengths 𝑁1, 𝑁2, 𝑁3, ..., 𝑁𝑛 which serve as input length sequences to the Transformer Encoder.
FIGURE 1 shows two patch sizes in set of patches 𝑃 = {𝑝1, 𝑝2, ...} where 𝑝1 = 2, 𝑝2 = 3 such that
𝑁1 = 𝐻𝑊/𝑝2

1 = 𝐻𝑊/4 and 𝑁2 = 𝐻𝑊/𝑝2
2 = 𝐻𝑊/9. On the other hand, the input image is split into

4, 9, ..., and 𝑝2
𝑛 patches with patch size equal to 2, 4, ..., and 𝑝𝑛.

Figure 2: Flexible Transformer Model Architecture

Before feeding into the Transformer Encoder block, rather than a regular linear projection that maps
input sequences into 𝐷 dimensions, we apply linear projection to all separate patch sequences. In
ViT, a sequence of image patches 𝑥𝑝 ∈ R𝑁×(𝑝

2×𝐶 ) is mapped into the sequence with given patch
size (𝑝, 𝑝) as shown in Equation 1:

𝑧0 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥1
𝑝𝐸 ; 𝑥2

𝑝𝐸 ; 𝑥3
𝑝𝐸 ; ...; 𝑥𝑁𝑝 𝐸] + 𝐸𝑝𝑜𝑠, 𝐸 ∈ R(𝑃

2 ·𝐶 )×𝐷 , 𝐸𝑝𝑜𝑠 ∈ R(𝑁+1)×𝐷 (1)

where 𝐷 is the dimension of the linear projection. In contrast, both the number of patches and the
corresponding patch size are not fixed in our model, so that in the linear projection, given an input
image of size (𝐻,𝑊,𝐶), and the set of patch size 𝑃 = {𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑛}, we map the input image
to 𝑛 different patch sequences of sizes (𝑝1, 𝑝1), (𝑝2, 𝑝2), (𝑝3, 𝑝3), ..., (𝑝𝑛, 𝑝𝑛) so that each sequence
can be represented as 𝑥𝑝𝑛 ∈ R𝑁𝑛×(𝑝2

𝑛×𝐶 ) , where the number of patches is 𝑁𝑛 = (𝐻𝑊/𝑝2
𝑛). Then,

we map each sequence into 𝐷 dimensions via linear projection, and the output is 𝑧𝑙𝑛 ∈ R𝑁𝑛×𝐷 . The
linear projection of each sequence is given by Equation 2.

𝑧𝑙𝑛 = [𝑥1
𝑝𝑛𝐸 ; 𝑥2

𝑝𝑛𝐸, ..., 𝑥
𝑛
𝑝𝑛𝐸], 𝐸 ∈ R

(𝑃2×𝐶 )×𝐷 (2)

Compared to the linear projection in ViT, we remove the class embedding and the position em-
bedding. Instead, we expand the number of patch sequences by using multiple patch sizes, so the
number of patches after linear projection is not fixed. Instead of performing position embedding,

3222



https://www.oajaiml.com/ | January 2025 Zijiang Yang and Tad Gonsalves

we simply merge the sequences, generating a large sequence block with 𝐷 dimensions. Equation 3
shows the result of the merged sequence:

𝑧𝑙 = [𝑧𝑙1 ; 𝑧𝑙2 ; ...; 𝑧𝑙𝑛], 𝑧𝑙𝑛 ∈ R𝑁𝑡×𝐷 , 𝑁𝑡 = 𝑁1 + 𝑁2 + · · · + 𝑁𝑛 (3)

In FIGURE 2, the input image is split into groups of patches, which are represented as multiple
sequences depending on the patch size, shown in step 1. Then, in step 2 and 3 each sequence of
patches is mapped to the same dimension 𝐷, in which they can be merged into a large sequence
block for the next layer with self-attention, shown in step 4.

Once the merging of the sequences of linear projection is completed, the large sequence is fed
into the transformation block. From this step onwards, we follow the same procedure as in Vision
Transformer [2]. Similarly, the linear projection sequence is fed into the transformer encoder,
followed by an additional layer to define the size of the features and the MLP head for the final
output. Algorithm for process of position and patch embedding after linear projection of input data
is shown in Algorithm 2.

Algorithm 2 Patch Embedding and Position encoding
1: procedure PositionPatchEmbedding(𝑑, 𝑝, 𝑑𝑖𝑚)
2: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑃𝑎𝑡𝑐ℎ𝑒𝑠(𝑑, 𝑝)
3: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑃𝑎𝑡𝑐ℎ𝑒𝑠( 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
4: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑑𝑖𝑚)
5: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑑.𝑠ℎ𝑎𝑝𝑒)
6: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑎𝑡𝑒(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
7: return 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
8: end procedure

3.2 Transformer Encoder

After merging sequences of the linear projection, the feature maps are shifted to the transformer
encoder blocks with multi-head attention. Similar to [2], we retain transformer design as close as
possible. As the core of the model, we follow the multi-head self-attention as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘
)𝑉 (4)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑𝑛)𝑊𝑂 (5)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 , 𝐾𝑊

𝐾
𝑖 , 𝑉𝑊

𝑉
𝑖 ), 𝑖 = 1, 2, .., 𝑛 (6)

where𝑊𝑄
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑊𝐾

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑊𝑉
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 and𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 . However,

in our models, we set up different number of heads corresponding to the ViT counterparts. There-
fore, the number of heads is ℎ𝑒𝑎𝑑𝑖 = 𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙/ℎ. Similar to ViT model, as shown in FIGURE 3,
Layer Normalization (LN)[19], is applied as normalization layer in each transformation block,
represented as Norm Layer in orange box. Depending on configuration for each model variant,
the number of transformation block is different, represented as 𝐿. Algorithm for each trasformer
encoder block is shown in Algorithm 3
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Figure 3: Transformer Encoder
Algorithm 3 Transformer Encoder Block
1: procedure TransEncoderBlock(𝑑, 𝑑𝑖𝑚, ℎ𝑖𝑑𝑑𝑒𝑛𝑑𝑖𝑚)
2: 𝑜𝑢𝑡𝑝𝑢𝑡1← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑑)
3: 𝑜𝑢𝑡𝑝𝑢𝑡2← 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑜𝑢𝑡𝑝𝑢𝑡1)
4: 𝑜𝑢𝑡𝑝𝑢𝑡3← 𝑑 + 𝑜𝑢𝑡𝑝𝑢𝑡1
5: 𝑜𝑢𝑡𝑝𝑢𝑡4← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑜𝑢𝑡𝑝𝑢𝑡3)
6: 𝑜𝑢𝑡𝑝𝑢𝑡5← 𝑀𝐿𝑃(𝑜𝑢𝑡𝑝𝑢𝑡4, 𝑑𝑖𝑚, ℎ𝑖𝑑𝑑𝑒𝑛𝑑𝑖𝑚)
7: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝑜𝑢𝑡𝑝𝑢𝑡3 + 𝑜𝑢𝑡𝑝𝑢𝑡5
8: return 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
9: end procedure
10:
11: procedureMLP(𝑖𝑛𝑝𝑢𝑡𝑠, 𝑑𝑖𝑚, ℎ𝑖𝑑𝑑𝑒𝑛𝑑𝑖𝑚)
12: 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝐷𝑒𝑛𝑠𝑒(𝑑𝑖𝑚)
13: 𝑜𝑢𝑡𝑝𝑢𝑡2← 𝑔𝑒𝑙𝑢(𝑜𝑢𝑡𝑝𝑢𝑡1)
14: 𝑜𝑢𝑡𝑝𝑢𝑡3← 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡2)
15: 𝑜𝑢𝑡𝑝𝑢𝑡4← 𝐷𝑒𝑛𝑠𝑒(𝑑𝑖𝑚)
16: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑜𝑢𝑡𝑝𝑢𝑡4)
17: return 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
18: end procedure
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3.3 Spatial Pyramid Pooling

After the iterations of transformer encoder blocks, the size of the output features is different due
to different size of the input images. However, the MLP head for the classification stage requires
features with identical size for the final classification due to its fully connected layer. To solve this
issue, we choose to add an extra layer – spatial pyramid pooling (SPP) layer to fix the size of the
output features after the Transformation Encoder block.

Figure 4: Spatial Pyramid Pooling

Similar to traditional CNN, our model takes various sizes of inputs and generates outputs with
variable sizes, which are not valid as inputs to the MLP head. In CNN and its variants, inputs of
arbitrary size are accepted by the convolutional layer, which generates feature maps of arbitrary size.
In fact, only the fully connected layer requires a fixed input size. In our classification model, we
also use an MLP head for the final classification. Input features with arbitrary size are fed into the
SPP layer, generating fixed-sized outputs, pooled by spatial bins of size 𝑛 × 𝑛 in 𝑚 different levels,
each of which is represented with a different size of bin. In each level, the size of bin specifies the
total number of segments split. Given an input feature 𝑥 with size (𝑚, 𝑛) from transformation blocks
and suppose the SPP layer contains spatial bins 𝐵𝑞 of size (𝑏𝑞, 𝑏𝑞) in 𝑙 levels (where 𝑞 is between
1 and 𝑙), each level generates feature maps based on the size of the corresponding spatial bin during
the pooling process. FIGURE 4 shows an example of three different levels with bin size 𝑏1 = 1,
𝑏2 = 4 and 𝑏3 = 9 in different colors. In this case, we follow the SPP layer in [35], by using max
pooling for feature map in each bin. For each level, the output feature is calculated as:

𝑌𝑞 = 𝑚𝑎𝑥𝑃𝑜𝑜𝑙 (𝑥, 𝐵𝑞) (7)
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where the size is (𝑏𝑞, 𝑏𝑞). Specifically, for each entry 𝑦 (𝑖, 𝑗 ) in the vector 𝑌𝑞, the size of the pooling
filter 𝐹(𝑖, 𝑗 ) is (⌈ 𝑚𝑏𝑞 ⌉, ⌈

𝑛
𝑏𝑞
⌉) where 𝑖 and 𝑗 are between 1 and (𝑏𝑞 − 1), (⌊ 𝑚𝑏𝑞 ⌋, ⌈

𝑛
𝑏𝑞
⌉) where 𝑖 = 𝑏𝑞

and 𝑗 is between 1 and (𝑏𝑞 − 1), (⌈ 𝑚𝑏𝑞 ⌉, ⌊
𝑛
𝑏𝑞
⌋) where 𝑖 is between 1 and 𝑏𝑞 − 1 and 𝑗 = 𝑏𝑞, and

(⌊ 𝑚𝑏𝑞 ⌋, ⌊
𝑛
𝑏𝑞
⌋) where 𝑖 = 𝑏𝑞 and 𝑗 = 𝑏𝑞. Therefore, due to the pooling for each entry, the size of the

output feature of the spatial bin in one level is (𝑏𝑞, 𝑏𝑞). Then the output features from each level of
the spatial bin are linearly merged so that the final output of the SPP layer is as follows:

𝑌 = [𝑌1, 𝑌2, ..., 𝑌𝑞], 𝑌𝑞 ∈ R𝑏𝑞×𝑏𝑞 , 𝑌 ∈ R𝑏×𝑏 (8)

where 𝑏 = 𝑏1 + 𝑏2 + · · · + 𝑏𝑛, which is finally used by the MLP for final classification.

The model inherits typical characteristics of vision transformer such as global self-attention. How-
ever, by splitting images into sequences with different sized patches, the model can perform self-
attention between regions in a single patch, since area region in a large single patch in one sequence
can be split into two or even more small patches in other sequences, allowing the model to learn
more information from the input dataset. In addition, our model is flexible with respect to arbitrary
image sizes without the need to reshape or crop to the same image size, which potentially loses
information or distorts objects and ends up altering image semantics. By retaining the original
image, all information remains intact and the most reliable results are achieved as long as the model
is optimized for performance. Algorithm for SPP is shown in Algorithm 4

Algorithm 4 Spatial Pyramid Pooling
1: procedure SpatialPyramidPooling(𝑑, [𝑏1, 𝑏2, 𝑏3], 𝑆𝑃_𝑑𝑖𝑚)
2: 𝑜𝑢𝑡𝑝𝑢𝑡1← 𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔2𝐷 (𝑑, 𝑏1)
3: 𝑜𝑢𝑡𝑝𝑢𝑡1← 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑜𝑢𝑡𝑝𝑢𝑡1)
4: 𝑜𝑢𝑡𝑝𝑢𝑡1← 𝐷𝑒𝑛𝑠𝑒(𝑜𝑢𝑡𝑝𝑢𝑡1, 𝑆𝑃_𝑑𝑖𝑚)
5: 𝑜𝑢𝑡𝑝𝑢𝑡2← 𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔2𝐷 (𝑑, 𝑏2)
6: 𝑜𝑢𝑡𝑝𝑢𝑡2← 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑜𝑢𝑡𝑝𝑢𝑡2)
7: 𝑜𝑢𝑡𝑝𝑢𝑡2← 𝐷𝑒𝑛𝑠𝑒(𝑜𝑢𝑡𝑝𝑢𝑡2, 𝑆𝑃_𝑑𝑖𝑚)
8: 𝑜𝑢𝑡𝑝𝑢𝑡3← 𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔2𝐷 (𝑑, 𝑏3)
9: 𝑜𝑢𝑡𝑝𝑢𝑡3← 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑜𝑢𝑡𝑝𝑢𝑡3)
10: 𝑜𝑢𝑡𝑝𝑢𝑡3← 𝐷𝑒𝑛𝑠𝑒(𝑜𝑢𝑡𝑝𝑢𝑡3, 𝑆𝑃_𝑑𝑖𝑚)
11: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑎𝑡𝑒(𝑜𝑢𝑡𝑝𝑢𝑡1, 𝑜𝑢𝑡 𝑝𝑢𝑡2)
12: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠← 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑎𝑡𝑒(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑜𝑢𝑡 𝑝𝑢𝑡3)
13: return 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
14: end procedure

4. DATASETS

We use two open-source and integrated datasets to investigate the performance of our model after
examining publicly available datasets. To evaluate model variants for our model, we choose two
datasets – CIFAR-10 and Street View House Numbers (SVHN). The former dataset is rather small,
the second is huge.
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CIFAR-10 dataset consists of 50,000 images for training and 10,000 images for testing, and each
image has the same size (32,32,3), which represents the height, width, and number of channels
respectively. As the name indicates, there are 10 categories with 6000 images for each class.

In contrast, the Street View House Numbers dataset consists of over 600,000 images in 10 classes
designed for image classification and object recognition algorithms in machine learning. Unlike
CIFAR-10, it contains two formats – the original format with raw images and the cropped format
where the images have been cropped and reformatted into (32,32). Even though it is better to work
with raw images in our research, for simplicity and to be consistent with other datasets and models,
we choose the cropped format and randomly resize the images to simulate raw images in different
sizes in our model.

Performance of transformer-based architecture is greatly influenced by size of datasets, so in this
research we choose two datasets with different number of inputs and make comparisons for size of
datasets in models. Results in section 6 prove that performances of models are improved with larger
datasets. Based on time and resources in the research, time spent in loading datasets and training
models is acceptable in addition to sufficient amount of inputs for each label versus the number of
labels in both datasets.

For each Vision Transformer model variant, the size of the images in both datasets is fixed, so one
simply takes the dataset as input to the models after batch processing, whereas in our model, as
mentioned earlier, we resize each image randomly into different sizes for simulation and then batch
them. The existing fixed image size dataset also provides useful features for data processing, so we
keep the dataset and process it as simply as possible to reduce the complexity of data processing
and save time in experimentation.

5. EXPERIMENT

We evaluate our Flexible Transformer model with two datasets and compare it with the correspond-
ing vision transformer model. To build the model, we use similar configurations as in the ViT
models. Vision Transformer [2], includes three main variants – ViT-Base, ViT-Large and ViT-Huge
based on the configuration in BERT [1]. TABLE 1 and TABLE 2, show details of the model variants
for Vision Transformer and ourmodel. Asmentioned in the previous section, for eachmodel variant,
we adopt the same configuration as in the ViT counterparts but replace the layers for patches and
position embed-ding with our algorithms for merging sequences of patches after linear projections.
Therefore, we integrate the nature of the vision transformer with our arbitrary size image patches
processing strategy for each input image as well as spatial pyramid pooling to determine the size of
the output features after Transformation Encoder block.

Table 1: Configurations for Vision Transformer Model Variants

Model Layers Hidden Size MLP Size # of Heads

ViT-Base 12 768 3072 12
ViT-Large 24 1024 4096 16
ViT-Huge 32 1280 5120 16
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Table 2: Configurations for Flexible Transformer Model Variants

Model Layers Hidden Size MLP Size # of Heads

Flex-Base 12 768 3072 12
Flex-Large 24 1024 4096 16
Flex-Huge 32 1280 5120 16

Tables above show all parameters for both models in detail. As mentioned before, compared to its
ViT counterpart, we use multiple patch sizes for the input images in our model and add a spatial
pyramid pooling layer before the MLP head.

As far as the data sets are concerned, all input images have the same size (32, 32, 3). Since the fixed
size of the input data is not sufficient, and Flexible Transformer is trained with input with unequal
size, each input image is randomly resized by a size between 0 and 32 so that our model can process
inputs with variable size in the range between 32 and 64 for width and height. Afterwards, for
batch processing, each input image is padded into the same size so that all inputs are formed with
the same size within the batch but different from input images in other groups of batches. On the
other hand, suppose in one dataset with 𝑁 inputs, given each input image with size (𝑤𝑖 , ℎ𝑖 , 3),
where 𝑖 = 1, 2, 3, ..., 𝑁 and batch size 𝐵, after each input image is resized into (𝑤𝑖 +𝑤𝑅, ℎ𝑖 + ℎ𝑅, 3)
where𝑤𝑅 and ℎ𝑅 are random integers and𝑤𝑅, ℎ𝑅 ∈ [0, 32], then size of input images in one batch is
(𝑤𝑚𝑎𝑥 , ℎ𝑚𝑎𝑥 , 3) where𝑤𝑚𝑎𝑥 ∈ {𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝐵} and ℎ𝑚𝑎𝑥 ∈ {ℎ1, ℎ2, ℎ3, ..., ℎ𝐵}. Furthermore,
models are trained with datasets processed in different batch size and epochs.

6. RESULTS

We show typical results of models for both input datasets in this section. Details of results for
experiments is shown in the table below. In this section, we choose to show the best two accuracy
results for derivations in eachmodel. As the tables shown below (TABLE 3 and TABLE 4), accuracy
for each model is recorded, which is the percentage of correct predictions for each input over the
total number of inputs.

Table 3: Results for Models with CIFAR-10

Model Patch Size (Set) P Accuracy

ViT-Base 4 64.530%
ViT-Base 8 59.560%
ViT-Large 4 64.780%
ViT-Large 8 60.320%
Flex-Base [4, 16] 42.090%
Flex-Base [4, 8] 41.330%
Flex-Large [4, 8] 44.130%
Flex-Large [4, 32] 42.990%
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Table 4: Results for Models with SVHN

Model Patch Size (Set) P Accuracy

ViT-Base 8 90.646%
ViT-Base 4 90.104%
ViT-Large 8 90.189%
ViT-Large 4 89.417%
Flex-Base [16] 84.104%
Flex-Base [8] 81.961%
Flex-Large [8] 74.804%
Flex-Large [16] 73.110%

Due to space limitations, only best two results for model variants are shown on tables for each
dataset above.

Figure 5: Vision Transformer Models with Cifar-10
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6.1 Visualization

In addition to results of each model variants, performance of each epoch is also visualized for anal-
ysis of the research. In this case, we show the visualization for results implemented in experiments.

FIGURE 5-FIGURE 8 show results of test accuracy for each model variants with two datasets
used in the research. Implementations of models are visualized and patch size set for model con-
figurations are labeled in graphs. FIGURE 9 shows visualization of results for ablation study in
which the number of layers is set to be 6 so that each model variant contains 6 transformer encoder
blocks. Based on the results for epochs, accuracy for each model increases with number of epochs
in general shown by ascending curves, even though some of them show fluctuations in large epochs.
Visualizations of performances are helpful for further analysis and display which shows factors that
affect performance of models.

Figure 6: Flexible Transformer Models with Cifar-10
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Figure 7: Vision Transformer Models with SHVN

Figure 8: Flexible Transformer Models with SHVN
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Figure 9: Ablation Study: Flexible Transformer Models with SHVN and 6 Layers

7. CONCLUSION

In conclusion, we propose a novel attention-based model for image-related tasks based on Vision
Transformer. Unlike previous attention-based and CNN models for classification tasks, we instead
apply a multi-spot size strategy and incorporate additional layers to deal with raw input images of
arbitrary size in two different datasets without further additional modifications. The result of the
research shows that our model can be as good as the current self-observation models, but it can
uniquely handle tasks with arbitrary size inputs.

The research contribution provides a simple way to deal with all raw image inputs of different sizes
without the need for preprocessing, such as resizing, in image-related tasks. Unlike convolutional
neural networks and attention-based models, the input in our model remains intact without any
preprocessing before execution, and we try to process the data with the original information. To
solve the problem of limitation in the MLP layer, we apply the SPP layer with pooling so that the
original input is used until the final classification. The replacement with multiple patch sizes is to
ensure self-attention by better splitting the patches so that smaller patches consider each other with
the features contained in a single larger patch. As mentioned earlier, the success of our model should
serve as a reference for other tasks dealing with input signals of different sizes.

Architecture for our model plays a key role in the performance of image task. However, influences
for other factors should not be overlooked. For instance, as stated in the section 4, selection for
datasets is critical for performance of models especially for transformer-based models. In addition,
deployment for pre-training is also an important factor for performance of our model, as well as
important for further fine-tuning and transfer learning. In future, we would invest more in pre-
training with larger datasets to discover potential for our model based on current work. Other factors
such as distribution for input data and normalization methods for latent features also potentially
affect eventual results of tasks.
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Our model provides good and encouraging results in the research. However, there is still much
room for improvement in our model, both in the datasets and in the configuration of the layers.
By ablation study in the research, there will be more challenges to overcome in the future. We
already conducted ablation study to explore effect of number of layers onmodel variants. Therefore,
modification for parameters in standard architecture is also worth being explored. Due to the limited
research capabilities, the performance of our model is not optimal, so it is necessary to conduct
further experiments with different configurations, such as the patch group size and bin size for SPP
based on datasets, to eliminate losses in training for better accuracy. Meanwhile, we try to improve
the model with larger datasets of any size that better fit our model and further optimize the model
by adjusting the parameters in the model and even changing the layers for better performance.
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