
Advances in Artificial Intelligence and Machine Learning; Research 2 (2) 366-384 Received 10-05-22; Accepted 24-05-22; Published 30-05-22

Using Neural Architectures to Model Complex Dynamical Systems

Nicholas Gabriel ngabriel@email.gwu.edu
Physics Department
George Washington University
Washington, DC 20052, USA

Neil F. Johnson neiljohnson@gwu.edu
Physics Department
George Washington University
Washington, DC 20052, USA

Corresponding Author: Neil F. Johnson

Copyright © 2022 Nicholas Gabriel and Neil F. Johnson. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Abstract
The natural, physical and social worlds abound with feedback processes that make the chal-
lenge of modeling the underlying system an extremely complex one. This paper proposes an
end-to-end deep learning approach to modelling such so-called complex systems which ad-
dresses two problems: (1) scientific model discovery when we have only incomplete/partial
knowledge of system dynamics; (2) integration of graph-structured data into scientific ma-
chine learning (SciML) using graph neural networks. It is well known that deep learning (DL)
has had remarkable success in leveraging large amounts of unstructured data into downstream
tasks such as clustering, classification, and regression. Recently, the development of graph
neural networks has extended DL techniques to graph structured data of complex systems.
However, DL methods still appear largely disjointed with established scientific knowledge,
and the contribution to basic science is not always apparent. This disconnect has spurred
the development of physics-informed deep learning, and more generally, the emerging disci-
pline of SciML. Modelling complex systems in the physical, biological, and social sciences
within the SciML framework requires further considerations. We argue the need to consider
heterogeneous, graph-structured data as well as the effective scale at which we can observe
system dynamics. Our proposal would open up a joint approach to the previously distinct
fields of graph representation learning and SciML.

Keywords: Neural networks, Complex systems, Deep learning.

1. INTRODUCTION

The natural, physical and social world is full of examples of so-called complex systems. These
are systems which contain many interacting parts, each of which may itself evolve in time, and
where feedback loops can occur across scales. Human society provides a good example at all scales
– from families to communities to organizations and nations. Moreover, such human systems are

366
Citation: Nicholas Gabriel and Neil F. Johnson Using Neural Architectures to Model Complex Dynamical Systems. Advances in
Artificial Intelligence and Machine Learning. 2022;2(2):24.

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

now enhanced by the existence of additional interactions in the online world. Unfortunately, there is
no easy way to describe the dynamics of such systems. Traditional disciplines have tried, but given
the explosion in real data both online and offline, we argue here that machine learning is in an ideal
position to explore appropriate descriptions going forward.

Even within the computer science community, no unified approach to describing complex systems
exists. While this may appear problematic, it also provides an opportunity which we explore here.
Specifically, in this paper we discuss how neural architectures can provide novel descriptions of
complex dynamical systems that solve several key challenges. Having motivated the challenges, we
propose an end-to-end deep learning approach to modelling complex systems which addresses two
key problems: (1) scientific model discovery when we have only incomplete/partial knowledge of
system dynamics; (2) integration of graph-structured data into SciML using graph neural networks.
In this way, our proposed approach combines two previously distinct fields of graph representation
learning and SciML.

This paper lays out a roadmap for solving current problems of scalability and data integration
in complex systems rather than providing definitive conclusions/comparison of the best models.
Furthermore, there is value in assessing how such hitherto distinct tools in machine learning and
artificial intelligence can be combined in a way to circumvent existing problems. We hope that this
paper can therefore stimulate work along this line of thinking.

1.1 Complex Dynamical Systems and Networks

Many real world systems can be modelled as networks – specifically, discrete sets of objects and
their interactions. In particular, the interactions of physical, biological, and social objects can
frequently be represented by set of connections, or edges, between the different objects. For a
sufficient number of objects (say, 𝑁 ≥ 100) the aggregate systems formed by these objects and
their edges is complex: they display collective behavior which is not predictable even with full
knowledge of the system at the individual level. Such behaviour of complex systems is called
emergent behavior, a formalization of the adage “the whole is greater than the sum of its parts”.
Emergent phenomena tend to have their roots in the self-organization of complex systems. There is
no rigorous set of criteria for self-organization, but common features include [1]:

1. sufficient ‘energy’ or impetus within the system to enable endogenous transitions between
configurations of the system

2. non-linearity of interactions, often by a feedback mechanism

3. slowly-driven, metastable, out of equilibrium dynamics

Specific examples of systems and their associated emergent phenomena are as follows:

system degrees of freedom interactions emergent phenomena
brain neurons action potential thoughts, behaviour
society humans communication ideologies, group formation
𝑁-body atoms/molecules electromagnetic magnetization, crystallization

367

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

In the case of an 𝑁-body system in statistical physics, there are many more specific conditions under
which self organization, or self organized criticality, can occur. Specifically, some physical systems
are speculated to “self tune” towards system parameters 𝛽 near their critical values 𝛽𝑐, in which
region a spatial or temporal quantity 𝑎 displays scale-free behavior 𝑎 ∼ 𝑎𝑜 |𝛽 − 𝛽𝑐 |𝛼. Examples of
systems with such scale-free behavior have been identified in geophysics [2], plasma physics [3],
and neuroscience [4], among others. Furthermore, social systems exhibit approximately scale-free
network structure [5], but it is not clear to what extent we can apply results from physical systems in
this context. In particular, physical systems are invariably modeled as being at or near equilibrium
whereas many real-world systems of societal importance are instead in a continual state of evolution.

Data-driven approaches, particularly deep learning with neural networks, provide a complementary
approach to study complex systems. In their most basic form, such models would not assume any
interaction or structure, but would learn the form of such interactions directly from data. In most
scenarios this is far too much freedom: we typically have some idea of how the interactions or
statistics of the system should look. So far there is no dominant paradigm for embedding such
intuitions into machine learning models, though the emerging field of scientific machine learning is
gaining traction. For the remainder of the introduction, we develop the concepts needed for applying
deep learning to complex systems.

To provide a basic framework for the remaining sections, we now give a generic description of a
complex system. Consider a time-dependent system of 𝑁 objects possessing a microscopic state
𝜎𝑖 (𝑡), with M such that the dynamics of the system can be written as

𝑑𝜎𝑖

𝑑𝑡
= 𝐹

(
{𝜎𝑖},M

)
(1)

where 𝑖 = 1, . . . , 𝑁 . For a physical system we might consider 𝜎𝑖 which are set of scalars, vectors,
matrices, or tensors, and M = {𝑀𝛼} a set of matrices or tensors with 𝑀𝛼

𝑖 𝑗 parameterizing the 𝛼th
interaction between nodes 𝑖 and 𝑗 . The functional form of the dynamics, 𝐹, can be deterministic or
probabilistic in nature. At this point the system dynamics could be extremely complicated, but we
would not consider it complex. In principle, given some boundary conditions or initial conditions
on the 𝜎𝑖 we can calculate a unique solution of the system, or in other words the system has (in
principle) a closed-form, analytic solution. Additionally, if we were to limit ourselves to classical
and statistical physics, we could generally assume that systems of this form are ergodic and possibly
path-independent [6]. By contrast, for the system to be complex we require that the interactions
themselves are also time dependent, or formally that the system is described by a system of equations
of the form:

𝑑𝜎𝑖

𝑑𝑡
= 𝐹

(
{𝜎𝑖}, 𝑀𝛼

𝑖 𝑗

)
𝑑𝑀𝛼

𝑖 𝑗

𝑑𝑡
= 𝐺

(
{𝜎𝑖}, 𝑀𝛼

𝑖 𝑗

) (2)

In almost all cases, systems of this type will not have a closed-form solution and in general their
evolution will be path-dependent and non-ergodic.

368

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

1.2 A Simple Network Representation of Complex Dynamical Systems

The simplest definition of a complex network is arguably equation (2) with an additional topological
constraint called adjacency, whereby the existence of an edge between two nodes (𝐴𝑖 𝑗 = 1 indicates
an edge, 𝐴𝑖 𝑗 = 0 no edge) dictates whether they interact or not. In other words, 𝑀𝛼

𝑖 𝑗 = 0 when
𝐴𝑖 𝑗 = 0. The study of network science, loosely speaking, is the study of the statistical, structural, and
functional properties of networks formed by real world systems. In general the number of adjacent
nodes, or edges, in a complex network is far less than the number of possible edges between 𝑁
nodes, or ∑

𝑖≠ 𝑗

𝐴𝑖 𝑗 �
𝑁 (𝑁 − 1)

2
(3)

and the number of edges scales sublinearly with the number of nodes so that

lim
𝑁→∞

∑
𝑖, 𝑗 𝐴𝑖 𝑗

𝑁
= 0. (4)

These properties are often referred to (at least colloquially) as sparsity conditions of a network. This
property of networks is not only a robust empirical finding, but a necessary mathematical condition
for many important network properties such as modularity (i.e. where nodes form community
structures) and hyperbolicity (i.e. some nodes have many more edges than others) (FIGURE 1).

Figure 1: A network that with a modular (modules are color coded) and hyperbolic structure (there
are ∼4 “parent” nodes from which many “descendant” nodes attach) See Ref. [7], for details.

369

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

1.3 Graph Embeddings

For the remaining sections, we will define a graph to be the configuration specified by 𝐴𝑖 𝑗 . We
call this structure a graph rather than a network to avoid confusion with neural networks, which
will be central to the ensuing discussion. Graph Embedding, broadly construed, is the systematic
assignment of low-dimensional vectors 𝑧𝑖 ∈ R𝑑 to each object of a system such that the vectors
encode some meaningful properties of the system. For a system size 𝑁 we would typically define
low-dimensional to as 𝑑 � 𝑁 . Given some pairwise data 𝑆𝑖 𝑗 (where 𝑆𝑖 𝑗 = 0 when 𝐴𝑖 𝑗 = 0) or
nodewise data 𝑦𝑖, for example, we might seek some 𝑧𝑖 such that

1. fitting pairwise data: 𝑔(𝑧𝑖 , 𝑧 𝑗) ≈ 𝑆𝑖 𝑗

2. fitting nodewise data: 𝑓 (𝑧𝑖) ≈ 𝑦𝑖

where the functions 𝑓 and 𝑔 can be imposed (e.g. matrix factorization below) or learned (e.g. graph
neural networks). The motivation for defining such low dimensional embeddings typically reflects
our belief that the underlying process that produces the data 𝑆𝑖 𝑗 and 𝑦𝑖 has a much fewer degrees of
freedom than the data itself. Enforcing a low dimension for the embeddings can also provide a form
of regularization against noise in the process that produces the data. Embeddings are conceptually
similar to spectral methods for dimensionality reduction such as principal component analysis or
singular value decomposition. Much of the inspiration for applying neural networks to produce
embeddings was to respond to the shortcomings of spectral methods in text analysis [8]. In the
next section we develop an optimization approach to graph embedding which will motivate a neural
embedding approach.

1.4 Embeddings via Matrix Factorization

Suppose we wish to solve the pairwise problem above of approximating 𝑔(𝑧𝑖 , 𝑧 𝑗) ≈ 𝑆𝑖 𝑗 . If we pack
each of the embeddings into a matrix Z as

Z = (𝑧1 𝑧2 . . . 𝑧𝑁) (5)
defined by

min
Z
| |S − Z𝑇Z| |𝐹 (6)

where | | · | |𝐹 is the Frobenius norm, then Z ∈ R𝑁×𝑑 compresses the edgewise data S ∈ R𝑁×𝑁 when
𝑑 < 𝑁 . A typical procedure for determining the {𝑧𝑖} that satisfy (6) is as follows:

1. define a loss L =
∑

𝑖 𝑗 (𝑆𝑖 𝑗 − 𝜎(𝑧𝑇𝑖 𝑧 𝑗))2, where 𝜎(·) is e.g. a sigmoid function

2. select a random subset of nodes indexed by 𝑖𝑘
3. calculate the sum of gradients with respect to each component of 𝑧𝑖𝑘

∇̄L =
∑
𝑖𝑘

∇𝑖𝑘L,

∇𝑖 =
(

𝜕

𝜕𝑧𝑖1
, . . . ,

𝜕

𝜕𝑧𝑖𝑑

) (7)

370

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

4. update all embeddings according to 𝑧𝑖 ← 𝑧𝑖 − 𝜂∇̄L.

We would then repeat steps 2-4 until some stop condition is met, e.g. L no longer decreases beyond
some threshold for additional iterations. This procedure is called batch gradient descent, where
𝑖𝑘 defines the batch at each update. Since we only considered the first derivative with respect to
the loss, this method would be classified as a first-order optimization method. Currently, the most
popular optimizers have adaptive learning rates. Examples of adaptive optimizers are AdaGrad,
ADAM, and RMSProp empirically have better performance on a wide range of tasks since they can
automatically adjust to heterogenous optimization landscapes without manual intervention. Second-
order/Newtonian can more efficiently locate local minima but are computationally infeasible due
to a Hessian matrix of size R(𝑁×𝑑)

2 required for such procedures. Quasi-Newtonian methods such
as L-BFGS store an approximate representation of the Hessian (Cholesky factor) to make second
order techniques feasible for large systems. We refer to Ref. [9] for a more comprehensive review
of optimizers.

1.5 Neural Networks

There are several limitations to the matrix factorization approach in the last sections

(I) If we have some nodewise features 𝑥𝑖 ∈ R𝑚 for our system, there is no way to easily incorpo-
rate them.

(II) If a new node 𝑖′ is added to the system, we have to repeat our optimization procedure to obtain
an embedding 𝑧𝑖′

(III) The topology 𝐴𝑖 𝑗 is not naturally utilized (though is can be incorporated into 𝑆𝑖 𝑗)

We can address (I) and (II) with a neural network defined by equations (8) and (9) as follows
(FIGURE 2):

1. use the 𝑥𝑖 as input into a neural network

2. define the 𝑙th hidden layer to be the embedding of the input data 𝑧𝑖 = ℎ (𝑙)𝑖

3. define the output layer 𝑓𝑖 in terms of some predictive task such that each 𝑓𝑖 ≈ 𝑦𝑖

371

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

x1

x2

x3

x4

. . .

xm

h
(1)
1

h
(1)
2

h
(1)
3

. . .

h
(1)
k1

h
(2)
1

h
(2)
2

h
(2)
3

. . .

h
(2)
k2

h
(L)
1

h
(L)
2

h
(L)
3

. . .

h
(L)
kL

f1

f2

f3

f4

. . .

fn

Figure 2: An MLP with 𝐿 = 3 hidden layers.

The loss for this procedure could then be obtained by adding a squared error term for the predictive
task:

L =
∑
𝑖 𝑗

(𝑆𝑖 𝑗 − 𝜎(𝑧𝑇𝑖 𝑧 𝑗))2 +
∑
𝑖𝑘

(𝑓𝑖𝑘 − 𝑦𝑖𝑘)2. (8)

Arguably the simplest type of neural network is the multi-layer perceptron (MLP) defined by

ℎ (𝑙+1) = 𝜎

(
𝑊 (𝑙)ℎ (𝑙) + 𝑏 (𝑙)

)
(9)

where the activation function 𝜎(·) is chosen so that the mapping between layers is non-linear, and
the matrix𝑊 (𝑙) and vector 𝑏 (𝑙) are called the weights and biases of the 𝑙th layer. Common choices
for the activation function are the sigmoid sig(𝑥) = 1/(1 + 𝑒−𝑥), hyperbolic tangent tanh(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥), or the rectified linear unit ReLU(𝑥) = max(0, 𝑥), each of which may be
suitable for different purposes.

The defacto procedure for determining the parameters 𝑊 (𝑙) and 𝑏 (𝑙) for each layer is similar to
the batch gradient descent procedure outlined earlier. The only additional consideration is that to
calculate the gradient of the loss with respect a particular parameter in the 𝑙th layer of a neural
network, we must consider the functional dependencies in layers 𝑙 + 1, 𝑙 + 2, ... up to the loss.
This leads us to first calculate the gradients of parameters starting at the last layer in the network,
and accumulate gradients “backwards” through the network via the chain rule. This backwards
accumulation of gradients is called backpropagation [10].

372

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

In general, neural networks provide a flexible way to model data 𝑥𝑖, 𝑦𝑖, 𝑆𝑖 𝑗 with unknown relation-
ships in away that is relatively straightforward: we simply learn parameterized relationships through
optimization. Moreover, since neural networks are universal function approximators [11], we can
potentially learn relationships of arbitrary complexity. In many settings, this flexibility allows us to
fruitfully utilize large amount of unstructured data, ultimately leading to increased performance in
downstream tasks such as classification or regression. This is in contrast to traditional statistical or
physical models whichmay require transformation and sub-setting of our data prior tomodelling and
analysis. For example, it might be non-sensical to try to directly incorporate text or images into such
models, and we would need to subset our data or transform it in order to make it comparable with
some other quantities. Replacing statistical or physical models with deep learning models, however,
has the known drawback of making model interpretation unclear if not impossible all together. For
example, the weights and biases (commonly denoted 𝑊 (𝑙) and 𝑏 (𝑙) for the 𝑙th layer) may be less
interpretable than the coefficients 𝛽𝑖 in linear regression. This may exclude neural networks as a
viable model choice in many settings where interpretable parameters are not only desirable, but the
main purpose of the model. To this end there has been great amount of work in explaining machine
learning models, so called explainable AI (XAI). We refer to Ref. [12] for a survey.

Even if interpretability were not a concern, there is another well known limitation of neural networks:
data requirements. A rule of thumb is that for each parameter of a model, one should have an order
of magnitude more data samples. For a linear model with 10 parameters, we would want at least 102

data samples. For a neural network with 105 parameters, we would need at least 106 data samples,
and so on. In many situations, acquiring this amount of data is either impractical if not impossible
altogether. However, depending on the problem at hand, we may be able to intelligently introduce
some bias into the model such that we can actually train a neural network with far less than 10
samples/parameter and achieve better model performance. These biases can be classified into three
main categories as follows [13]:

Observational Bias: selection/augmentation of data such that it densely covers the desired
function domain.

Inductive Bias: The design of our model architecture is such that it favors the desired function.

Learning Bias: Augmenting the loss function such that the training procedure is guided
towards our function.

Some of the most celebrated forms of bias in deep learning are inductive biases: Recurrent neural
networks assume a causal structure of sequential features, while convolutional neural networks
assume that features are translation and rotation invariant. Graph Neural Networks are designed
such that operations applied to nodes as a function of 𝐴𝑖 𝑗 are permutation invariant. So instead of
learning specific relationships for each pair of adjacent nodes, GNNs learn a single transformation
by which we treat all pairs of nodes. This treatment also serves as a solution to (III), naturally
incorporating 𝐴𝑖 𝑗 into a neural network.

Physics Informed Neural Networks introduce physical models specified by differential equations
into deep neural networks by specifying the differential equations as learning biases. That is, we
essentially penalize the neural network when its output function does not satisfy a specified dif-
ferential equation. In this way we can implicitly use neural networks as a solver for differential
equations [13]. So in some sense, physics can serve deep learning by introducing learning biases

373

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

which make training more efficient, and machine learning can serve physics by providing a flexible
solver which easily interfaces with arbitrary data. PINNs are therefore a natural choice for complex
systems which often have extremely rich and varied data and differential equations that describe
the system. In practice, a class of candidate differential equations might be derivable independently
of the data through some first principles mathematical derivation based on plausible microscopic
mechanisms that respect known scientific principles of the system. Hence this class of differential
equations can be regarded as coarse-grained or ‘mean-field’ approximations, or theymay come from
some more phenomenological argument – for example, generalized Burgers-like equations of the
form discussed later in equations (14) and (16) which are themselves akin to differential equations
commonly used in fluid dynamics, turbulence and hypersonics.

2. GRAPH NEURAL NETWORKS

Graph neural networks have allowed fruitful applications of neural networks in settings which have
graph structured data including telecommunications, biological, and social networks. In physics,
there have recently been successful applications of GNNs in particle physics [14] and astrophysics
[15]. The utility of applying GNNs in the context of complex systems with a graph structure has
several parts, namely they allow us to do the following

(A) efficiently define a dense representation of each node in an embedding space

(B) systematically incorporate information from nearby nodes to facilitate nodewise predictive
tasks

(C) transfer knowledge learned from one graph to another graph without requiring retraining

(D) define a meaningful coordinate systems for graphs which otherwise have an ambiguous mean-
ing of “space”

Point (A) is a result of the relational inductive bias of GNNs. Point (B) and (C) result from the fact
that GNNs treat all pairs of nodes in the same way, i.e. GNN operators are invariant under permu-
tation of nodes, allowing them to generalize learned relationships. Point (D) will be particularly
relevant for the next chapter on PINNs, as we need some notion of space to define spatial operators
𝜕𝑥 and ∇ in differential equations.

2.1 Graph Convolutional Networks

One of the most popular types of GNNs is the Graph Convolutional Network (GCN) [16], with
layers defined as

𝐻 (𝑙+1) = 𝜎

(
𝐷̃−

1
2 𝐴𝐷̃−

1
2 𝐻 (𝑙)𝑊 (𝑙)

)
(10)

where 𝐴 = 𝐴 + 𝐼 is the adjacency matrix with inserted self-loops, 𝐷̃𝑖𝑖 =
∑

𝑗 𝐴𝑖 𝑗 is the diagonal
degree matrix,𝑊 (𝑙) is the weight matrix for the layer, and 𝜎 is an activation function. The operator

374

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

𝐷̃−
1
2 𝐴𝐷̃−

1
2 essentially acts like a convolutional filter on 𝐻 (𝑙) : 𝐴 = 𝐴 + 𝐼 dictates that the convolu-

tion is with respect to each nodes’ neighbors and itself; the factors of 𝐷̃− 1
2 enforces the resulting

convolution such that it has values in the range [0,1] for numerical stability. The role of 𝑊 (𝑙) and
𝜎 then follow the same logic as an MLP.

2.2 Graph Attention Networks

One problem with GCNs is that they treat all relationships defined by 𝐴𝑖 𝑗 as being the same, which
in many cases (such as social networks) is an unrealistic assumption. Graph attention networks
(GAT) [17] address this issue by learning attention coefficients 𝛼𝑖 𝑗 which essentially reweights 𝐴𝑖 𝑗

as a function of the last layer’s features. Specifically, if we define a matrix (A)𝑖 𝑗 = 𝛼𝑖 𝑗 then we can
write the GAT layers as

𝐻 (𝑙+1) = 𝜎

(
A𝐻 (𝑙)𝑊 (𝑙)

)
,

𝛼𝑖 𝑗 = 𝜎𝑎 (𝑎𝑇 [𝑊𝑎ℎ
(𝑙)
𝑖 | |𝑊𝑎ℎ

(𝑙)
𝑗])

(11)

where ℎ (𝑙)𝑖 ∈ R𝑘𝑙 is the embedding of the 𝑖th node at layer 𝑙, | | denotes concatenation, 𝑎 ∈ R2𝑘𝑙 and
𝑊𝑎 ∈ R𝑘′𝑙×𝑘𝑙 are attention weights, and 𝜎𝑎 is the attention activation. Not only does reweighting
the adjacency matrix make GATs more realistic, the attention mechanism can naturally models
sequences of data, whether they are a sequence of words in a sentence or a sequence of values
in a time series, by learning the appropriate weights between each position in the sequence.

3. PHYSICS INFORMED NEURAL NETWORKS

There are several theorems which state that neural networks of sufficient width or depth can approx-
imate any function of the input parameters [11]. For this reason deep neural networks are called
universal approximators. Interestingly, this implies that the solution to any differential equation
can be learned by a deep neural network. Say we have a function 𝑢(𝑡, ®𝑥) obeying the heat equation

𝑢𝑡 = 𝛼∇2𝑢 (12)

and 𝑁 data points across the spatiotemporal domain {𝑢(𝑡𝑖 , ®𝑥𝑖) |𝑖 = 1, ..., 𝑁}. Following the PINN
methodology, we can train a neural network to approximate the function 𝑢(𝑡, ®𝑥) as in FIGURE 3.

375

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

t

x1

x2. . .x2

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

. . .

h
(1)
k1

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

. . .

h
(2)
k2

û F (t, x⃗)

L = Ldata + LPDE

Figure 3: A PINN architecture

where we define the following quantities

PDE residual: 𝐹𝑖 = [𝑢𝑡 − ∇2𝑢] |𝑡=𝑡𝑖 , ®𝑥= ®𝑥𝑖
PDE loss: LPDE = 𝑤PDE

∑
𝑖

|𝐹𝑖 |2

data loss: Ldata = 𝑤data
∑
𝑖

(𝑢(𝑡𝑖 , ®𝑥𝑖) − 𝑢(𝑡𝑖 , ®𝑥𝑖))2
(13)

A notable innovation that allows thismethodology towork is that the derivatives with respect to 𝑡 and
®𝑥 in the PDE residual can be determined via backpropagation, i.e. can be calculated by accumulating
gradients through each successive layer of the neural network via the chain rule.

The PINN methodology basically amounts to enforcing physical models as a learning bias or soft
constraint. An alternative approach is to actually design a neural network architecture such that
certain aspects of our PDE/system are automatically satisfied such as boundary conditions [18],
multiscale features [19], and symmetries/ conservation laws [20]. We can still add these considera-
tions into PINNs as additional learning biases, and doing so requires no modification or amendment
of our architecture. The chief advantages of PINNs compared to more tailored architectures include

mesh-free: they can incorporate and interpolate irregularly sampled time and space domains

inverse and ill-posed problems: for a model 𝑢𝑡 − 𝛼∇2𝑢 = 𝑔(𝑢; 𝑡, ®𝑥), we do not need to know
𝛼 nor the function 𝑔(𝑢; 𝑡, ®𝑥) in advance, and instead make them learnable parameters

376

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

flexibility: the simplicity of the PINN approach makes interfacing with various data and
architectures easy

The learnable function 𝑔(𝑢; 𝑡, ®𝑥) in our model is frequently referred to as “hidden” physics. Such a
notion becomes highly relevant when we turn our attention to complex systems, where we typically
cannot even derive or identify the correct differential equations from the first principles mechanisms
which are actually present in the real-world system of interest.

4. A NEURAL ARCHITECTURE FOR COMPLEX SYSTEMS

For the purposes of defining learnable physics of complex systems, we first need to define some
notion of spatial coordinates on an irregular graph structure 𝐴𝑖 𝑗 . For example, it might not be
obvious how to define such coordinates for a graph such as in FIGURE 4.

Figure 4: A graph with 500 nodes. Communities are denoted by different colors and are determined
by the Louvain algorithm for community detection [21]

.

These coordinates should ideally be low-dimensional and preserve standard notions of distance and
similarity within the graph (i.e. graphs which are close topologically should be close in the learned
coordinate space). GNNs are well suited to this purpose [22]. Further, we can compose a GNN, or
any encoder, with a PINN as in FIGURE 5 such that we jointly learn coordinates and the output

377

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

function of the PINN. In modern language, such a joint learning approach is frequently called “end-
to-end” learning.

ENC(x, t, A)

PINN(z, t)

εt-1

εt

at-2

at-1

at

H̃
(1)
1

H̃
(1)
2

H̃
(1)
3

H̃
(1)
4

H̃
(2)
1

H̃
(2)
2

H̃
(2)
3

H̃
(2)
4

t

zt1

zt2

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

εt+1

εt+2

εt+3

L = Lsim. + Ldata + LPDE

F (t) = ε̇+ (f · ∇)ε− g

Figure 5: A PINN with an coordinate encoder ENC(𝑥, 𝑡, 𝐴). For systems with graph structure we
might choose an encoder with GCN or GAT layers. We show here a lagged covariate input window
of size 3 {𝑎𝑡−1, 𝑎𝑡−2, 𝑎𝑡−3}, a lagged autocovariate window of size 2 {𝜀𝑡−1, 𝜀𝑡 } and an output window
of size 3 {𝜀𝑡+1, 𝜀𝑡+2, 𝜀𝑡+3}.

4.1 Our Proposed Approach

In order to provide a concrete challenge example around which we can illustrate our discussion, we
propose here to apply the architecture in FIGURE 5 to forecast the population 𝐺𝑖 (𝑡) of pages on
social media with an associated graph 𝐴𝑖 𝑗 (i.e. the number of “followers” on a page.). Based on a
first-principles mathematical analysis of many-body aggregation that does not concern us here, an
approximate model for the evolution of 𝐺𝑖 (𝑡) as an aggregation process is given by [23]

𝐺𝑖 (𝑡) = 𝑁 (𝑡) − 𝜀𝑖 (0, 𝑡)

𝜕𝜀𝑖
𝜕𝑡
+ 2𝐹𝑖
𝑁 (𝑡)

[
1 − 𝜀𝑖

𝑁 (𝑡)

]
𝜕𝜀𝑖
𝜕𝑧

= 𝑒𝑧
𝑑𝑁 (𝑡)
𝑑𝑡

(14)

where 𝑁 (𝑡) is a monotonically increasing reservoir of the system which is known in advance and
𝐺𝑖 (𝑡) is the population data value for each node 𝑖 at a given time 𝑡 (FIGURE 6). The form of equation
(14) is derived from several plausible assumptions about how individuals form into groups online
as described in Ref. [23].

In order to produce a coupled system of equations with each component equation described by (14),
we first start with independent realizations of (14) assigned to each node in the system (FIGURE 6).

378

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

We then couple the 𝐺𝑖 and backcast a nodewise predictor variable 𝑎𝑖 through successive iterations
of

¤𝐺𝑘+1
𝑖 (𝑡) = ¤𝐺𝑘

𝑖 (𝑡) +
∑
𝑗 ,𝑡′

𝑤𝑖 𝑗
¤𝐺𝑘
𝑗 (𝑡 − 𝑡 ′)𝛿 𝑗

𝑎𝑘+1𝑖 (𝑡) =
∑
𝑡′

𝜎

(
¤𝐺𝑘
𝑖 (𝑡 + 𝑡 ′)

)
𝑒−𝜆𝑡

′
𝛿𝑡′ +

∑
𝑗 ,𝑡′

𝑤𝑖 𝑗𝜎

(
𝑎𝑘𝑗 (𝑡 − 𝑡 ′)

) (15)

with 𝛿 𝑗 , 𝛿𝑡′ ∼ uniform(0,1) and 𝑤𝑖 𝑗 ∼ 𝐴𝑖 𝑗× uniform(0,1). The form of 𝑎𝑘+1𝑖 (𝑡) is such that future
𝐺𝑖 (𝑡 + 𝑡 ′) can be predicted from 𝑎𝑖 (𝑡) through a nonlinear (𝜎(·)), diffuse (𝑒−𝜆𝑡′), and noisy (𝛿𝑡′)
process. Furthermore, although ¤𝐺𝑘+1

𝑖 (𝑡) depends linearly upon ¤𝐺𝑘
𝑗 (𝑡 − 𝑡 ′), this dependence needs

to be determined from a nonlinear contribution
∑

𝑗 ,𝑡′ 𝑤𝑖 𝑗𝜎
(
𝑎 𝑗 (𝑡 − 𝑡 ′)

)
to 𝑎𝑘+1𝑖 .

The resulting 𝜀𝑘𝑖 implied by (15) may in principle be calculable, but for the purposes of generalizing
to real world systems where we do not know the exact form of the dynamics in advance, we instead
propose the following generalization of (14)

𝐺𝑖 (𝑡) = 𝑁 (𝑡) − 𝜀𝑖 (0, 𝑡),

𝜕𝜀𝑖
𝜕𝑡
+(𝑓𝑖 · ∇)𝜀𝑖 = 𝑔𝑖 ,

(16)

where 𝑓𝑖 (𝑧, 𝑡) ≡ 𝑓 (𝑧, 𝑡, ℎ (1)𝑖 , ..., ℎ (𝐿)𝑖), 𝑔𝑖 (𝑧, 𝑡) ≡ 𝑔(𝑧, 𝑡, ℎ (1)𝑖 , ..., ℎ (𝐿)𝑖) and 𝑓 and 𝑔 are learnable
functions.

Notable advantages of this architecture over other forecastingmethods (described in the next section)
include the following:

1. there is a natural incorporation of graph structure 𝐴𝑖 𝑗

2. it is easy to generalize partial physics knowledge: e.g. from (14) to (16)

3. scalability: the model size does not need to grow with the system size

4. inductive: forecasting for unseen nodes does not require retraining/refitting of any parameters

379

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

Figure 6: Population data 𝐺𝑖 (𝑡) for 20 nodes in the system.

Ultimately, the challenge would be to:

1. Generalize partial physics knowledge of social systems, i.e. equation (14) to (16)

2. Forecast 𝐺𝑖 (𝑡) over long horizons (e.g. 30-60 timesteps)(FIGURE 6)

5. PROOF-OF-PRINCIPLE EXPERIMENT

As a measure of performance for this architecture on forecasting, we can calculate the root mean
squared error of 𝜏 steps ahead forecasting for a set of nodes 𝑗 ∈ Ω with 𝑁 = |Ω| as

RMSE(𝜏) (Ω) =
∑
𝑡 ∈{𝑇 }

∑
𝑗∈Ω

√(
𝑦𝑡+𝜏𝑗 − 𝐺 𝑗 (𝑡 + 𝜏)

)2/𝑁. (17)

where {𝑇} is a random sample over some subset of the time domain and 𝑦𝑡𝑗 is the timeseries data
for which 𝐺 𝑗 (𝑡) is a predictor. Then if we define a set of training nodes as 𝑗 ∈ Ω and a set of nodes
as 𝑗 ∈ Ω′ with Ω ∩Ω′ = ∅ we have the following

RMSE(𝜏)val. = RMSE(𝜏) (Ω)
RMSE(𝜏)test. = RMSE(𝜏) (Ω′)

(18)

As a preliminary comparison, we test a PINN with a GCN encoder against two simple baselines: a
vanilla NN and a naive forecast. We use as predictors a 𝜅 lagged autocovariate window {𝑦𝑡−𝜅𝑗 , ..., 𝑦𝑡𝑗}

380

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

and covariate window {𝑎𝑡−𝜅𝑗 , ..., 𝑎𝑡𝑗} and predict a single 𝜏 = 30 step ahead forecast 𝐺 𝑗 (𝑡 + 𝜏). For
the naive forecast we linearly extrapolate the lagged window:

𝐺 𝑗 (𝑡 + 𝜏) = 𝑦𝑡𝑗 + 𝜏
(𝑦𝑡𝑗 − 𝑦𝑡+𝜅𝑗)

𝜅
. (19)

The vanilla NN consists of three hidden layers with 64 hidden units each. We test on a system of
𝑁 = 100 nodes with an 80/20 test/train split and over a random sample of 200 points in the time
domain 500 < 𝑡 < 1500.

For the PINN + GCN we implement the system of equations in (14), use 2 hidden layers with 32
hidden units in the encoder, 3 hidden layers with 48 hidden units in the PINN, an input window
𝜅 = 20 for the covariates, and a latent dimension 𝑧 ∈ R8. For both the vanilla NN and the PINN +
GCN we use the Adam optimizer with learning rate 10−3 (TABLE 1).

Table 1: Comparison on 𝜏 = 30 step ahead forecasting on a validation and test set.

model RMSE(𝜏=30)
val. RMSE(𝜏=30)

test.
naïve 35.99 34.64
NN 16.20 51.75
PINN + GCN 12.87 16.23

Figure 7: A PINN + GCN forecast for a node in the validation set. Note the robustness of the
forecast to noise in the data 𝑦𝑡𝑖 and the covariate 𝑎

𝑡
𝑖 .

6. DISCUSSION AND FUTUREWORK

Our preliminary results (e.g. FIGURE. 7) are indeed promising for the PINN architecture with a
GNN encoder. In particular, we see excellent generalization from the validation set to the test set

381

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

as compared with the vanilla NN. This is understandable since we expect both a GNN encoder and
PDE to allow us to make more intelligent forecasts based on graph structure and dynamics.

To better understand what elements of the architecture provide benefit to a forecasting task, we will
in the future need to implement a wider range of PINN + DEC models, as well as compare with
a variety of timeseries forecasting models. Relevant comparisons could be made with traditional
techniques such as vector autoregression (VAR), neural time-series forecasting architectures like
N-BEATS [24], and dynamic GNNs [25,26]. Additionally, we also need to compare with other
techniques that perform simultaneous regression and governing equation discovery, i.e. system
identification methods such as NARMAX [27] and SINDy [28].

Additionally, we need to incorporate into our architecture an appropriate error model (i.e. along
with each forecast 𝐺𝑖 (𝑡) there is an accompanying error estimate). Uncertainty quantification for
PINNs is fairly well studied at this point, so we can simply adapt one of the methods described in
Ref. [29].

7. CONCLUSION

Our paper has tried to confront the problem that no unified approach yet exists to describing complex
systems, and to leverage how particular neural architectures seem poised to provide scalable models
which accurately describe them. Specifically, we proposed an end-to-end deep learning approach
to modelling complex systems which addresses two problems: (1) scientific model discovery when
we have only incomplete/partial knowledge of system dynamics; (2) integration of graph-structured
data into SciML using graph neural networks. The present work still needs to be greatly expanded
to investigate the effectiveness of our approach. However we see value in starting discussions
about how distinct tools in machine learning and artificial intelligence can be combined in a way to
overcome the significant and urgent challenge of modeling real-world complex dynamical systems.

8. ACKNOWLEDGMENTS

We are grateful to Prof. George Karniadakis for very valuable discussions about PINNs. We are
also grateful for funding for this research from the U.S. Air Force Office of Scientific Research
under award numbers FA9550-20-1-0382 and FA9550-20-1-0383. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force.

References

[1] Carlos Gershenson. Self-Organization and Emergence in Life Sciences. Artificial Life. 2008;
14:239–240.

[2] Jr. Smalley RF, Turcotte D L, S. A. Solla. A Renormalization Group Approach to The Stick-
Slip Behavior of Faults. Journal of Geophysical Research. 1985;90(B2):1894–1900.

382

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

[3] NicholasWW, Pruessner G, Chapman SC, Crosby N B, Jensen HJ. 25 Years of Self-Organized
Criticality: Concepts and Controversies. Space Science Reviews. 2016;198:3–44.

[4] Plenz D, Ribeiro TL, Miller SR, Kells PA, Vakili A, et al. Capek. Self-Organized Criticality in
the Brain. Frontiers in Physics. 9, 2021.

[5] Broido AD, Clauset A. Scale-Free Networks Are Rare. Nature Communications. 2019;10.

[6] Holovatch Y, Kenna R, Thurner S. Complex Systems: Physics Beyond Physics. European
Journal of Physics. 2017;38:023002.

[7] Kovács B, Palla G. The Inherent Community Structure of Hyperbolic Networks. Scientific
Reports. 2021;11:16050.

[8] Altszyler E, Ribeiro S, Sigman M, Fernández Slezak D. The Interpretation of Dream
Meaning: Resolving Ambiguity Using Latent Semantic Analysis in a Small Corpus of Text.
Consciousness and Cognition. 2017;56:178–187.

[9] https://arxiv.org/pdf/1906.06821.pdf

[10] Yu X, Efe MO, Kaynak O. A General Backpropagation Algorithm for Feedforward Neural
Networks Learning. IEEE Transactions on Neural Networks. 2002;13:251–254.

[11] Hornik K, Stinchcombe M, White H. Multilayer Feedforward Networks Are Universal
Approximators. Neural Networks. 1989;2:359–366.

[12] Adadi A, Berrada M. Peeking Inside the Black-Box: A Survey on Explainable Artificial
Intelligence (XAI). IEEE Access. 2018;6:52138–52160.

[13] Em Karniadakis G, Kevrekidis IG, Lu L, Perdikaris P, Wang S, et al. Physics-Informed
Machine Learning. Nature Reviews Physics. 2021;3:422–440.

[14] Shlomi J, Battaglia P, Vlimant JR. Graph Neural Networks in Particle Physics. Machine
Learning: Science and Technology. 2021;2:021001.

[15] https://arxiv.org/pdf/2111.08683.pdf

[16] https://arxiv.org/pdf/1609.02907.pdf

[17] https://arxiv.org/abs/1710.10903, 2017.

[18] McFall KS, Mahan JR. Artificial Neural Network Method for Solution of Boundary Value
Problems With Exact Satisfaction of Arbitrary Boundary Conditions. IEEE Transactions on
Neural Networks. 2009;20:1221–1233.

[19] Liu Z. Multi-Scale Deep Neural Network (MscaleDNN) For Solving Poisson-Boltzmann
Equation in Complex Domains. Communications in Computational Physics. 2020;28:1970–
2001.

[20] https://arxiv.org/abs/1904.08991

[21] Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast Unfolding of Communities in Large
Networks. Journal of Statistical Mechanics: Theory and Experiment. 2008;2008:P10008.

[22] https://arxiv.org/abs/1806.01261

383

https://www.oajaiml.com/ | May 2022 Nicholas Gabriel and Neil F. Johnson

[23] https://arxiv.org/abs/2108.01940

[24] https://arxiv.org/abs/1905.10437

[25] https://arxiv.org/abs/2005.11650

[26] Yu B, Yin H, Zhu Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning
Framework for Traffic Forecasting. In Proceedings of the Twenty-Seventh. International Joint
Conference onArtificial Intelligence. International Joint Conferences onArtificial Intelligence
Organization, July 2018.

[27] Rahrooh A, Shepard S. Identification of Nonlinear Systems Using Narmax Model. Nonlinear
Analysis: Theory, Methods Applications. 2009;71:e1198–e1202.

[28] Rudy SH, Brunton SL, Proctor JL, Kutz JN. Data-Driven Discovery of Partial Differential
Equations. Science Advances. 2017;3:e1602614.

[29] https://arxiv.org/abs/2201.07766

384

	INTRODUCTION
	Complex Dynamical Systems and Networks
	A Simple Network Representation of Complex Dynamical Systems
	Graph Embeddings
	Embeddings via Matrix Factorization
	Neural Networks

	GRAPH NEURAL NETWORKS
	Graph Convolutional Networks
	Graph Attention Networks

	PHYSICS INFORMED NEURAL NETWORKS
	A NEURAL ARCHITECTURE FOR COMPLEX SYSTEMS
	Our Proposed Approach

	PROOF-OF-PRINCIPLE EXPERIMENT
	DISCUSSION AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS

