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Abstract
In modern natural language processing, it is still difficult to extract entity and semantic links
from biomedical literature, such as drug-drug, drug-gene, drug-test, drug-disease, drug-herb,
drug-food and drug-lab range interactions. In this work XLNet, a large language model
based on transformers, is finetuned with Bayesian network that have been improved by the
Quantum Approximate Optimization Algorithm (QAOA) by using directed acyclic graphs
(DAGs) and Conditional Probability Tables (CPTs) tomodel complicated biomedical interac-
tions. This work combines the ability of XLNet to capture two-way context with the ability of
Bayesian networks to use probabilistic reasoning. QAOA improves computing performance
by allowing scalable inference on big datasets. Ranked on a benchmark biomedical dataset,
our strategy exceeded current techniques with a 94% accuracy in relationship extraction.
With consistency, practical data from unstructured texts, this development improves the
accuracy and interpretability of scientific findings, hence enabling drug discovery and per-
sonalized treatment.

Keywords: Bayesian networks, Conditional Probability Tables (CPTs), Quantum Approx-
imate Optimization Algorithm, Semantic Relationships, XLNet.

1. INTRODUCTION

Biomedical literature abounds in details on the interactions of drugs, genes, diseases and other
factors. Natural language’s intricacy and unpredictability make it difficult, though, to precisely
extract these links. Biomedical writings are complicated and depend on the context, conventional
natural language processing (NLP) techniques can fail with them. This limitation makes them
less helpful for activities such as locating relationships in texts relevant for drug development and
individualized drugs. This work presents a hybrid technique to tackle these difficulties by combining
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advanced NLP with probabilistic reasoning. We integrate Bayesian network optimized by the
Quantum Approximate Optimization Algorithm (QAOA) with XLNet, a cutting-edge transformer
model that captures context via permutations. XLNet does rather well in grasping complex linguistic
structures. Conversely, directed acyclic graphs (DAGs) and conditional Probability Tables (CPTs)
help Bayesian networks to represent probabilistic dependencies. QAOA enhances computational
scalability, making the approach viable for large datasets. This work is important because it goes
beyond traditional methods to give accurate (94% accuracy on a benchmark dataset) and under-
standable insights into biomedical relationships. By addressing longstanding challenges in entity
and semantic relationship extraction (ESRE), ourmethod promises to accelerate biomedical research
and improve clinical decision-making.

The remaining paper is organized as follows: Section II provides a review of existing literature
on the extraction of semantic relationships in biomedical texts using different approaches. Section
III details the proposed methodology. Section IV presents the experimental results. This paper
concludes with key findings, followed by potential future research directions.

2. LITERATURE REVIEW

There are several natural language processing (NLP) applications, such as relation extraction and
pretrained for language understanding. XLNet permutation-based training helps it to surpass tra-
ditional transformers in contextual comprehension [1]. Permutation invariant utilizes Graph Deep
Learning, Drug Discovery XLNet [2, 3]. This existing work improve contextual capture, which
includes permutation-based contextual word representation, for effective personal healthmonitoring
and drug discovery. The application of hybrid models incorporating different paradigms has been
relatively common to transcend these limitations. QAOA is usedwith Baysian network for structural
learning [4]. Attention deep hybrid network with baysian inference is used for uncertainty-aware
traffic prediction [5]. Attention based external knowledge reinforcement for bio-semantic relation
extraction [6]. Multi-channel and multi view attention deep learning used for predicting drug-drug
interactions [7]. [8] Rule-based techniques lack the flexibility to fit linguistic variation but provide
interpretability. Support vector machines (SVMs) and random forests are two classic machine
learning techniques that demand significant feature engineering and labeled datasets which are
often rare in specialized fields of drug target prediction [9]. Convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) can improve performance, but they work as opaque “black
boxes,” which means they hide the reasoning behind their predictions [10]. In [11] Drug–target
interaction is predicted based on the protein features, by using wrapper feature selection. [12]
Multiple criteria are used in decision making along with LSTM-CNN to enhance the biomedical lit-
erature analysis for drug interaction prediction. [13] The study uses CNN, multi-view/multichannel
attention deep learning and attention processes, alongwithwrapper feature selection, tomake a lot of
tasks better. For instance, it forecasts drug-drug interactions, for which training requires appropriate
labeled data. Directly allowing modeling probabilistic correlations, drug interaction prediction
using knowledge subgraph learning [14] helps By incorporating attention processes to Bayesian
frameworks, Bayesian Attention Modules [15] simplify models in numerous contexts and increase
their accuracy. For finding radar work modes, [16] created the robust Bayesian Attention Belief
Network (BABN), which is better at dealing with uncertainty and lasts longer in noisy environments.
[17] used Bayesian networks to show that a method for analyzing failure risk in large systems can be
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scaled up and works well. [18–23] Applications include radar work mode detection, vulnerability
discovery, network merging, attention modeling and drug-drug interaction prediction. Bayesian
networks may utilize these applications. Combining many features and utilizing multi-view feature,
fusion can help increase the accuracy of drug-drug interaction prediction [24] BERT and XLNet-
BiLSTM models were applied in semantic connection categorization and text mining. This im-
proved contextual awareness and performance show themselves in specific disciplines. Author of
this work discovered the following limitations. There are numerous limits in approaches for drug
discovery and interaction prediction. XLNet and Bayesian networks assist the author in finding
semantic connections between targets, genes and drugs. Advances in natural language processing
(NLP) have dramatically enhanced the extraction of relationships from biomedical literature, a chore
necessary for drug discovery, clinical decision-making and clarification of challenging biological
interactions. Transformer-based models such as BioBERT and PubMedBERT have achieved re-
markable outcomes in this sector using domain-specific pretraining [25]. These models, however,
often find it difficult to represent long-range relationships and the complex, multi-entity interactions
found in biological literature. Relationship accuracy and recall are raised by the use of complex
NLP models, machine learning and probabilistic thinking. This approach manages the intricacy of
biological relationships, which might be challenging. ESRE is needed in drug research, tailored
treatment, precision health and [26] knowledge graph production. It facilitates academics’ analysis
of large unstructured data. Still unresolved are connection complexity, biological language chal-
lenges, data shortage and scalable models, nevertheless. BioBERT, PubMed, DRUGBANK, rule-
based methods, machine learning models, deep learning, hybrid models and probabilistic reasoning
are used in this field. Researchers work to enhance association extraction. [27] drGAT for drug
response using attention guided gene assessment, development of drugs and biological literature
research depend on framework openness and interpretability. Deep learning seems promising for
intelligent analysis. Still, challenges include large, high-quality datasets and model durability, then
overfitting. In many situations, adding attention processes to Bayesian models helps them to be
easier to understand and more accurate [15]. XLNet and Bayesian networks enable the author to
find semantic links among targets, genes and drugs. Bayesian inference and XLNet autoregressive
pretraining overcomemodel restrictions in a bidirectional environment. Wewant to capture intricate
biomedicalical links by means of DAGs and CPTs. This helps the model to be more understandable
and accurate. This integration allows our simpler method with 94% biomedical corpus accuracy
rate.

Different datasets, such as BioBERT, PubMed and DRUGBANK and different methods, such as
rule-based approaches, machine learning models, deep learning techniques, hybrid models and
probabilistic reasoning, are used in this field to improve association extraction. The development
of drugs and biomedical literature research depends on framework openness and interpretability.
Deep learning seems promising for intelligent analysis. However, there are still challenges such
as large, high-quality datasets, model overfitting and sensitivity. Many times, current models find
it difficult to capture the intricate linkages and unknowns of biological interactions. To overcome
model restrictions, the author employs XLNet autoregressive pretraining in bidirectional context
and Bayesian inference. We want to capture intricate biomedical links by means of DAGs and
CPTs. This helps the model to be more understandable and accurate. This integration makes
our method easier and has a higher biomedical corpus accuracy rate, this helps decision-makers
and biologists. This approach captures bidirectional context and modulates XLNet autoregressive
pretraining, incorporating Bayesian Network with QAOA probabilistic reasoning. To represent
interactions and weight attention, build DAGs and conditional probability tables. This extraction

3497



https://www.oajaiml.com/ | March 2025 A.Sankaran and K.Sathiyamurthy.

method topped others with a 94% accuracy on a standard biomedical dataset. To overcome the
above limitations of conventional natural language processingmodels, the author mixes XLNet with
Bayesian networks and QAOA. This enables more precise and interpretable extraction of semantic
links in biomedical literature.

3. PROPOSED METHODOLOGY

The proposed methodology of this work is depicted in FIGURE 1, the method advised to enhance
Entity and Semantic Relationship Extraction (ESRE) in biomedical literature. Themethod combines
a Bayesian network modified with the Quantum Approximate Optimization Algorithm (QAOA)
with XLNet, a transformer-based large language model.

3.1 Data Collection and Preprocessing

In this research, this work assesses the suggested hybrid model using five publicly available biomed-
ical datasets: XLNet [28], Medicines Usage, Side Effects and Substitutes [29], Herbal Medicines
[30], Drug-Food Interaction Dataset [31], Drug-Target Interaction Predictor Project [32], Drug-
User Interaction Project and Drug-Target interaction [33]. These databases were selected for their
comprehensive coverage of many biomedical interactions (e.g., drug-drug, drug-gene, drug-food)
and some of the datasets are collected from the web, which is also available in sank link. These
databases are characterized by the availability of labeled data and their relevance to practical drug
development purposes. Mostly in PDF or text style, the databases include ordered interaction
records along with unstructured biomedical literature.

Biomedical interactions are predicted by preprocessing biomedical data using a hybrid XLNet,
Bayesian networkmodel improved by theQuantumApproximateOptimizationAlgorithm (QAOA).
It gathers biomedical data from many sources and divides it into subcategories, one of them being
the risk of bleeding from the combination of aspirin and warfarin, therefore stressing drug-drug
or drug-gene interactions. Encoding subsets into numerical vectors using word embeddings, e.g.,
{Aspirin, Warfarin, bleeding risk} into {0.8, 0.7, 0.9}, captures key features. Vectors are permuted,
e.g., {0.9, 0.7, 0.8} for variability, then feature vectors are computed to extract short summaries, e.g.,
{0.85} for risk level, thereby improving learning and with these, a weight matrix becomes attention
vectors. By means of quantum-encoded conditional probability tables, e.g. For Aspirin-Warfarin
and QAOA upgraded Bayesian networks, the model probabilistic interactions and optimized them
with 95% bleeding risk. Common interactions—like Aspirin-Warfarin coming up 10 times—are
tracked in a pattern frequency table; attention weights employ quantum processing to gauge the
relative value of a feature. An inverse permutation reorganizes the data for accurate predictions
following the computation of attention values and context vectors. By means of segmentation,
encoding and quantum optimization, this streamlined process subtly addresses noise, imbalance
and missing values, hence enhancing data quality and model performance.
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Figure 1: XLNet with Baysian Network using QAOA

3.2 Rationale for Model Selection

The hybrid model used integrates three key components by combining three primary components—
XLNet, Bayesian networks and QAOA—each chosen for their complementary capabilities in han-
dling entity and semantic relation extraction problems—into the hybrid model for drug-drug, drug-
gene, drug-test, drug-disease, drug-herb, drug-food and drug-lab range interactions from biomedical
literature.

XLNet: Unlike traditional transformer models like BERT, which rely on masked language model-
ing, XLNet incorporates permutation-based autoregressive pretraining. This allows bidirectional
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context capture without masking for understanding the sophisticated, context-dependent language
of biomedical texts (e.g., “Aspirin increases bleeding risk with Warfarin”). XLNet performs better
than BioBERT for long-range dependencies—critical for multi-entity interactions.

Bayesian networks: Directly representing probabilistic (CPTs). Bayesian networks provide inter-
pretability, a necessary feature in biomedical applicationswhere knowledge of causal relationships—
e.g., drug interaction probabilities—is as crucial as prediction accuracy. Unlike black-box deep
learning models, dependency is made possible via directed acyclic graphs (DAGs) and conditional
probability tables.

QAOA: Particularly for large-scale CPT updates, the Quantum Approximate Optimization Algo-
rithm was developed to maximize the computing efficiency of Bayesian inference. QAOA uses
quantum parallelism to lower time complexity, hence it is appropriate for scaling the model to large-
scale biomedical datasets, unlike traditional optimization techniques (e.g., gradient descent).

3.3 Computational Process in XLNet with Baysian Network using QAOA

Drug-drug interaction statement:

“Aspirin increases the risk of bleeding when combined with Warfarin.”

Dataset: Drug-drug interaction dataset.

Step 1: Segmentation of Input Dataset

The input dataset split the input dataset into groups based on the relationships between drugs, genes,
herbs, diseases, diets, tests and labs. Every part offers details on relationships.

Example

Segmented Output:

Drug-drug (D𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔) Drug-gene (D𝑑𝑟𝑢𝑔−𝑔𝑒𝑛𝑒) Drug-herbal (D𝑑𝑟𝑢𝑔−ℎ𝑒𝑟𝑏𝑎𝑙)
Drug-disease (D𝑑𝑟𝑢𝑔−𝑑𝑖𝑠𝑒𝑎𝑠𝑒) Drug-food (D𝑑𝑟𝑢𝑔− 𝑓 𝑜𝑜𝑑) Drug-lab (D𝑑𝑟𝑢𝑔−𝑙𝑎𝑏)
Disease-test (D𝑑𝑖𝑠𝑒𝑎𝑠𝑒−𝑡𝑒𝑠𝑡 )

Example: Dataset of drug interactions, gene linkages, herbal interactions, treatments for diseases,
dietary restrictions, laboratory tests, etc. These connections allow each dataset to be classified.

Segmented Output:

D𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 = {Aspirin, Warfarin, interaction: bleeding risk}

This step ensures that each segment of the dataset is processed with respect to the specific type of
interaction it represents.

Step 2: Input Encoding:
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Processed datasets undergo input encoding. This gives words numerical equivalents.

drug-drug as and drug-gene associations.

Using and word embeddings encoding technique techniques, each segmented dataset segment is nu-
merical representation encoded from the interactions of as 𝐷𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 associations and 𝐷𝑑𝑟𝑢𝑔−𝑔𝑒𝑛𝑒
associations.

Encoding function expressed as 𝐸𝑛𝑐𝑜𝑑𝑒(D𝑖) which is used to get the encoded representation 𝑋𝑖,
which is used for every segmented dataset 𝐷𝑖

𝑋𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐷𝑖) (1)

If you do this again and again for each segmented dataset, you will get encoded representations for
each type of relationship using Eq.(1) below.

𝑋𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐷𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔)
𝑋𝑑𝑟𝑢𝑔−𝑔𝑒𝑛𝑒 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐷𝑑𝑟𝑢𝑔−𝑔𝑒𝑛𝑒). . . . .
𝑋𝑑𝑟𝑢𝑔−𝑙𝑎𝑏 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐷𝑑𝑟𝑢𝑔−𝑙𝑎𝑏)

The encoded representations Xi rely on the encoding technique that was used.

Example:

Encoding a Drug-Drug Interaction

Input:
Ddrug-drug = {Aspirin, Warfarin, interaction: bleeding risk}

Encoded Representation:

𝑋𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐷𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔) = {0.8, 0.7, 0.9}

This transformation converts the data into a vector of numerical values that capture the essential
features of the interaction, which will be processed by the model.

Step 3: Permutation:

Following segmentation and encoding of the input data, permutation increases learning and intro-
duces variation. Segment elements encoded via permutation are rearranged. It indicates the total
number of elements in the set and the components that need to be selected or arranged in it. In
Eq.(2), it computes the count of permutations P(n,r), where r is the selected element count and n is
the total element count.

P(n,r) =
n!

(𝑛 − 𝑟)! (2)

Example:

For 𝑛 = 3 items in 𝑋𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔

For drug-drug interactions:
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The number of permutations is

𝑃(3, 2) = 3!/(3 − 2)! = 6 permutations.

Permuted Segment:
𝑋 ′
𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 = {0.9, 0.7, 0.8}

Permuting the input data exposes the model to several configurations, therefore enabling it to learn
several potential correlations and patterns.

Step 4: Feature Vector Calculation:

In every section, the feature vector concatenates after the permutation. Here, most of the significant
data features in the feature vector includewords, phrases and papers representedmathematically. So,
one may characterize the item in terms of semantic similarity, word frequency and sequencing. But
textual data included in XLNet’s feature vectors aids with tasks such as drug interaction prediction
and gene recognition based on referenced biomedical literature. Hence, the feature vector for an
input segment 𝑋 ′

𝑖 is computed using a feature extraction function:

Feature(𝑋 ′
𝑖 ) = Feature Extraction Function(𝑋 ′

𝑖 ) (3)

Example:

Input: 𝑋 ′
𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 = {0.9, 0.7, 0.8}

The feature is extracted using Eq.(3)

Extracted Feature:
Feature

(
𝑋 ′
𝑖

)
= {0.85}

The feature vector, {0.85} represents the core information extracted from the interaction data,
summarizing critical patterns, such as risk levels or drug associations.

Step 5: Weight Matrix and Linear Transformation

At this point, a weight matrix W transforms the received feature vector, producing a key vector
ki. Particularly in calculating attention scores, this vector is a fundamental component for the
subsequent stages of the model. The transformation is achieved by applying a linear operation
to the feature vector.

Example:

Weight Matrix W= [0.5 0.3 0.2]

Key Calculation:

Key: Apply a potential activation function after first multiplying the feature vector 𝐹𝑒𝑎𝑡𝑢𝑟𝑒
(𝑋 ′

𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔) with the training weight matrix W. The purpose of activation is to start the identity
function, since the activation is a linear transform.

𝐾𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 = 𝑊 × 𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑋 ′
𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔)

3502



https://www.oajaiml.com/ | March 2025 A.Sankaran and K.Sathiyamurthy.

This step transforms the feature vector into a key vector, ready for calculating attention rates in later
steps.

Step 6: Bayesian Network Construction With QAOA Integration:

FIGURE 2(a) shows a step-by-step process and the links among drugs, genes and diseases created
by the Bayesian Network (BN). Conditional Probability Tables (CPTs) and the interactions between
them can be efficiently encoded using quantum states in quantum data processing. Also FIGURE 5,
illustrate the drug interaction in Baysian Network.

Figure 2: (a) Bayesian network with QAOA for Attention Weight Calculation (b) Quantum
Processing Pipeline for Biomedical Interaction Analysis

Nodes: The quantum registers |q𝑛⟩ are used to represent classical nodes—e.g., Aspirin, Warfarin—
are used to represent medicines.

Edges: Dependencies—for instance, Aspirin→Warfarin due to risk of bleeding—are expressed as
entanglement between qubits.

Example: Conditional Probability Table (CPT)

Node: Risk of bleeding

Parents: Drug 1 (Aspirin), Drug 2 (Warfarin)

CPT: The Conditional Probability Table (CPT)models CPTs are represented in superposition states,
enabling parallel processing.

TABLE 1 and FIGURE 3, displays the conventional conditional Probability Table (CPT) that pre-
dicts bleeding riskwith aspirin andwarfarin. With these drugs, there is themost bleeding risk—95%.
In biomedical research, this structure allows probabilistic drug interaction analysis to take place.
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Table 1: Conditional Probability Table (CPT) for Bleeding Risk Due to Drug Interaction

Aspirin Warfarin Risk of Bleeding (%)

1 1 95
1 0 10
0 1 5
0 0 0

Figure 3: Defining CPTs

FIGURE 2(b) illustrate the quantum processing pipeline integrating CPT encoding, attention weight
calculation and pattern frequency analysis.

Quantum CPT Encoding: CPT entries are encoded as amplitudes in a quantum state:

| ψCPT⟩ =
√

0.95 | 11⟩ +
√

0.10 | 10⟩ +
√

0.05 | 01⟩ + 0 | 00⟩

QAOA for CPT Optimization:

QAOA optimizes CPT computations by minimizing a cost function:

C (P,Q) =∥ P · Q − T∥2 (4)

Where P is the CPT matrix, Q is the query vector and T is the target vector.

Example: Input:

Classical Q=[1,0,0,1]

Target T=[0.95,0.10,0.05,0.00]
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Quantum Output: Determined using Eq.(4)Optimized probabilities:[0.95,0.10,0.05,0.00].

Step 7: Attention Weight Calculation using Quantum Data Processing

Attention weights determine the relevance of input features. Quantum techniques are applied to
optimize weight computation.

Quantum Attention Weight Equation:

Attention Weights (αi) = P (Q | K) × P(V|Q) (5)

Example:

Query (Q): Drug-Gene Interaction.

Key (K): 𝐾𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 = 0.7

Value (V): 𝑉𝑑𝑟𝑢𝑔−𝑑𝑟𝑢𝑔 = 0.8

QAOA is used to optimize:

𝑪 (∝𝒊) =
∑
𝒊

(P(Q | K) · P(V | Q) − ∝𝒊)2 (6)

Quantum Output:Optimized attention weight:

α𝑑𝑟𝑢𝑔−𝑔𝑒𝑛𝑒 = P(0.7 | Q) × P(0.8 | Q) = 0.56

This attention weight is used by Eq.(5) and Eq.(6) to figure out how important the interaction is for
later calculations.

Step 8: Pattern Frequency Table with Quantum Processing

The pattern frequency table displays, across the dataset, the frequency of certain interaction patterns.
The table displays the frequency and number of certain interactions occurred.

Quantum Frequency Equation

𝐹𝑝𝑎𝑡𝑡𝑒𝑟𝑛 =
∑

𝑖
.𝛿(𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑚𝑎𝑡𝑐ℎ𝑒𝑠 (𝐾𝑖)) (7)

Quantum states enable parallel pattern matching, speeding up the computation of frequencies.

Example: Input: Interaction patterns across a dataset.

Pattern: Aspirin and Warfarin cause bleeding risk.

Frequency: 𝐹Aspirin−Warfarin = 10, calculated using Eq.(7)

Parallel pattern matching made possible by quantum states accelerates frequency calculation. FIG-
URE 4, shows the pattern frequency distribution.

Quantum Output:
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Figure 4: Pattern Frequency Distribution

Table 2: Quantum Interaction Frequency

Interaction Pattern Frequency (F)

Aspirin + Warfarin→ Bleeding Risk 10
Aspirin→ Bleeding Risk 15
Warfarin→ Bleeding Risk 8
Aspirin + Other Drug→ Side Effects 12
Warfarin + Other Drug→ Side Effects 9
Aspirin + Disease X→ Symptom Relief 5
Warfarin + Disease Y→ Symptom Relief 6

Interaction patterns help clarify probabilistic linkages in the dataset. TABLE 2 displays the most
common interactions and their relevance. There are quantum-optimized results in the table for the
patterns and frequencies of how drugs interact with each other and with diseases in biomedical
data. It shows how aspirin and warfarin co-administration (F=10) increases bleeding risk and how
pharmacological interactions affect adverse effects.

Step 9: Attention Value and Context Vector with Quantum Processing
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In Eq.(8) the Attention Value is calculated by multiplying the attention weight by the value vector
Vi and summing the results:

Quantum Attention Value
AttValue =

∑
i
αi × Vi (8)

In Eq.(9) the quantum context vector is the normalized version of the attention value:

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐 =
𝐴𝑡𝑡𝑉𝑎𝑙𝑢𝑒

Total elements
(9)

Example:

Attention Value Calculation:

Input:

Attention weight α = 0.56

Value 𝑉 = 0.8.
AttValue = (0.56 × 0.8) = 0.448

Context Vector:
ContextVec =

0.448
1

= 0.448

This context vector represents the aggregated attention values and forms the basis for the next step.

Step 10: Inverse Permutation with Quantum Gates

Using quantum gates and Eq.(10), an inverse permutation returns the last context vector in its
original sequence. This ensures recreation of the actual context:

Input: ContextVec is the reordered sequence’s representation as the input context vector.

Inverse Permutation: ContextVec’s elements are restored to their natural sequence by use of the
inverse of the previous permutation.

Output: ContextVecoriginal the context vectorrestored

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐) (10)

Example: Initial Sequence (Input): [x1,x2,x3,x4]=[0.2,0.8,0.5,0.9].

Permutation: The author applies a permutation and reorders the sequence as follows: [𝑥3, 𝑥1, 𝑥4, 𝑥2] =
[0.5, 0.2, 0.9, 0.8].

Inverse Permutation: The inverse mapping restores the reordered sequence.

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = [0.2, 0.8, 0.5, 0.9] .

Step 11: Model Output Calculation with Quantum Optimization
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Process: Input: The restored context vector 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.

Function Application: A function f(·) is applied to𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙. This function could perform
operations such as:

The process involves computing the maximum value (e.g., in classification tasks, to determine the
most probable class).

We are applying a weighted sum or neural network layer to compute the output.

Output: The last value or model prediction produced by the model. The model predicts its output.

Example: Restored Context Vector: [0.2,0.8,0.5,0.9].

Function f(·): Compute the maximum value:

ModelOutput = f(𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) (11)

Example:

Quantum Output Calculation:

Restored Context Vector: [0.2,0.8,0.5,0.9].

Function f(·): Determine the maximum value by:

ModelOutput = Max
(
𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

)
𝑀𝑜𝑑𝑒𝑙𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑚𝑎𝑥([0.2, 0.8, 0.5, 0.9]) = 0.9. (12)

The final result of the model from Eq.(11) and Eq.(12) shows how confident we are in the interaction
we found.

3.4 Evaluation Metrics for the Proposed System:

The proposed system rates the performance of the biomedical prediction model using a number of
important metrics that show how good and accurate it is. Discuss about the dataset are listed below:

QNN Circuit FIGURE 6, shows four qubits and three layers of parameterized rotations. The QNN
circuit mixes conventional data with quantum states. This method used QAOA to efficiently cal-
culate attention weights and conditional probabilities in Bayesian networks, which made the model
more accurate.

When the entangling circuit was turned on, a set of CNOTgatesmade the quantum bits in FIGURE7,
correlate. As a result, the quantum system became more expressive, which let it find complex
connections in the data that the model needed to work.
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Figure 5: Baysian Network for Drug Interactions

Figure 6: QNN Circuit

Figure 7: Entangling Circuit

Accuracy: Out of all the forecasts made, accuracy is the proportion of the right ones. The follow-
ing formula determines it:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

𝑋 100 (13)
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Example:

True Positive (TP): The number of true positive (TP) predictions—that is, those in which an inter-
action “Aspirin + Warfarin→ Bleeding Risk” is identified as positive.

False Positive (FP): The total count of erroneous predictions wherein an interaction is mistakenly
identified as positive.

True Negative (TN): The number of true negative (TN) correct predictions—that is, those in which
no interaction is precisely noted as negative.

False Negative (FN): The count of erroneous predictions resulting from an erroneous negative
characterizing of an interaction.

Let’s assume the following values:

TP = 850 (correct positive predictions)

FP = 60 (incorrect positive predictions)

TN = 940 (correct negative predictions)

FN = 50 (incorrect negative predictions)

Applying TP and TN to Eq.(13), we calculate the accuracy.

Accuracy =
TP + TN

TP + FP + TN + FN
=

850 + 940
850 + 60 + 940 + 50

= 0.942

Precision: Precision measures the proportion of really accurate, optimistic projections. The fol-
lowing formula defines it:

Precision =
TP

TP + FP (14)

Example: Applying the prior TP and FP values, substituting in Eq.(14):

Precision =
850

850 + 60
= 0.93406

Recall(Sensitivity): Recall, or Sensitivity, measures the proportion of actual positives that were
correctly identified. It is calculated as:

Recall =
TP

TP + FN (15)

Example: Applying the prior TP and FP values, substituting in Eq.(15):

Recall =
850

850 + 50
= 0.9444
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F1-Score: The F1-Score is the harmonic mean of Precision and Recall. It is a good metric to
balance the trade-off between Precision and Recall:

F1-Score = 2 𝑋 Precision × Recall
Precision + Recall (16)

Example: Using the values for Precision 93.4% and Recall 94.4% in Eq.(16) the F1-Score calcu-
lated below:

F1-Score = 2 𝑋 0.934 × 0.944
0.934 + 0.944

= 0.936

Table 3: Evaluation Results of different models

Model Accuracy Precision Recall F1-Score

XL_BN_QAOA 0.942 0.934 0.944 0.936
drGAT[27] 0.78 0.78 0.741 0.76
LSTM-CNN[12] 0.84 0.83 0.84 0.83

Using evaluation metrics from TABLE 3, contrast the XL_BN_QAOA model with drGAT and
LSTM-CNN. The XL_BN_QAOA model shines in extraction tasks with an accuracy of 0.942, F1
score of 0.936, precision of 0.934 and recall of 0.94. Conversely, a DrGAT accuracy of 0.78 suggests
that there is room for development. Though it does not satisfy the recommended model, the LSTM-
CNNmodel has an accuracy of 0.84 and an F1 score of 0.86. FIGURE 8(a) and FIGURE 8(b), show
advantages of QAOA application with an extractive Bayesian network. Excellent in entity relations
and drug interaction tasks, the XL_BN_QAOA model succeeds with great degree of accuracy and
recall.

Figure 8: (a) XL_BN_QAOA Extraction Evaluation (b) Evaluation Results comparison of existing
models.
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4. EXPERIMENTAL RESULTS

QNN Accuracy across Training Epochs

The Quantum Neural Network’s (QNN) accuracy increased from 65% to 94%, with entanglement
and quantum-inspired optimization. In FIGURE 10, the quantum states (00, 01, 10, 11) represented
on the x-axis and the associated probability on the y-axis. Whereas expected probabilities show the
output of the model after optimization, true probabilities show the distribution. The near alignment
of the bars emphasizes quantum self-attentionmechanism precision in approximating the anticipated
distributions.

Figure 9: QNN Accuracy over training epochs

Measurement Outcome Probability Distribution shown in FIGURE 11(a), using quantum states,
the QAOA-optimized Bayesian Network generated a probability distribution spanning 0.02 to 0.15
across 32 possible outcomes. This distribution was able to capture faint probabilistic correlations
and faithfully depict complex linkages in the data. FIGURE 11(b) cycle learning rate program
changing dynamically during the course of 50 epochs. This approach simplified convergence and
escape from local minima, therefore supporting the general stability and performance of the model.

Training and validation Loss over epochs

Training FIGURE 12(a), displays the final values of the training and validation loss curves. This
convergence implies that feature learning is more efficient and that overfitting is less. This XLNet
integration provides better contextual embeddings.

Training and validation Accuracy over epochs
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Figure 10: True Vs Predicted Probabilities

Figure 11: (a) Measurement Outcome Probability Distribution of QAOA states. (b) Cycle Learning
Rate

Figure 12: (a) Training and validation Loss over epochs (b) Training and validation Accuracy over
epochs

Over epochs, the accuracy gradually increased, reaching 93.4% for training and 92.1% for val-
idation. As shown in FIGURE 12(b), combining Bayesian networks with QAOA is helpful for
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probabilistic reasoning and optimization, which guarantees good performance on data that hasn’t
been seen before.

Attention Map: Model Prioritization of Context-Relevant Terms

The heatmap visualized in FIGURE13(a), highlights themodel’s ability to prioritize specific context
terms based on their importance. With a 0.29 attention weight, “Drug B” drew the most interest and
clearly affected the contextual analysis. The model gives no uniform priority. It gives higher weight
to keywords like “Side Effect” (0.21) and “symptom” (0.18) which are more pertinent to the context
than to words like “Drug A” (0.16).

Figure 13: (a) AttentionMap: Model Prioritization of Context-Relevant Terms (b) AttentionWeight

Attention weights using quantum summary

The summary table in FIGURE 13(b), clearly arranges words based on their attention weights. This
provides quantitative evidence that the model is comprehensible and aligns with our understanding
of the domain. Terms connected to negative effects and symptoms get greater attention as they
indicate their significance in biological environments.

5. CONCLUSION

The goal of this work is to improve the semantic relationship extraction in biomedical literature
by combining XLNet with Bayesian networks using QAOA. More precisely, this work mostly
addresses interactions, including drug-drug, drug-gene and drug-target interactions. In our ap-
proach, XLNet’s autoregressive pretraining is coupled with Bayesian inference to provide dynamic
modeling of dependencies and uncertainty. The study’s goal is to find better ways to extract semantic
relationships from biomedical literature, even when the relationships are complicated or the data is
not structured. With a precision of 0.934, an accuracy of 0.942, a recall of 0.94 and an F1-score
of 0.936, directed acyclic graphs (DAGs) and Conditional Probability Tables (CPTs) were used
to prove the results. The estimate, therefore is more accurate and understandable. This progress
improves biomedical research and the evolution of medicine as it gives experts more consistent
data so they may make more decisions.

3514



https://www.oajaiml.com/ | March 2025 A.Sankaran and K.Sathiyamurthy.

5.1 Potential Solutions

Using XLNet bidirectional context acquisition and Bayesian networks statistical reasoning, the
proposed method enhances the research of scientific literature. DAGs expose links in Bayesian
networks; CPTs measure strength. Using autoregressive pretraining and a permutation-based token
sequence, XLNet can figure out complex biomedical interactions, such as drug-drug and drug-target
interactions. Bayesian thinking decreases the demand for labeled data by excluding incomplete
datasets and stressing important features. Multi-channel attention seamlessly integrates multi-view
features, enhancing the model’s ability to represent interconnected biomedical concepts. We make
computations simpler and make sure they are relevant in real time by improving Directed Acyclic
Graph (DAG) calculations and making XLNet work better for domain-specific applications. The
detailed contextual pretraining and adaptive attentionmechanismsmake generalization better across
a wide range of datasets and situations. The complex language and relationships found in biomedical
literature and provide a scalable, accurate and understandable solution for biomedical research.

Future Scope:

DAGs, which stand for extended attention-weighted directed acyclic graphs, sort and show com-
plicated biological research connections in a way that makes them easier to understand. Clinical
trial data, electronic health records and omics data can improve system scalability. Advanced
Bayesian networks enable real-time applications and help doctors and researchers make decisions.
The framework supports pharmacovigilance and specialty medicine. Domain-specific ontologies
such asMeSHor SNOMEDenhance themodel. The author is also exploring long-range connections
with advanced Bayesian attention models. This work expands the concept to encompass biomedical
datasets and literature. By removing these problems and looking into these options, the system
becomes a solid and useful way to find and evaluate relationships in biomedical literature.
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