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Abstract

Data across different domains can be influenced by variations in language styles and ex-
pressions, making it challenging to migrate specialized words, particularly when focusing
on aspectual words. This complexity poses difficulties in conducting cross-domain aspect-
based sentiment analysis. The article begins by introducing BERT for generating word
vectors as representations of training texts, enhancing text semantics in the word vector
representation stage. To capture more nuanced interaction information and context-related
details, the paper proposes the Bert-BiLSTM model with a dual attention mechanism(BB-
DAM), which divides the original input sequence into three parts: above, aspectual words,
and below. A dual attention mechanism was used to assess the interaction of aspect words
with the three aspects (above, below, and neighboring words) in the three discourse segments.
This mechanism allows for the comprehensive extraction of interaction information. By
comparing with other modeling approaches, the experimental results show that the BB-DAM
model produces good results in fine-grained cross-domain sentiment analysis.

Keywords: Aspect-based sentiment analysis, Cross-domain, BERT-BiLSTM, Dual Inter-
action Mechanism.

1. INTRODUCTION

With the major advances in information technology in China, the process of Internet usage is grow-
ing rapidly. According to the report [1], the country has achieved a remarkable 73.0% penetration
rate of Internet access among the general population, with over one billion Internet users. The se-
mantic information contained within this data possesses significant application value across various
fields. Thus, sentiment analysis has emerged as a valuable tool [2—4]. Sentiment analysis involves
the analysis of text-based data to infer the attitude or emotional polarity expressed by the text creator.
In general, sentiment analysis can be classified into two main types based on the level of granularity
of the target data object. Coarse-grained sentiment analysis is further divided into two types [5]:

2468

Citation: Yadi Xu and Noor Farizah Ibrahim. Improving Cross-Domain Aspect-Based Sentiment Analysis using Bert-BiLSTM Model
and Dual Attention Mechanism. Advances in Artificial Intelligence and Machine Learning. 2024;4(3):144.



https://www.oajaiml.com/ | August 2024 Yadi Xu and Noor Farizah Ibrahim

text-level sentiment analysis and sentence-level sentiment analysis. Where text-level sentiment
analysis assesses the overall sentiment polarity of the entire text, sentence-level sentiment analysis
focuses on assessing the sentiment polarity of individual sentences. Fine-grained sentiment analysis,
on the other hand, is analyzed at the aspectual level, with the aim of assigning specific sentiment
polarity to each mentioned object of evaluation (called an aspectual word) in a sentence [6].

At present, scholars at home and abroad mainly use implicit Markov models based on sequence
tagging, maximum entropy models, conditional random fields (CRF), etc., and combine various
rhetorical devices and grammar rules to extract features manually and combine them with tradi-
tional machine learning models. For example, Kiritchenko et al [7], represent each sentence as a
feature vector combining n-means (n-gram) features, lexical features, lexical labels, etc., and use
an SVM classifier for sentiment classification. Another common approach to accomplish senti-
ment classification is to construct sentiment dictionaries [8]. Recurrent neural networks (RNN)
are now widely used in the field of sentiment analysis because of their excellent performance
on time series. RNN can not only consider the sequence of sequences, but also better mine the
structural and logical information in the text, and can efficiently handle input data of different lengths
by converting the input data into a fixed-length feature representation. Many scholars [9, 10],
combined CRF with RNN to obtain a powerful feature representation by learning text features
without manually designing a feature extractor but overcoming the limitations of language and
grammar rules through techniques such as likelihood function, backpropagation mechanism, and
character-level embedding. However, the literature [11], shows that the traditional RNN structure
is prone to phenomena such as “gradient disappearance” and “gradient explosion”, leading to the
poor effectiveness of RNN in dealing with long-term dependencies. To address this phenomenon,
some scholars introduced RNN into the forgetting gate mechanism, while combining long-term
memory and short-term memory to make RNN models improved. Li[12], constructed a new method
using two LSTMs and achieved the association of feature words and emotion words through multi-
task learning. More importantly, they introduced some sentences with strong emotions to help the
extraction of other long-time memories. Ma et al [13], extended LSTM by computing sentiment
common sense knowledge using a sequence encoder and integrated it into a deep neural sequence
model to efficiently process multiple aspects of words present in a sentence. Based on the idea
of a bidirectional gating mechanism, Luo [14], used Bert-BiLSTM to construct sequence-tagged
syntactic dependency trees to obtain better aspectual word extraction. Pham et al [15], combined
feedforward neural networks, word embedding techniques, and combined vector models to design a
multilayer framework that combines word-level, sentence-level, aspectual word-level, and higher-
level feature representations are fused to predict the sentiment of aspectual words. Meanwhile,
many scholars have tried to introduce techniques such as image processing and computer vision
into sentiment analysis.

Sentiment classification methods usually require extensive training, yet in real life, emerging do-
mains often lack sufficient data. The differences between domains make the application of sentiment
classification models in different domains limited. Therefore, cross-domain sentiment analysis is
more challenging than within-domain sentiment analysis. A few researchers have considered how
to find the dataset closest to the target domain from a dataset perspective and use that dataset as a
training set for classifiers to compensate for the adverse effects of differences in data distribution
across domains. For example, Ponomareva et al [16], evaluated the similarity of inter-domain
datasets based on domain similarity and complexity and combined these two aspects to propose
a linear regression model. However, due to the lack of high-quality databases, most of the existing
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studies have focused on discovering commonalities between domains and achieving migration by
analyzing these commonalities. In 2021, Khan et al [17], incorporated multiple source domains
to learn sentiment classification models in their study and utilized a domain-independent generic
sentiment dictionary based on cosine similarity to compute polarity scores, which enhanced the
performance of sentiment classification while improving the classification effect; in the same year,
Zhu et al [18], combined multi-source migration learning and domain adaptation to accurately
extract domain-shared features in a common feature space by aligning source and target domain
distributions to accurately extract domain-shared features; Dai et al [19], proposed two migration
learning frameworks (WS-UDA and 2ST-UDA) based on multi-source domain adaptation methods
and derived better target hypotheses by combining source hypotheses. And by 2022, the research
fever has further increased, Yang et al. [20], proposed a Granger-causal goal (MDA-GC) based
multi-source domain adaptation approach, which uses a kind of sentiment-guided capsule network
for each source domain to build an expert model to capture the domain-invariant knowledge, and
then designs the attention mechanism to assign importance weights to the experts, in which each ex-
pert specializes in a different source domain, which effectively improves the classification accuracy;
while Zhao et al [21], proposed a framework with multi-source domain adaptation and joint learning
for a multi-source cross-domain sentiment classification task and validated it on two datasets; in the
same year, Cui et al [22], proposed a multi-source unsupervised domain adaptation method from
the perspective of how to select appropriate source domains, which combines self-training with an
attention mechanism together, showing a good competitive performance.

Transfer learning is critical in cross-domain sentiment analysis. Research conducted by [23], demon-
strated that if two domains share the same feature space and probability distribution, inductive
transfer learning can be employed to extract aspect words that are common to both domains. This
facilitates the discovery of commonalities between the domains. At present, methods utilizing
direct inductive transfer learning have shown promising applications in cross-domain sentiment
analysis. For instance, Kong [24], proposed a multi-label classification algorithm based on direct
push transfer learning, effectively addressing the classification problem of unlabeled data in the
target domain. Marcacini [25], focused on aspect word extraction and utilized direct push transfer
learning to integrate knowledge from different domains. They constructed a heterogeneous network
to map diverse characteristics of tagged aspect words, employing principles such as convergence.
In another study, Shu et al [26], introduced a CRF (Conditional Random Field) model based on
a lifelong machine learning mechanism. This approach preserves prior knowledge acquired from
previous domains and enhances the learning capability for future sentiment prediction.

In recent years, the scope of domains involved in online comments has become more and more
extensive, and it is time-consuming and laborious to manually annotate the data of each domain
in terms of data processing, and there may also be difficulties of insufficient comment data in a
certain domain. In addition, considering that source and target domains often differ in terms of data
distribution and feature space, it is easy to cause the same word to express different sentiments in
different domains, while different domains contain their own domain-specific features, i.e., clas-
sifiers trained in source domains are often far from the expected results if they are directly used
to process target domain classification tasks. Therefore, cross-domain sentiment classification is a
research topic with important theoretical value and practical significance. In this paper, we take two
perspectives of deep learning and attention mechanism as the entry point to carry out the research
on the application of the BERT training model in fine-grained cross-domain sentiment analysis. We
propose a hybrid approach of Bert-BiLSTM model and dual attention mechanism applied to fine-
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grained cross-domain sentiment analysis, and compare and experimentally validate Bert-BiLSTM
with two mainstream methods, BILSTM and BERT-TextCNN, and use the experimental results to
evaluate the new model proposed in this paper.

2. THEORETICAL FOUNDATIONS OF CROSS-DOMAIN
FINE-GRAINED SENTIMENT ANALYSIS

2.1 Natural Language Processing (NLP)

NLP is an interdisciplinary field that combines computer science and artificial intelligence to explore
the ways in which computers can comprehend, analyze, and generate human language. Words are
the basic unit of meaning and the cornerstone of natural language. It is essential to represent words
in a suitable manner and convert them into a computer-friendly data format. This serves as a crucial
preliminary step for various tasks, and it is achieved through text representation. Research [27], has
shown that a well-designed text representation can lead to improved mapping within the text space,
subsequently enhancing the efficiency and effectiveness of subsequent algorithms. By employing
effective text representation techniques, the underlying information and semantics of words can
be effectively captured, enabling more accurate and meaningful analysis and processing of natural
language data.

2.1.1 Word embedding

Word Embedding is a prevalent technique employed in natural language processing to convert dis-
crete words into continuous vector representations [28, 29]. The fundamental concept behind word
embedding is to encode the semantic and syntactic relationships between words by representing
them as real-numbered vectors. This allows computers to gain a deeper understanding of text
data and facilitates more effective processing. By utilizing word embedding, words with similar
meanings or contexts tend to have vectors, enabling algorithms to capture semantic relationships
and make more nuanced associations. Word embedding is important in various NLP tasks, including
language modeling, information retrieval, sentiment analysis, and machine translation [30].

Word Embedding is the process of mapping words into a vector space. In traditional text processing,
words are usually represented using monothermal encoding, and words are represented as a high-
dimensional sparse vector with only a one-dimensional value of 1 and the rest having a value of 0.
However, One-Hot Encoding fails to capture semantic and syntactic information and neglects the
relationships and similarities between words [31-33].

In contrast, word embedding offers a more effective semantic representation by mapping words.
This allows similar words to be closer together in the vector space. Each word is represented as
a fixed-length vector of real numbers, where each dimension represents a semantic or syntactic
feature. Through model training, word embeddings can capture various relationships between
words, including proximity, contextual associations, and lexical properties [34, 35].
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By leveraging word embeddings, NLP models can benefit from the ability to encode and understand
the nuanced relationships between words, enabling more sophisticated language understanding and
processing tasks.

2.1.2 Bert word vectors

Since 2018, Transformer-based pre-training models have been proposed successively and used for
different downstream tasks. Bert models can capture deeper semantic information. Bert-based text
classification models are composed of two parts [28, 29]. The pre-training is self-supervised, using
a large unlabeled text corpus to complete the training, which can learn the text semantic features
and deep text vector representation; the pre-tuning starts from the pre-training Bert model, and its
fitting and convergence need to be completed according to the specific classification task [36—38].

2.2 Transfer Learning

Transfer learning is an approach utilized to overcome the scarcity of high-quality labeled data that
matches a specific task in real-world scenarios. In the face of this challenge, there is a growing
demand for cross-domain solutions. Transfer learning offers a quick and effective means to address
this issue. When there are disparities in the data sample space or probability distribution, they are
treated as distinct domains. The objective of transfer learning is to extract knowledge from the
source domain or source task and transfer it to the target task. These different types of transfer
learning methods are employed based on the specific differences observed in the migration context.

Migration learning is used to solve the problem of limited labeled samples and to effectively utilize
the rich information in the source domain. In this process, it is crucial to select appropriate source
data samples for training. A common research method is to assign weights to the source domain
samples with the aim of making the sample distribution of the target domain as close as possible to
the sample distribution of the source domain. This approach helps to construct highly accurate and
reliable learning models, for example, it has been widely used in untargeted labeling, unsupervised
domains, and so on [39—41].

However, traditional methods that focus on minimizing the divergence between probability distri-
butions may not always be effective due to the disparities in data distribution between the source and
target domains. In some cases, these methods can even lead to incorrect classification results and
negative transfer effects. To overcome these challenges, new transfer learning methods have been
proposed. For instance, transfer learning based on feature selection achieves knowledge transfer
by identifying common features shared by the source and target domains. However, constructing
a mapping relationship that maintains the consistency of source and target domain data in the new
feature space remains a challenging task [42, 43].

Addressing this challenge requires ongoing research and innovation to develop robust transfer learn-
ing methods that can effectively capture and utilize the shared information between domains while
adapting to the differences in data distributions. Model-based transfer learning, on the other hand,
focuses on finding shared model parameters in the model space of source and target data to achieve
knowledge reuse and transfer. In natural language processing, pre-training and fine-tuning methods
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commonly used in sentiment analysis are model-based transfer learning methods. In addition,
relational transfer learning focuses on how to efficiently analyze unrelated but homogeneous and
heterogeneous data and achieve similar transfer through the association between them. a second
classification approach to describe such relational transfer learning was proposed by Pan et al.
(FIGURE 1). It should be noted that in practical applications, there may be some overlap between
the two migration learning methods mentioned above. Since transfer learning is essentially a learn-
ing paradigm, different types of transfer learning methods can be used according to specific tasks
without strictly following the above classifications.

The target domain Inductive transfer leamning - ~=---"""
has a marker S
relationship N
| Original task and target

has tappod data Direct push migration leaming - < - _
A
~
" \
\

No available tag data Unsupervised migration leaming !

Figure 1: The transfer learning classification approach proposed by Pan

Transfer learning plays a crucial role in sentiment analysis and offers several advantages:

2.3 Recurrent Neural Networks

RNN is particularly suitable for processing sequential data, such as text data in natural language
processing, time series data, etc. The unique feature of RNN is the introduction of recurrent con-
nections that allow the network to maintain state or memory as it processes each sequence element
and passes that state to the next element. This memory capability allows RNN to long-distance
dependencies in sequences.

RNN have achieved remarkable results in language modeling, machine translation, text generation,
and sentiment analysis. For fine-grained sentiment analysis tasks, RNN can effectively model
text sequences and learn the sentiment information in the sequences. By processing each word
or character in a sequence step by step, RNN can capture the contextual relationships between
words to better understand and analyze sentiment. Although RNN excels in handling sequence
data, it has some limitations such as difficulty in handling long sequences. To overcome these
problems, researchers have proposed some improved RNN variants. The fusion approach used in
this paper is feature hierarchical fusion, where the original word vector is first transformed into a
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Table 1: The role of transfer learning in sentiment analysis

Advantages Details
Leveraging Transfer learning enables the utilization of knowledge acquired from one
existing domain or task to enhance performance in a different domain or task. By
knowledge leveraging pre-trained models or learned representations, sentiment
analysis models can benefit from prior knowledge, reducing the need for
extensive.
Addressing data  Labeled data may be limited or costly to obtain. Transfer learning allows the
scarcity model to leverage labeled data from a related domain with abundant

Improving gen-
eralization

Reducing
training time
and resources

Handling
domain shift

resources, enhancing models in the target domain with limited labeled data.

Sentiment analysis models trained on a specific domain often struggle to
generalize well to different domains due to variations in language styles,
expressions, and sentiments. Transfer learning aids in improving the
generalization capability of models by learning common features or
representations that are relevant across multiple domains. This enables
sentiment analysis models to capture domain-independent sentiment
patterns.

By leveraging pre-trained models or learned representations, transfer
learning can significantly reduce the training time resources required to
develop effective sentiment analysis models. Instead of training from
scratch, models can be fine-tuned on the target domain with a smaller
dataset, leading to more efficient model development.

In sentiment analysis, the distribution of sentiments may vary across
different domains. Transfer learning helps address this issue by aligning
the sentiment distributions, enabling the model to adapt to the sentiment
characteristics of the target domain more effectively.

high-dimensional feature representation using a neural network, and then the fusion is performed
for the extracted high-dimensional features, and the overall process is shown in FIGURE 2.

3. METHOD: CROSS-DOMAIN ASPECT-BASED SENTIMENT ANALYSIS
MODEL DESIGN

3.1 Bert Word Embedding

BERT is a bidirectional language model that uses the self-attentive mechanism in the Transformer
structure and encoders to generate context-sensitive word vectors. Compared to traditional unidi-
rectional language models, BERT has several significant features such as bidirectional modeling,
Transformer structure, and large-scale pre-training.

BERT enables the model to consider both left and right information in the context by using the
Transformer’s self-attentive mechanism, and the model structure in FIGURE 3. BERT generates
word vectors that incorporate the entire contextual information and more comprehensively under-
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stand the context of each word in the whole sentence. BERT adopts Transformers as its underlying
structure. The transformer is based on the self-attentive mechanism with high parallel computing
power and long context modeling capability. By stacking multiple layers of Transformer, BERT
is able to learn sentence representations and features at a deeper level. BERT is pre-trained on a
large-scale corpus to learn generic language representations by unsupervised learning. Such a pre-
training process enables BERT to capture a wide range of linguistic knowledge and contexts, thus
providing robust feature representations for various downstream natural language processing tasks.
After pre-training, BERT can be adapted to specific tasks by fine-tuning on task-specific labeled
data. Through fine-tuning, BERT can transfer its general language representation capabilities to
specific tasks and achieve better performance.

The introduction of BERT has had a significant impact on the field of natural language processing.
It has results, including question and answer, text classification, and named entity recognition. Its
bi-directional modeling and powerful feature extraction capabilities make BERT one of the most
advanced pre-trained language models available.

The BERT model utilizes the encoder part of the Transformer architecture and consists of multiple
stacked encoder layers. FIGURE 4 illustrates the structure of the BERT model. The input E; to
the model is the sum of three embedding vectors: Token Embeddings, Position Embeddings, and
Segment Embeddings.

T, T, T,
l/’ ________________________________________________________________________ ‘\\
I’ N\ 7 "\ s \ ‘I
! [ Transformer Transformer | ... | Transformer | !
i J \ ) \ J i
1 1
1 1
1 1
1 1
! - . . -
i [ Transformer Transformer | ... | Transformer | !
\\ v, . 7 . w, ’I,

E,q E, Ey

Figure 4: BERT model structure

During the pre-training phase, BERT employs two unsupervised tasks to learn generic language rep-
resentations: Masked Language Model (MLM) and Next Sentence Prediction (NSP).In the Masked
Language Model (MLM) task of BERT, the objective is for the model to learn to predict specific
words in the input sequence. To accomplish this, approximately 15% of the words in the input
sequence are randomly selected. Out of these selected words, around 80% are replaced with a
special mask token, denoted as [Mask]. The model’s task is to predict the original masked words
based on the contextual information provided by the surrounding tokens. This process is akin to a
completion or fill-in-the-blank task, where the model learns to understand and generate appropriate
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words within the given context. By training on this MLM task, BERT can capture the contextual
relationships between words and develop comprehensive language representations. In this way,
BERT allows the model to have bidirectional semantic understanding without the need for labels,
thus better understanding the context of the language. The NSP task aims to allow the model to
determine whether two sentences are consecutive sentences in the original language. For each pair
of input samples, BERT takes one of the sentences as the A sequence and the other as the B sequence
and swaps the two sentences with a certain probability. Then, BERT learns to predict whether the
B sequence is the next sentence of the A sequence. The NSP task helps BERT learn sentence-level
semantic relations and reasoning ability to better handle tasks that require understanding sentence
relatedness, such as question and answer systems.

With the training of these two tasks, BERT can learn bidirectional context-aware word vectors and be
able to better understand and capture the semantic relationships between sentences and words. This
pre-training approach gives BERT powerful language understanding and representation capabilities
and provides useful features for downstream natural language processing tasks.

3.2 Bert-BiLSTM Model

LSTM (Long Short-Term Memory) is a specialized variant of recurrent neural networks (RNN)
that effectively addresses the issue of long-term dependencies. It overcomes the vanishing gradient
problem, which can hinder traditional RNN from capturing long-term dependencies in sequential
data.

LSTM achieves this by incorporating three key components: forgetting gate. These gates control
the flow of information within the LSTM unit, allowing it to selectively retain or discard information
at different time steps. The structure of an LSTM unit is illustrated in FIGURE 5.

Forget Gate Input Gate Output Gate

Ft I O

A 4 Iy

| 1 1

1 1 1

(9] (9]

hidden state 0 B B

L e R
Input Xi

Figure 5: LSTM structure

The bi-directional recurrent network comprises two LSTM layers: one for forward and the other for
reverse. This setup allows the network to consider both past and future information in the sequence.
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While a unidirectional LSTM predicts the current output based on the preceding information, the
bidirectional LSTM incorporates information from both the past and the future. Similar to LSTM,
LSTM has gated states that enable it to capture longer-distance dependencies. The bidirectional
LSTM model can express each character or word in the context of a sentence, taking into account
the dependency relationships between them.

We employ the Bert-BiLSTM model to capture the contextual and semantic information of each
word. The Bert-BiLSTM model integrates the power of BERT, a language representation model,
with the bidirectional LSTM. By combining these two components, the model can capture semantics
within each word. The structure of the Bert-BiLSTM model is depicted in FIGURE 6.
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Figure 6: Bert-BiLSTM structure

3.3 Feature Extractor

(1) Text representation layer

Firstly, the input sequence is divided into words using a word separation step. Then BERT is used as
the distributed representation of the text, and the generated low-dimensional dynamic word vectors
can better represent the semantic information of the text. In this section, a pre-trained BERT model
is used to generate corresponding word vector representations for each word element in the above,
aspectual, and below parts, respectively. The upper text is assumed to be x! = [xll, xé, ...,le] and
the aspect words are x* = [x{,x5,...,x4], and the following is x" = [x7,x5,...,xg]. where L,
A, and R represent the number of lexical elements contained in the above, aspectual words, and
below, respectively. The BERT model will pass each word through the embedding layer, which
generates three types of embedding vectors, namely word element embedding, sentence embedding,

and location embedding, as shown in FIGURE 7.

The word element embedding layer has the same basic function as other word vectors, i.e., em-
bedding representation for word elements. Besides, BERT specifically adds a sentence embedding
layer and position embedding layer for enhanced representation. The representation after training by

2478



https://www.oajaiml.com/ | August 2024 Yadi Xu and Noor Farizah Ibrahim

Topput [CLS] my dog 1s cute [SEP] he hikes play #ang  [SEP]
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Figure 7: BERT embedding layer

BERT model is the dynamic representation of word elements, even if the same words are in the same
input sequence, as long as they are in different positions, the corresponding word vectors generated
will be completely different. [CLS] is a special token corresponding to the final hidden state that
incorporates all the information and represents the total representation of this input sequence. The
[SEP] token is used to distinguish multiple input sentences from each other. The corresponding
elements of the three types of embedding vectors are summed and then passed to the coding layer
of BERT as the input representation. Thus, after the BERT model is trained, the word vector
representations corresponding to above, aspectual, and below E! = [ell, elg, v elL] € Rixd Ea =
[ef.ef,....ef] € RAxd Eplr = [e],eh,....ef] € R"¥4 where d represents the word vector
dimension.

(2) Semantic feature extraction layer

For natural language, different words have different degrees of influence on affective polarity judg-
ments depending on the position they are in. Most of the existing works consider the use of loca-
tion coding or location weighting to enrich the embedding representation information of words.
However, such approaches have certain shortcomings and ignore the important role played by
dependencies in grammar rules for sentiment determination. In this paper, this problem is effectively
improved by introducing Semantic-Relative Distance (SRD) to dynamically weight the words in
context. The formula for SRD can be expressed as shown in Equation 1:

SRD; = li = pal - | 3| ()

Where i denotes the computed word; P, denotes the aspect word; and m denotes the sequence length
of the aspect word.

At the same time, to attenuate the impact of non-sentiment keywords with large SRD, this paper
uses dynamic weighting for them, and the weight w; is calculated as shown in Equation 2:

wiz(l—SRDTi_a)-l @)

where I denotes a vector of all 1s with the same dimension as the input vector; o denotes the
threshold; and N denotes the total length of the input vector corresponding to the original sequence.

The obtained weights are used to implement weighting operations on the above embedding vector
E! and the below embedding vector E”, respectively, to obtain the new above vector representation
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V! and the below vector representation V". At this point, V/ and V" have been highlighted for
sentiment keywords, reducing the probability of misclassification of non-sentiment keywords for
sentiment categories. Feature extraction using Bert-BiLSTM networks is performed for V/, E and
V" to generate feature vectors that incorporate contextual information and are richer in semantic
representation, respectively H', H* and H”". The weights are calculated as shown in Equation 3:

H' = [EE} = [LSTA;(VI) ,LSTA? (V) (3)

For the hidden states H!, H* and H" obtained through the Bert-BiLSTM network, the attention
weights are calculated by the dual interactive attention mechanism to establish the correlation be-
tween the aspect words and the context as well as the aspect words.

First attention mechanism: Firstly, a representative matrix M is constructed, M I'e RLXA M7 €
RR*A are set to represent the relevance of the above and below pairs of aspectual words, respectively,
and activated with the ReLU function. The two computational equations are shown below:

M' = ReLU(wH'HT) “4)
M" = ReLU(woH" HT) (5)

Where Wy, W represent the trainable parameter matrices. M l.lj represents the correlation of the
i lexical element above with the j lexical element of the aspect word, and M/ represents the
correlation of the 7 lexical element below with the j lexical element of the aspect word; then the
correlation weights of the j lexical element of the aspect word for the i lexical element above and
the i lexical element below are computed as follows. afj, al ; Calculated formulas for the two are
shown below:

exp(M;) ©
Q= —
YT exp(MY)
exp(M]) 7

Qs = —
Y 22‘:1 exp(M})

Combining the above formulas to obtain the relevant representations Vil , V[ under the first weighted
attention mechanism, the computational equations are shown below:

A

Vilzza’fk*ka*Haﬁ (8)
k=1
A

Vi :Z“{k*H{k*Haﬁ ©)
k=1

Vl.l represents the relevance representation of the word i above under the influence of the aspect
word, V! and the same is true.

The correlation weights a/l?’.’ , al?“jr of the i lexical element above to the j lexical element of the aspect

word, and the i lexical element below to the j lexical element of the aspect word, are similarly
obtained by following the above steps; and in turn, Vl.al, Va" are obtained.

2480



https://www.oajaiml.com/ | August 2024 Yadi Xu and Noor Farizah Ibrahim

The second attention mechanism carries out further computation on the basis of Vl.l, v, Vi“l and
VE" obtained by the first attention mechanism to find out the attention weights of above and below
for each lexical element within and the attention weights of aspect words for each lexical element
therein, respectively, as shown in Equation 10 to Equation 12:

eV 0
NS (V) (19
exp(V])
ro V) 11
' Zf:leXp(VIZ) (11
exp(V{) exp(V§")
(12)

at = +
TN exp(VE) T exp(VET)

Above is the computation process of dual-interactive attentional weights. Finally, X/, X and X" are
stitched together to obtain the final feature representation X = [X!; X¢; X"]. The resulting feature
representations of the source-domain samples and target-domain samples are obtained.

Label

&

SoftMax

i

Dual Interactive Attentiom Mechamisms

56006

UG
ReSans

BERT
A A A
1 | 1
I I I
THE ABOVE ASPECT WORD THE BLOW

Figure 8: The Proposed General framework of the Bert-BiLSTM with Dual Attention Mechanism
model
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The structural diagram of the BB-DAM model is shown in FIGURE 8. This model uses the character
vector generated by Bert as the character embedding layer in the upstream part, models Bert-
BiLSTM as the feature extractor in the downstream part, and uses Dropout to reduce the risk of
overfitting, and finally inputs the Softmax function to predict text classification.

The product and operation of the attention weights and the hidden state vectors obtained by BILSTM
are performed to obtain the weighted above representation V;, aspect word representation V,, and
below representation V,.. The specific calculations are shown below, respectively:

L

Vi=> ol H (13)
i=1
A

Va = Za? - HJ (14)
i=1
R

Vo= > af - Hf (15)

The three feature representations are spliced to obtain the final feature vector V for classification,
as shown in Equation 16.
V=[Vi;Va; Vi ] (16)

Finally, the feature vector V is passed into the classification network to complete the sentiment
classification, i.e., a fully connected layer is connected to map the feature vector V to the target
space and the predicted probability distribution is computed by the softmax function as shown in
Equation 17.

p(y) =softmax(W -V +b) (17)

Where W and b represent the weight matrix and bias term, respectively.

The loss function is shown in equation 18.

C
Loss =— Y y;log p(y;) + 4]|6]|? (18)
i=1

Where C denotes the number of categories of sentiment, § denotes the deflation coefficient of the
Lo regular term, and 6 is the parameter matrix.

Above is the computation process of dual-interactive attentional weights. Finally, X!, X and X" are
stitched together to obtain the final feature representation X = [X/;X%;X"]. The resulting feature
representations of the source-domain samples and target-domain samples are obtained.

The structural diagram of the BB-DAM model is shown in Fig. 8. This model uses the character vec-
tor generated by Bert as the character embedding layer in the upstream part, models Bert-BiLSTM
as the feature extractor in the downstream part uses Dropout to reduce the risk of overfitting, and
finally inputs the Softmax function to predict text classification.
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4. EXPERIMENTAL DATA ANALYSIS

4.1 Experimental Dataset and Task Construction

To identify the effectiveness of the migration learning model, this chapter utilizes publicly available
datasets from four distinct domains: Restaurant (R), Laptop (L), Device (D), and Service (S). The
experimental datasets comprise different sources of data related to each domain. TABLE 2 presents
the datasets.

Table 2: Statistical information on datasets

. Number of Number of Total number
Fields Source ..
training samples test samples of samples
SemEval2014 [44]

R 2015 [45] 2016 [46] 2276 1306 3682
L SemEval2014 [44] 1358 392 1750
D Hu et al. [47] 905 451 1356
S Toprak et al. [48] 1294 704 1998

By combining data from different domains two by two, 12 cross-domain fine-grained sentiment
classification tasks can be constructed using R—L, R—D, R—S, L—R, L—D, L—S, D—>R, D—L,
D—S,S—R,S—L, S—D the 12 groups (Transfer Pair) are represented. Since the D-domain dataset
contains review information of five electronic digital devices, the similarity with the L-domain
dataset is relatively high. Therefore, this chapter follows the setting of Li et al [49], to delete
L—D and D—L migration pairs, and finally, a total of 10 sets of migration pairs are formed. In
each migration pair, the source domain is represented by the arrow tail, while the target domain is
indicated by the arrow pointing towards it.

4.2 Experimental Setup

The experiments in this chapter use Micro-F1 as the index, and only when the aspect words are
extracted correctly and the corresponding sentiment polarity is judged correctly, i.e., the sequence
annotation is the same as the real sample, it can represent the case of correct prediction. the
calculation procedure of Micro-F1 is shown in Equation 19 to Equation 21.

2 TP;

oo o 19
I eciSiONyicro Zi TP,‘ + Zi FP,‘ ( )
R Ui ro = ”
eCallmicro ZiTPi+ZiFPi ( )
— 2 % Precisionmicro * Recallmicro (21)

Precisionicro + Recall,,icro
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4.3 Comparison of the Experimental Setup

To evaluate the effectiveness of the proposed model for fine-grained cross-domain sentiment anal-
ysis, several widely used models for cross-domain sentiment analysis are selected for comparison
as shown in TABLE 3. The selected models are as follows:

Table 3: Cross-domain aspect-based sentiment analysis performance of different models on
benchmark datasets (%)

Migration BB-DAM AHF Bert AD-SAL

R—L 40.71 34.89 35.07 34.13
R—D 37.94 37.33 32.08 35.44
R—S 30.90 33.23 2292 28.01
L—-R 38.43 43.49 30.98 43.04
L—-S 35.29 33.05 31.63 28.01
D—R 43.51 44.57 40.15 41.01
D—S 35.05 3496 31.27 26.62
S—R 51.28 46.55 54.93 41.03
S—L 40.93 29.01 36.96 27.04
S—D 40.05 39.61 38.17 33.56
Average 39.41 37.67 3542 33.71

* Bert-BiILSTM-DAM(BB-DAM): Word vectors are trained by Bert and input as a word em-
bedding layer into the Bert-BiLSTM layer for feature extraction.

* AHF [50]: An adaptive hybrid framework that integrates pseudo-label-based training and
adversarial training into a unified network.

» Bert [51]: Pre-trained models for direct tuning in downstream tasks.

» AD-SAL [49]: The Model for dynamically learning word-to-word alignments through adver-
sarial training Adversarial training.

BB-DAM is the best and AD-SAL is the worst because the sample of the fine-grained sentiment
analysis dataset is characterized by more non-aspect words than aspect words, which would be
poor if all labeled symbols were treated equally, thus illustrating the importance of confidence
threshold fine-tuning according to the number of iterations and label set. The average Micro-
F1 value of AD-SAL is about 17% lower than that of BB-DAM, which indicates that the Bert
model gets performance improvement because it makes full use of the labeled data. BB-DAM can
effectively extract the interaction between aspectual words and context and the semantic information
of word granularity, and then complete the task of fine-grained sentiment analysis. The importance
of the sentiment keywords is emphasized by dividing the original sequence into the above, the
aspectual words, and the below, and then coping with the problem of multiple meanings of a word
by using the dynamic word vectors with the dynamic weighting based on the relative distances of
the semantics, and the S-double interactive attentional mechanism enables the semantic information
to be sufficiently extracted, which helps judge the polarity of the sentiments.
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BB-DAM is the best and BiLSTM is the worst because the sample of the fine-grained sentiment
analysis dataset is characterized by more non-aspect words than aspect words, which would be
poor if all labeled symbols were treated equally, thus illustrating the importance of confidence
threshold fine-tuning according to the number of iterations and label set. The average Micro-F1
value of BILSTM is about 15% lower than that of BB-DAM, which indicates that the Bert model
gets performance improvement because it makes full use of the labeled data.

4.4 Sample Analysis

To further illustrate that the BB-DAM model has good transferability, this paper selects some data
in the R domain from the L—R migration pair task as a sample to verify the sequence labeling
capability of the Bert-BiLSTM model, as shown in TABLE 4. To facilitate reading and understand-
ing, the aspect words and their corresponding sentiments are marked in red in the table, “None”
indicates that the prediction marker value is empty, and the “v”” symbol and “X” symbol are used
to indicate whether the prediction is correct or not. From TABLE 4, we can see that BB-DAM is
the best prediction and AD-SAL has the worst prediction performance. The reason for the incorrect
prediction of “waiters” by AD-SAL may be that the model’s memory of domain-specific features
is confused due to adversarial training, resulting in “negative migration”. In the case of sentences
containing multiple aspect words and the aspect words are relatively rare domain-specific words,
the domain differences are too large for all three to implement correct annotation.

Table 4: Sample analysis in the R domain

Migration BB-DAM AHF AD-SAL
The [sushi]pos is cut in blocks bigger than my cell  [sushilpos [sushilpos None
phone. ) W) *)
The [service]lpos was exceptional - sometime [servicelpos [servicelneg [service]pos
there was a feeling that we were served by the (v) ) )
army of friendly [waiters]pos [waiters|pos [waiters]pos None
) X) X)
My friend enjoyed the [grilled Alaskan King None None None
Salmon] pos with delectable [creamed Wash- (X) *) X)
ington russet potatoes|pos and crisp [green None None None
beans]pos *® *® (0]
None None None
*® *) (0]

5. CONCLUSION

Our study employs a hybrid approach of the Bert-BiLSTM model and dual attention mechanism
to enhance cross-domain aspect-based sentiment analysis. In this paper, we first introduce the
BB-DAM model in the word vector representation stage to generate word vectors as the word
representation of the training text for text semantic enhancement, which can effectively extract the
interaction relationship between aspect words and context and the semantic information of word
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granularity, and then complete the task of fine-grained sentiment analysis. The importance of sen-
timent keywords is emphasized by dividing the original sequence into three parts: above, aspectual
and below, and then using dynamic word vectors with dynamic weighting based on semantic relative
distance to cope with the problem of word polysemy. Finally, we compare and experimentally
validate BB-DAM with three methods, namely, AHF, AD-SAL, and Bert, and the experimental
results show that the Bert-BiLSTM model and the dual-attention mechanism proposed in this paper
have good results in fine-grained cross-domain sentiment analysis and can be vigorously promoted
in the future.
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