
Advances in Artificial Intelligence and Machine Learning; Research 2 (1) 315-337 Received 10-03-22; Accepted 25-03-22; Published 31-03-22

Improving the Pedestrian Detection Performance in the Absence of
Rich Training Datasets: A UK Case Study

Juliana Negrini de Araujo negrinij@coventry.ac.uk
Coventry University, Coventry, UK.
Vasile Palade, ab5839@coventry.ac.uk
Centre for Computational Science and Mathematical Modelling,
Coventry University, Coventry, UK
Tabassom Sedighi, tabassom.sedighi@aru.ac.uk
Anglia Ruskin University, Cambridge, UK
Alireza Daneshkhah, ac5916@coventry.ac.uk
Centre for Computational Science and Mathematical Modelling,
Coventry University, Coventry, UK

Corresponding Author: Vasile Palade.

Copyright© 2022 Vasile Palade, et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract
The World Health Organization estimates that well in excess of one million of lives are lost
each year due to road traffic accidents. Since the human factor is the preeminent cause be-
hind the traffic accidents, the development of reliable Advanced Driver Assistance Systems
(ADASs) and Autonomous Vehicles (AVs) is seen by many as a possible solution to improve
road safety. ADASs rely on the car perception system input that consists of camera(s),
LIDAR and/or radar to detect pedestrians and other objects on the road. Hardware improve-
ments as well as advances done in employing Deep Learning techniques for object detection
popularized the Convolutional Neural Networks in the area of autonomous driving research
and applications. However, the availability of quality and large datasets continues to be a
most important issue that influences the Deep Learning based model’s performance. With
this in mind, this work analyses how a YOLO-based object detection architecture responded
to limited data available for training and containing low-quality images. The work focused
on pedestrian detection, since vulnerable road user’s safety is a major concern within AV and
ADAS research communities. The proposed model was trained and tested on data gathered
from Coventry, United Kingdom, city streets. The results show that the original YOLOv3
implementation reaches a 42.18 % average precision (AP), and the main challenge was in
detecting small objects. Network modifications were made and our final model, based on
the original YOLOv3 implementation, achieved 51.6 % AP. It is also demonstrated that the
employed data augmentation approach is responsible for doubling the average precision of
the final model.
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1. INTRODUCTION

According to a recent World Health Organization report, it is estimated that 2.1 billion vehicles
navigate our roads, and the rate of traffic death per 100.000 habitants has remained almost stable
despite the continuous rise of the overall number of vehicles and number of traffic deaths worldwide
[1]. Even though this indicates that the situation is not getting more critical, it is necessary to
consider that a huge number of people lose their lives due to road accidents. Vulnerable road
users, such as cyclists and pedestrians, represent around 26 % of the total victims of road casualties
worldwide [2, 3]. Investments in road infrastructure and legislation enforcement have shown to
be successful strategies, but the leading causes of accidents are human-related, such as excessive
speed, driving under the effect of illegal substances, driver drowsiness and driver distraction [4].

Advanced Driver Assistance Systems (ADASs) and Autonomous Vehicles (AVs) technologies are
seen by many as one way to improve road safety. [3] estimate that 29 % of road fatalities that
occurred in the United States could be avoided by the usage of ADASs. These systems rely on
the car perception features that are usually composed by camera(s), LIDAR and/or radar sensors.
Convolutional Neural Networks (CNNs) and other Deep Learning techniques have become popular
tools in Autonomous Driving applications [5, 6]. In this work, the performance of YOLO-V3 Deep
Neural Network model [7] for real-time pedestrian detection is studied and improved. The main
objective is to evaluate how this popular baseline network behaves when it is subject to limited and
lower quality training data, i.e. containing glare, shadow areas, sunlight reflections, etc. In addition,
a list of modifications and their respective effect on the detection accuracy and speed is presented.
After the performed tests, a modified YOLOv3 model is created to achieve higher average precision
results. The work focuses on pedestrian detection, since vulnerable road user’s safety is a major
concern within AV and ADAS research communities.

This work is organised as follows: Section II presents a brief literature review on object detection
with focus on pedestrian detection; The dataset, the developed model and further implementations
details are described in Section III; The results are shown in Section IV, followed by the Discussion
and Conclusion sections.

2. LITERATURE REVIEW

2.1 Real-time Object Detection with Deep Learning

The object detection task is mainly composed of two problems. The first is to estimate where the
object is located on the image with a bounding box, and the second is to recognise this object as
belonging to a specific class [8], as illustrated in FIGURE 1. Themajor challenge is that it not known
a priori how many objects there will be on the image to be detected. In the computer vision research
community, object detection is one of the most essential problems since it serves as a fundamental
tool for more specific tasks, such as object tracking, image segmentation and captioning [9], etc.

On their extensive review of twenty years of object detection, Zou et al. [7] describe the main
object detection algorithms, including the deep learning methods for object detection. These object
detection methods can be divided into one-stage and two-stage detectors [6]. A two-stage detector
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Figure 1: Example of pedestrian detection performed on this project. Each detected object is
enclosed by a bounding box with an assigned class and probability.

uses a complex pipeline that involves two or more models to perform the extraction of the regions
of interest (RoI), and detection and classification of objects. Consequently, they require more time
to train and do not usually achieve real-time performance. Currently, CNNs represent the basic
framework behind most of the top-performing models for general object detection [5, 6]. The first
two-stage object detector was based on a CNN architecture, known as R-CNN and developed in [10].
This work set the momentum for an unprecedented speed of evolution on object detection research.
The R-CNN model uses a Selective Search algorithm to propose approximately 2.000 possible
Regions of Interest (RoI). The individual RoI is warped to a size of 227x227 and served as input
to a CNN with five convolutional layers and two fully connected layers. The network predicts the
bounding box offsets and an SVM classifier predicts the object category. R-CNN requires 84 hours
to train on the ImageNet dataset and processes one image in 47 seconds (see [10] for further details).
Since then, other works have followed to improve the accuracy and reduce the inference time
including the Feature Pyramid Networks (FPN; another two-stage model [7, 11]), or the multiscale
one-stage object detectors, known as You Only Look Once (YOLO). Newer versions of YOLO and
other networks such as RetinaNet, RefineDet and Deconvolutional Single Shot Detector (DSSD)
have gained popularity due to the attractive trade-off between real-time performance and accuracy.
The YOLOmethodology is to apply a single neural network to the input image, divide the image into
a grid and perform the predictions for bounding box and classification at the same time. The YOLO
framework was updated in [12] by adopting best-practices from other models, including residual
blocks, anchor boxes from Fast R-CNN and multi-scale detection from FPN, to create YOLOv3.

Agility in processing information is crucial for many applications. However, for autonomous ve-
hicles or any ADAS system, a fast inference time ensures the vehicle can interpret and react to
the environment in a timely-safe manner [13, 10]. FIGURE 2 compares popular object detection
models mean average precision (mAP) on the COCO dataset and their inference time in millisec-
onds measured on a NVidia Titan X GPU. The green area on the graph represents the real-time
requirement, considered as 33 ms or 30 FPS. The dependency between higher inference time and
accuracy is quite clear from the graph, as the models on the far right obtain higher AP. To the best of
knowledge, YOLOv3 is the model that achieves higher AP while maintaining the inference speed
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below 33 ms. Latest versions of YOLO (i.e., YOLOv4 and YOLOv5) were not included in this
analysis, as at the time of running these experiments they were not available.

Figure 2: Comparison of popular object detection models on mean Average Precision and inference
times on the COCO dataset. If present, the last three digits after the model name represent
input size in pixels. Data extracted from [5, 14, 15].

2.2 Pedestrian Detection

Pedestrian detection is a popular research topic and under continuous growth, as demonstrated in
FIGURE 3. The graph displays the number of articles published by IEEE and Elsevier regarding
this subject each year. Compared to 2008, the number of publications has grown over 400 %.

To this day, it remains a challenging task to adapt the model to the various situations a vehicle may
encounter a pedestrian on the road [16]. State that nocturnal scenes, shadow areas, sunlight on the
camera and low-resolution images can impact the detection accuracy. Accessories, bags or any
other kind of unusual occlusions make difficult to the model to recognise the pedestrian if it has
not been prepared to deal with these situations [17]. It is also challenging to define the individual
bounding boxes in a crowded scene, as pedestrian features are partially occluded or overlapped [16,
18]. [19, 20], have also highlighted concerns regarding False Positive readings as it can cause the
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Figure 3: Total number of articles related to ”Pedestrian Detection” published by year, considering
IEEE and Elsevier publishers.

vehicle to execute a drastic manoeuvre, and, for this reason, it is crucial to focus on increasing the
True Positives as well as reducing the False Positives (see also [21] for a general scenario-based
testing for safety validation of AV systems).

In order to cope with the specific challenges of pedestrian detection, researchers have developed
modifications to the original object detection frameworks. [22] modified Faster R-CNN by adding
an attention network that responds to different occlusion patterns and re-weights the CNN network
accordingly. At the time it was published, this approach achieved state-of-the-art results on the
Caltech dataset. A novel occlusion-aware Faster R-CNN was proposed by [23], and achieved top
results on CityPersons and ETH benchmark datasets. To improve the detection of occluded pedes-
trians, they formulated a new loss function that improved the region proposal module. Additionally,
they replaced the ROIpooling with a pooling unit that contained a separate CNN, which predicted
the pedestrian visibility score.

Lan et al. [22], proposed an enhancement of the YOLOv2 framework for real-time pedestrian
detection. From the original YOLOv2 model, they moved the pass-through layer to an earlier
position in the network and also added three more pass-through layers to improve the network miss
rate results on the INRIA dataset by 1.3 %.Zhang S, et al. [24], proposed another modification in
the YOLOv2 framework. They added a dense block of connected convolutional layers to improve
the network capability for feature extraction and have also implemented spatial pyramid pooling.
Compared to YOLOv2, the mAP of DC-SPP-YOLO is 1.6 % more accurate on the PASCAL VOC
2007 dataset. A comparative study between Faster RCNN and SSDwas performed by [25] focusing
on pedestrian detection datasets. SSD outperforms Faster RCNN in four out of five datasets. Shao
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et al. [26], presented an FPN network pre-trained on their CrowdHuman dataset and currently
hold the state-of-the-art for Caltech and CityPersons dataset. Their work serves as an example of
how valuable pre-training with quality data can make a significant contribution to achieving better
results, even with a standard object detection framework. By examining these recent works, we
can conclude that R-CNN and FPN based networks achieve higher scores on pedestrian detection
benchmarks, and where speed is not a constraint. For real-time pedestrian applications, SSD and
YOLO seem to be the most viable solutions. No study was found that directly compares SSD and
YOLOv3 for pedestrian detection applications at the time of this paper being submitted.

2.3 You Only Look Once – YOLOv3

The YOLO model is a neural network capable of predicting the bounding boxes around the objects
and their class in a single pass. The first version of YOLOdid not reach the same accuracy of R-CNN
or other two-stage methods [27]. Newer versions of the algorithm, YOLOv2 [28] and YOLOv3 [5],
addressed the accuracy issue at the cost of inference speed. While the first version achieved 45 FPS
for a 448x448 input, YOLOv3 achieves 34 FPS. A brief overview of the YOLOv3 architecture is
presented below.

The YOLOv3 model is based on Darknet-53. Convolution operations with residual blocks are
performed until the first scale detection occurs on layer 82 (stride of 32). For the second detection,
the network routes back to layer 79, goes through a 1x1 convolution layer and the resulting feature
map is upsampled by 2. Layer 61 and the upsampled feature map, layer 85, are depth concatenated
together, which means merging the feature maps of both layers to create the deeper layer 86. The
advantage of depth concatenation is the fact that a previous layer may hold information that could
have been lost along with the network [29]. The output of the second detection occurs on layer 94.
This layer has a stride of 16. The resulting feature map size is double the size of first scale. The
process repeats for the third scale detection. The network routes back to layer 91, upsamples the
feature map by 2x and depth concatenates it with layer 36. With this method, the third detection
benefits from the fine-grained features that are detected earlier in the network as well as all the
previous computations [5]. The simplified diagram of YOLOv3 is illustrated in FIGURE 4. Further
information regarding the YOLOv3 framework can be found in the original release technical report
[5].

3. METHODOLOGY

3.1 Dataset

The dataset is composed of traffic scenes collected from driving around the Coventry city, UK, and
it consists of of ten video clips of one-minute drives each. The data was collected and provided
by Coventry University. Overall, the dataset is challenging for pedestrian detection due to its size,
sunlight reflections in the camera, shadow areas, crowded scenes and amixture of small andmedium
size pedestrians to be detected.
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Figure 4: YOLOv3 model diagram representing the residual blocks, different scales of detection,
upsampling and concatenation operations.

The first step was to convert the videos into images. Each video second contains 60 frames, or
images, that can be extracted. It was decided to obtain one image for every ten frames to achieve
a reasonable number of images that were slightly different from each other. For every video, 362
frames were created, resulting in a total of 3.620 images.

With the images ready as described, it was possible to analyse the data. The first conclusion was
that it would not be possible to use all the images, as some images had a very high shine or shadow
areas that rendered difficult to accurately label pedestrians. To generate the bounding-boxes for
these situations would eventually result in inaccurate or inconsistent labels, and for this reason, these
images were ignored. As stated by [12], data with inaccurate labelling can limit model performance.
FIGURE 5 are examples of images that were removed as it was not possible to accurately label the
pedestrians, red arrows indicating were pedestrians are located. The final dataset comprises 2.007
images with 7.704 detections and 99 images where no pedestrian is present. From this point forward
the dataset created on this project is referred to as CV-01 dataset.

3.2 Training and Testing

The proportion of data reserved for training, validation and testing was inspired by the methodology
used in the KITTI and Caltech datasets [30, 31]. The KITTI dataset contains 7.481 training and
7.518 for testing images, allowing the researcher to define the validation set size. The Caltech
dataset also uses a similar ratio, with 60 % training and 40 % testing.

For both datasets, Caltech and KITTI, the training set does not contain images from videos that
are used in the test set, and vice-versa [32]. The data was divided according to TABLE 1 to be in
accordance to AVs datasets practice. Frames from Video 2 were reserved to the validation set, and
frames from Video 1 were used in the test set. The remaining images were used to train the model.
The final data ratio is approximately 65 % training, 15 % validation and 20 % test set.
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Figure 5: Examples of images were it was not possible to fully define the pedestrian location and
which were not added to the dataset.

Table 1: Training, Validation AND Test Set Split.

Set Videos Used Number of
Images

Training Videos 3 through 10 1,313
Validation Video 2 332
Test Video 1 362

3.3 YOLO-V3 Model Variations

As a preliminary test, the original YOLOv3 baseline was far from the necessary requirements
in terms of accuracy. The next step of the process was to optimise the model according to the
application. The possible improvements to the baseline YOLOv3 model were identified by analyz-
ing previous works, such as [22, 24], where the YOLO architecture was modified to improve the
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accuracy. In addition, due to the small size of the dataset, data augmentation could also potentially
provide improvements. From [6], larger input dimensions have indicated to improve accuracy to
the cost of performance (see also [33]). In conclusion the main identified tasks that can lead to
improvements were:

1. Increase input size;

2. Customize anchors;

3. Customize the number of detections layers;

4. Modify feature maps output size;

5. Data augmentation and hyperparameter tuning.

The modifications were tested separately to allow a better understanding of how much they con-
tributed to the accuracy and speed of the baseline network. In total, eleven different models were
created, and their individual outcomes are shown in Section 4. TABLE 2 provides a brief description
of the developed models.

Figure 6: Modified YOLOv3 architecture for this study

FIGURE 6 illustrates the modified YOLOv3 for this study. From the test results of Model-10, it
was possible to conclude that the first detection layers (First scale) were not contributing to the
final model AP. The removal of the first scale detection layers reduced the computational cost and
improved the model accuracy. This inspired us to discard the original first detection layer and add
a new third detection layer. As a result, Model-13 was built and, if compared to the original model,
the modified network contains larger feature maps as outputs to improve the detection of smaller
objects while maintaining a similar computational cost. TABLE 2 shows the structure of the original
YOLOv3 network, and the modified model proposed in this study for a 416x416 input size. The
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final models were originated fromModel-13. Model-15 and Model-16 have the architecture shown
in TABLE 2, however, they differ in the number of anchors, i.e. 9 and 12, respectively.

The anchors’ dimensions were customised to the proportions of the pedestrian bounding boxes of the
CV-01 training set using the k-means algorithm, as done in the original YOLOv3 implementation.
TABLE 4 shows the anchor dimensions. Twelve anchors provided a better result than the default
nine anchors used by YOLOv3. All models used pre-trained weights from the COCO dataset,
available at [34]. A preliminary test was performed without the pre-trained weights, and after four
hours (1.000 iterations) a 0 % average precision was obtained. Speeding up training and improving
the accuracy were the main reasons to use the pre-trained weights.

Table 2: Description of Trained Models.

Model
Name

Description

Model-05 Original YOLOv3 architecture, with 416x416
input and COCO default 9 anchors dimension.

Model-06 Original YOLOv3 architecture, with 608x608
input and COCO default 9 anchors dimension.

Model-02 Original YOLOv3 architecture, with 832x832
input and COCO default 9 anchors dimension.

Model-10 Modified YOLOv3 architecture with only Sec-
ond and Third Detection Scales (removed First
Detection Scale), with 416x416 input and COCO
default anchors dimension.

Model-08 Modified YOLOv3 architecture with additional
Fourth Detection Scale (with custom anchors),
with 416x416 input. First three scales with COCO
default 9 anchors dimension.

Model-09 Modified YOLOv3 architecture with additional
Fourth and Fifth Detection Scales (with custom
anchors), with 416x416 input. First three scales
with COCO default 9 anchors dimension.

Model-12 Original YOLOv3 architecture, with416x416 in-
put and 9 customised anchors dimension.

Model-11 Original YOLOv3 architecture, with416x416 in-
put and 12 customised anchors dimension.

Model-13 Modified YOLOv3 Architecture, see Table 3.
Model-15 Model-13, with step Learning Rate and hyperpa-

rameters tuning with 9 customised anchors
Model-16 Model-13, with step Learning Rate and hyperpa-

rameters tuning with 12 customised anchors

Initially, the models were trained for 10.000 iterations (500 epochs). No improvements were noticed
after 4.000 iterations, or 300 epochs, and this was defined as the maximum iteration number. During
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Table 3: Final Model - Modified YOLO Architecure.

Table 4: Anchor boxes dimensions and the respective detection scales.

Anchor 1st
Scale

2nd
Scale

3rd
Scale

1 30x145 13x83 4x18
2 35x175 15x61 5x28
3 40x200 19x96 7x40
4 59x300 28x129 10x57

the training, the accuracy sharply oscillated at initial training iterations, especially around 1.000 and
2.000 iterations. For this reason, the learning rate was reduced to 1.000, 2.000 and 3.000 epochs by
a factor of 0.1, 0.075 and 0.05, respectively. A larger learning rate is used during the first epochs,
as recommended by [35, 36]. The final model parameters are presented in TABLE 5.
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Table 5: Hyperparameters of the final model.

Parameter Value
Initial Learning
Rate

0.01

Weight Decay 0.0005
Momentum 0.9
Optimizer Stochastic Gradient De-

scent (SGD)
Batch Size 64
Training
Iterations

4.000

3.4 Hardware and Implementations

Nvidia Titan X GPU is commonly used to measure the speed of recent real-time object detection
algorithms [5, 19, 37]. YOLOv3 authors state that the model is capable of achieving 34.4 FPS (29
ms) on a Titan X GPU for a 416x416 pixels input. The same YOLOv3 model achieved 16.1 FPS
(62 ms) on a Virtual Machine with Tesla K80 GPU, which is 2.13 times slower. The speed results
reported on this project are multiplied by a factor of 2.13 to simulate the results on a Titan X GPU,
the same hardware as the original authors.

The original YOLOv3 source code is available to download from the author’s website [34]. It is
originally built to run on a Linux machine and written in C++ language. The author also provides
the pre-trained weights from the COCO dataset.

4. RESULTS

This section presents the results of the developed pedestrian detection model on the CV-01 dataset.
As already mentioned, several characteristics of the YOLOv3 architecture were analysed separately
to compose the final model. First, we present a brief overview of the metrics used to measure
the model performance. Next, the test set results regarding the input size variations are presented,
followed by the number of anchors, number of layers, data augmentation/hyperparameters and lastly
the final model results.

Similar to [22, 24, 5], our results are measured using Average Precision (AP). The Average Precision
metric was first introduced by the PASCALVisual Object Classes (VOC) challenge in 2007 [4]. The
AP metric is defined as the area under the Precision-Recall curve. The definition of True Positives
(TP) or False Negatives (FN) in the context of object detection is according to the Intersection
over Union (IoU) threshold. The IoU measures the overlap between the predicted and ground-truth
bounding box areas. Usually, a detection is considered as a true positive (TP) if the area of the
predicted bounding box (B𝑝) and ground-truth bounding box (B𝑡 ) overlap by a value greater than
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0.5 [38]. The IOU is calculated according to Eq. (1).

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎 𝐵𝑝 ∩ 𝐵𝑡

𝑎𝑟𝑒𝑎 𝐵𝑝 ∪ 𝐵𝑡
(1)

To plot the Precision-Recall curve, the samples are ranked by the classification confidence in de-
creasing order [38]. The IoU result dictates if the prediction is accurate enough to be considered as
correct (TP). Precision, Recall and IoU are calculated for each sample. Currently, the AP can be
calculated according to Pascal VOC or theMicrosoft’s CommonObjects in Context (COCO) dataset
[11]. Both methods use the Precision-Recall curve as reference, however Pascal VOC computes the
area under the Precision-Recall curve using a fixed IoU of 0.5 [38]. On this work we have also
applied the Pascal VOC method, as it is also used by the original YOLOv3 authors.

TABLE 6 shows the results obtained with the original YOLOv3 model under different input sizes.
For this test case, the 832x832 input dimension achieves higher Average Precision, but it only runs
at 10 FPS.

Table 6: YOLOv3 AP and inference performance with three different input sizes.

Model
Name

Description Test AP FPS

Model-05 YOLOv3 with
416x416 input

42.18 % 32

Model-06 YOLOv3 with
608x608 input

50.63 % 17.2

Model-02 YOLOv3 with
832x832 input

67.42 % 10.2

The results that follow use the 416x416 model, i.e. Model-05, as a baseline, since it was the only
one capable of achieving the speed requirement of 30 FPS. By default, the YOLOv3 network uses
nine anchors with dimensions to fit the bounding boxes of the COCO dataset. The results in TABLE
7 compares the model with default anchors, Model-05, with Model-12 and Model-11, where nine
and twelve customised anchor dimensions were used, respectively. Customizing the anchors to the
CV-01 dataset improves the accuracy with minor impact on inference speed.

Table 7: YOLOv3 AP and inference performance with nine and twelve customized anchors.

Model
Name

Description Test
AP

FPS

Model-
05

YOLOv3 baseline 42.18
%

32

Model-
12

YOLOv3 with 9 cus-
tom. anchors

49.49
%

31.2

Model-
11

YOLOv3 with 12
custom. anchors

43.62
%

31.4
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TABLE 8 presents three different models together with the baseline, Model-05. With only two
layers, Model-10 obtained higher accuracy. Models with more than three layers did not achieve
higher accuracy and achieved longer inference times.

Table 8: YOLOv3 AP and inference performance with two, four and five detection layers.

Model
Name

Description Test
AP

FPS

Model-
05

YOLOv3 baseline 42.18
%

32

Model-
10

YOLOv3 with 2
Detection Layers

43.57
%

32.2

Model-
08

YOLOv3 with 4
Detection Layers

41.92
%

27

Model-
09

YOLOv3 with 5
Detection Layers

43.52
%

17.8

The lessons learned from the results presented so far inspired the architecture described in TABLE 2
Model-13 shows significant improvements over the original YOLOv3 framework, as demonstrated
in TABLE 9. Further enhancements were made on Model-15 and Model-16 by applying the step
learning rate and fine-tuning the hyperparameters. Model-16 outperformsModel-15 by 1.44 %, and
Model-13 by 2.09 % on the test set.

Table 9: YOLOv3 AP and inference performance with the modified architecture and step Learning
Rate.

Model
Name

Description Test
AP

FPS

Model-
05

YOLOv3 baseline 42.18
%

32

Model-
13

Modified YOLOv3
Architecture

49.50
%

32.2

Model-
15

Model-13 + LR + 9
custom anchors

50.15
%

31.6

Model-
16

Model-13 + LR + 12
custom anchors

51.59
%

30.4

TABLE 10 shows the beneficial effect of data augmentation. Model-17 is the same as Model-16
but without any data augmentation settings. The data augmentation doubles model accuracy on the
validation and test sets.

FIGURE 7 illustrates the comparison of the training set loss and validation set average precision
during training for Model-13 and Model-16. The main difference between the two models is the
application of the step learning rate. On the left, Model-13 shows in red a very sharp and unsta-
ble accuracy curve during the learning process. A controlled learning rate promoted a smoother
accuracy curve, faster convergence and improved accuracy, as shown by Model-16 in Figure 7 (b).

328



https://www.oajaiml.com/ | March-2022 Juliana Negrini de Araujo, et al.

(a)

(b)

Figure 7: Validation set accuracy and training loss graphs for Model-13 (a) and Model-16 (b).
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Table 10: YOLOv3 AP and inference performance with and without data augmentation.

Model
Name

Description Validation
AP

Test AP

Model-16 Model-13+12
anc.

65.00 % 51.59 %

Model-17 Model-16
without data
augmentation

28.74 % 22.79 %

Figure 8: Precision and Recall curve for Model-05 and Model-16. The Average Precision metric is
the area under the curve for each model.

The Precision and Recall curve from Model-05 and Model-16 are presented in FIGURE 8. As
expected, Model-16 obtained a higher AP as the red Precision-Recall curve covers a larger area
than Model-05.

TABLE 11 lists the overall results over different metrics for all models. The top-three results for
each metric are highlighted in bold to facilitate discussion and visualisation. All metrics refer to
the validation set results but the Test AP column. Model-02 outperformed all others with regards
to accuracy-related measures, but it is not capable of reaching real-time performance. Model-16
presented the best trade-off between accuracy across validation/test sets and inference speed.
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FIGURE 9 through FIGURE 11 demonstrates the detections examples extracted from the test and
validation sets. Ground-truth boxes are shown in yellow, and detections from Model-16 are dis-
played in red. It is possible to notice that due to the shadow area near the bottom of FIGURE 9,
it causes the model to predict a larger box than required. Most of the pedestrians were detected in
FIGURE 10, however overall lower IoU and two false positives are noticed. The high glare and
shadow of FIGURE 11 caused the model to miss three out of the nine pedestrians of the frame.
Additionally, two false positives are present on the right side of the image.

5. DISCUSSION

From the test results obtained, it was possible to analyse several characteristics of the YOLOv3
model. The first was the high correlation between accuracy and input size. Model-02, with an
input size of 832x832 and no further modifications to the original framework, almost achieved the
accuracy requirement of 70 %. This is an indication that the limitation is not on the algorithm, but
on the hardware, and will probably be overcome in the following years as the technology rapidly
advances.

False positives are a big concern in autonomous driving, as highlighted by [19, 20]. All top-three
models highlighted in TABLE 11 presented Precision above 80 %. The model with the highest
number of false positives was Model-12, with nine customised anchors. One explanation is that
the anchors’ proportions were too fitted to the pedestrian dimensions of the training set, and this
limited the model capabilities to generalise to other scenarios. This argument aligns with the fact
that Model-11, containing twelve anchors, presented half the number of false positives if compared
to Model-12. With more anchors, the network could generalise across the training, validation and
test set. Model-16 uses the concepts from Model-11 and Model-13, and, consequently, it presented
a good balance between the FP, TP and FN metrics. The tests have shown that FP and anchors’
selection are related. Model-16 shows a 20% reduction on false positives if compared to the original
YOLOv3, Model-05.

The models with four and five detection layers, Model-08 and Model-09, respectively, have not
shown much accuracy improvements on the test set AP. Besides, these models were not capable of
reaching real-time speed requirements. Surprisingly, Model-10, where the detection layer for larger
objects was removed had a better performance than the baseline Model-05. A plausible reason
for these results can be found in the work from [39]. The authors describe those deeper models
can present worse accuracy than shallow networks, mainly because complex models are harder to
optimise.

TABLE 10 compares the results of the same model with and without data augmentation. Especially
for small datasets, data augmentation is a mandatory strategy to avoid overfitting, and increase
the number of samples [40]. Data augmentation is responsible for doubling the AP results on the
validation and test set, demonstrating the importance of this task. FIGURE 7 presents the training
loss and validation set average precision curve for Model-16 and Model-13. In FIGURE 7(a), the
fixed learning rate causes the accuracy to oscillate heavily, as an indication that the learning rate is
too large and cause divergence [35]. As a consequence, it presents more iterations until stabilisation.
With the step LR strategy, shown in FIGURE 7(b), the final model stabilised around 2.000 iterations
and achieved a better accuracy on the validation and test set. The results are in accordance with
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Table 11: Overall results of all models, showing Validation and Test set results. The Precision,
Recall, TP, FP and FN metrics are from the Validation set

Model
Name

Description Precision Recall TP FP FN Validation
AP

Test
AP

FPS

Model-
05

YOLOv3 base-
line

73.0 % 40.0
%

848 319 1261 44.63 % 42.18
%

32

Model-
06

YOLOv3
608x608 input

82.0 % 52.0
%

1106 246 1003 61.26 % 50.63
%

17.2

Model-
02

YOLOv3
832x832 input

87.0 % 59.0
%

1248 186 861 69.61 % 67.42
%

10.2

Model-
10

YOLOv3 -
2 Detection
Layers

75.0 % 36.0
%

763 251 1346 43.08 % 43.57
%

32.2

Model-
08

YOLOv3 -
4 Detection
Layers

78.0 % 44.0
%

925 265 1184 55.86 % 41.92
%

27

Model-
09

YOLOv3 -
5 Detection
Layers

79.0 % 37.0
%

775 201 1334 55.08 % 43.52
%

17.8

Model-
12

YOLOv3 - 9
custom. anchors

66.0 % 44.0
%

929 486 1180 43.70 % 49.49
%

31.2

Model-
11

YOLOv3 - 12
custom. anchors

79.0 % 40.0
%

834 222 1275 44.53 % 43.62
%

31.4

Model-
13

Modified
YOLOv3
Architecture

78.0 % 57.0
%

1192 336 917 62.15 % 49.50
%

30.5

Model-
15

Model-13 + LR
+ 9 custom an-
chors

77.0 % 60.0
%

1269 383 840 64.76 % 50.15
%

31.6

Model-
16

Model-13 + LR
+ 12 custom an-
chors

82.0 % 57.0
%

1197 257 912 65.00 % 51.59
%

30.4

[41], where a learning rate schedule also offered faster convergence. It is possible to conclude that
the strategy applied to the Learning Rate has allowed a better balance between exploration and
exploitation.

From all the eight metrics analysed in TABLE 11, Model-16 was one of the top-performing on six
of them and achieved 30.4 FPS as per the requirement. Model-16 was selected as the final model
because of the good overall accuracy on the validation and test sets while maintaining the real-time
requirement. With a 416x416 input size, it was possible to achieve better accuracy than Model-06,
the original YOLOv3 with 608x608 input. This result highlights the importance of understanding
and customising popular frameworks for the specific application. FIGURES 9 to 11 illustrate a
selection of the final model detections against the ground-truth. By analysing the outputs, detecting
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Figure 9: Test set frame, an example of detection under the shadow area.

Figure 10: Validation set frame, an example of detection under a crowded scene.

Figure 11: Test set frame, an example of detection of small and large objects on the same scene.

small objects has shown to be a laborious task to the network, as well as the reflections and shadow
areas of the traffic scenes. Even with limited samples, the model was capable of learning to detect
shapes under challenging situations.
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6. CONCLUSION

Themain lesson learned is that between the two challenging factors of the dataset, data limitation and
low-quality, the first weights the most. Even with low-resolution images, the network is capable
of extracting and extrapolating the features that compose a person. The changes to the original
framework seemed to reach an accuracy plateau, where only 0.5-1 % improvements started to occur.
This indicates that the model reached its potential, and a more significant accuracy leap can only
be achieved by drastically changing the methodology or presenting more data. In conclusion, there
are two main achievements of the work reported in this paper. The first is the creation of a unique
dataset for pedestrian detection from the Coventry city, UK. Secondly, the final model presents a
real-time performance of 30.4 FPS and better accuracy than the original YOLOv3 model, by 9.4 %
for this application.

7. FUTUREWORK

For future work it is recommended to address the data limitation issue. This can be done by
using more advanced data augmentation techniques, where reinforcement learning or other machine
learning techniques can be applied for choosing the best data augmentation policy [40]. Another
solution is to use Generative Adversarial Networks (GAN’s) to produce new samples, as done by
[42, 3, 5]. A more in-depth study of how different strategies of updating the learning rate during the
training process is also required. Recent works have started to look into more advanced techniques,
as described in [36]. Sensor fusion is also an interesting and practical method to improve the
accuracy, if radar or LiDAR data is made available for this dataset in the future. Pre-training is
extremely important for CNN based object detection models [26, 43]. As a suggestion, pre-train
YOLOv3 on a pedestrian dataset instead of using COCO pre-trained weights could be beneficial for
the final model [44].
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