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Abstract
This study presents a method for implementing generative AI services by utilizing the Large
Language Models (LLM) application architecture. With recent advancements in generative
AI technology, LLMs have gained prominence across various domains. In this context,
the research addresses the challenge of information scarcity and proposes specific remedies
by harnessing LLM capabilities. The investigation delves into strategies for mitigating the
issue of inadequate data, offering tailored solutions. The study delves into the efficacy of
employing fine-tuning techniques and direct document integration to alleviate data insuffi-
ciency. A significant contribution of this work is the development of a Retrieval-Augmented
Generation (RAG) model, which tackles the aforementioned challenges. The RAG model is
carefully designed to enhance information storage and retrieval processes, ensuring improved
content generation.

The research elucidates the key phases of the information storage and retrieval methodology
underpinned by the RAG model. A comprehensive analysis of these steps is undertaken,
emphasizing their significance in addressing the scarcity of data. The study highlights the
efficacy of the proposed method, showcasing its applicability through illustrative instances.
By implementing the RAGmodel for information storage and retrieval, the research not only
contributes to a deeper comprehension of generative AI technology but also facilitates its
practical usability within enterprises utilizing LLMs. This work holds substantial value in
advancing the field of generative AI, offering insights into enhancing data-driven content
generation and fostering active utilization of LLM-based services within corporate settings.

Keywords: Embedding, Generative AI, LLM framework, RAG, Vector store.

1. INTRODUCTION

Recent developments in generative AI, catalyzed by ChatGPT, have become a focal point of discus-
sion. Generative AI possesses the potential to contribute across a myriad of domains, encompassing
natural language generation, translation, and the generation of diverse and imaginative content. A
notable indication of global anticipation for generative AI is underscored by the ’2023 Emerging
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Technologies Hype Cycle’ report by Gartner, released on August 17, 2023 [1]. Within the realm
of ’Emergent AI,’ which denotes burgeoning artificial intelligence, the category of ’generative AI’
is marked as being at the ’Peak of Inflated Expectations.’ The report forecasts that within 2 to 5
years, the field of generative AI will achieve transformative accomplishments, heralding a new era
of enhanced human productivity and machine creativity.

Of particular significance, Large Language Models (LLM) such as OpenAI’s GPT series have
demonstrated groundbreaking outcomes in the realm of natural language comprehension and gener-
ation. The wave of generative AI, instigated by ChatGPT, has extended its influence to encompass
visual mediums, including Stable Diffusion and Midjourney, capturing the attention of the general
populace.

In light of these advancements, LLM are being extensively harnessed across diverse domains.
Leveraging extensive training on copious volumes of textual data, LLM exhibit the ability to com-
prehend and generate natural language. Building upon this prowess, LLMs find application in var-
ious domains, including customer interactions, creative content creation, and question-answering.

However, generative AI still faces various limitations. LLM require extensive amounts of data for
training, which incurs substantial costs and time investment. Furthermore, LLMs exhibit limited
adaptability to new data, making it challenging to provide accurate responses to questions unrelated
to the data they were trained on. Notably, ChatGPT, provided by OpenAI, tends to exhibit a phe-
nomenon known as “hallucination.” This entails fabricating information when faced with queries
about unfamiliar facts. Consequently, while responses may appear plausible on the surface, they
often contain incorrect information. In efforts to mitigate this, approaches to minimize hallucination
and elicit responses that align with actual data are being pursued. Strategies include appending
context to prompts, employing Chain-Of-Thought (CoT) techniques, enhancing self-consistency,
and requesting concise answers from the model.

Another constraint arises from the limited answer capacity of LLMs due to information gaps. For
instance, the GPT 3.5 model lacks data beyond September 2021, rendering it incapable of furnishing
responses pertaining to recent news events. Moreover, since external information is utilized for
generating answers, there is a growing demand for methods to address inquiries related to sensitive
business insider information.

In such scenarios, it is more efficient for users or businesses to store their information in databases.
Subsequently, when user queries arise—such as inquiries regarding company dress codes through
a chatbot—pertinent information can be retrieved and presented to the LLM through prompts,
proving to be a more practical and efficient approach. For instance, the approach involves uploading
a PDF document and posing a question, whereby the system searches for relevant information
within the PDF to provide an answer. This methodology represents the second approach, termed
Retrieval Augmented Generation (RAG) service architecture. In this manner, RAG informs the
LLM of pertinent queries and associated reference materials in advance, mitigating hallucination
tendencies and enabling more accurate response generation. The RAG architecture thus addresses
the information scarcity issuewithin LLM, possessing the potential to furnish high-quality responses
without necessitating new data training. The RAG model offers a means to supply users with more
precise and fitting answers to their inquiries, making it a valuable technology for real-world business
contexts. This versatility renders it applicable across various business domains, enhancing LLM
performance. Efforts to enhance languagemodel performance through leveraging search techniques
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have long been underway. Notably, in 2021, DeepMind introduced RETRO, utilizing its internal
database for information retrieval, while OpenAI unveiled WebGPT with Bing-based searching
capabilities in the same year. However, the current prominence of the RAG architecture in the
industry stems from its remarkable improvement in in-context learning abilities and the convenience
of not requiring separate model training efforts.

In this manner, addressing the limitations of ChatGPT and harnessing internal information entails
avenues such as fine-tuning through additional training with new data specific to certain domains,
or employing the RAG technique. Through RAG, pre-defined queries and associated reference
materials are supplied to the LLM, enhancing the accuracy and reliability of ChatGPT. However,
contemporary solutions to these challenges lack readily available real-world implementation in-
stances or methodologies.

Against this backdrop, this study seeks to propel the advancement of generative AI while sur-
mounting its limitations, by exploring methods to implement LLM applications using the RAG
architecture. It proposes procedures and methodologies to facilitate the facile implementation of
such applications and presents illustrative implementation cases. To this end, the study initially
examines approaches to overcome the information scarcity of LLM through fine-tuning or direct
utilization of document information. It subsequently delves into the operational mechanics and
key phases of the RAG model, discussing methods of information storage and retrieval using vec-
torized databases. Furthermore, it encompasses an explanation of furnishing suitable prompts to
LLM and the orchestration framework for the same. Consequently, the study introduces specific
implementation methods and available tools, comprehensively detailing the process of realizing the
RAG model. Contemplating the potential of contemporary LLM models and vectorized database
technologies, it explores the amalgamation and optimization of these technologies. Additionally,
it presents implementation codes for the RAG model across diverse business domains, analyzing
insights and outcomes derived from these endeavors. In doing so, the study deliberates upon the
practical applicability and potential benefits of the RAG model, thereby enhancing generative AI
services and discerning avenues for advancement. Furthermore, this research contributes by provid-
ing implementation codes leveraging generative AI technology, investigating the feasibility of real-
world business application, and fostering the development and industrial utilization of generative
AI technology.

2. RELATEDWORK

2.1 Background for Generative AI

Generative AI is a form of artificial intelligence that utilizes extensive trained data models to gen-
erate new content such as text, images, audio, and videos. Prominent examples in this domain
include ChatGPT, which is a language model service trained on vast amounts of data, and models
like DALL-E and Midjourney, which focus on generating images. The categorization of generative
AI models varies based on their output generation, distinguishing them as language models, image
models, video models, and so on. However, the landscape is rapidly evolving towards multi-modal
models that can learn both text and images simultaneously, positioning themselves as foundation
models.
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Figure 1: Generative AI Relation Diagram (IDC, 2023)

In the context of AI, IDC positions generative AI as illustrated in FIGURE 1., encompassing un-
supervised and semi-supervised algorithms that enable computers to respond to short prompts and
create new content using previously generated content such as text, audio, video, images, and code
[2]. Over the past few years, generative AI technology has undergone rapid advancement, ushering
in novel opportunities across various industries.

Unlike traditional methods that merely process or analyze existing data, generative AI employs a
novel approach to generate fresh and inventive content. These models learn patterns and are trained
on extensive datasets to generate new outputs resembling the training data.

2.1.1 Generative AI types and applications

Generative AI technology has the remarkable ability to create a wide range of data forms, including
text, code, images, videos, 3D models, and audio. TABLE 1. showcases representative models
within generative AI technology based on different data formats and the application domains they
serve [3, 4].

For this study, we investigated materials related to generative AI and LLMs, including recent major
research papers, journals, articles, and books. In this chapter, we will explore LLMs and generative
AI in general. First, we will learn in detail about the concept and application areas of generative AI.
Then, we will explain the key technologies and frameworks that are applied to LLMs in this paper,
and the RAG areas.

To conduct this study, we investigated materials related to generative AI and LLMs, including recent
major research papers, journals, articles, and books. In this chapter, we will provide an overview of
LLMs and generative AI in general. First, we will discuss the concept and applications of generative
AI in detail. Then, we will discuss the key technologies and frameworks that are used to build LLMs
in this paper, and the RAG areas.
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Table 1: Representative models and applications of generative AI

Type Representative Models Application Field
Text OpenAI GPT-4, Google PaLM2,

DeepMind Gopher, Meta LLaMA,
Hugging Face Bloom

Marketing, Sales, Customer Support,
General Writing, Translation,
Summarization

Code OpenAI Codex, Google PaLM2,
Ghostwriter, Amazon CodeWhisperer,
Tabnine, Stenography, AI2sql, Pygma

Code Generation, Document Code,
Generate SQL Queries, Generate
Web Apps, Testing, Code formatting

Image OpenAI Dall-E2, Stable Diffusion,
Midjourney, Google Imagen, Meta
Make-A-Scene

Generate Image, SNS, Advertising,
Design, Data visualization

Video MS X-CLIP, Meta Make-A-Video,
RunwayML, Synthesia, Rephrase AI,
Hour One

Video Generation, Video Editing, Video
Summarization

3D DreamFusion, NVIDIA GET3D, MDM Generate 3D Models, Generate 3D
Scenes

Audio Resemble AI, WellSaid, Play.ht, Coqui,
Harmonai, Google MusicLM

Speech Synthesis, Voice Cloning,
Generate Music, Sound effect design

2.1.2 Generative AI trends

In recent times, as of 2023, the advancements in ultra-large AI technology have been rapid and
significant. TABLE 2 illustrates the recent landscape of generative AI model releases. OpenAI
unveiled GPT-4 in March, and Google introduced PaLM2 in May. Despite reducing the number of
parameters compared to their previous models, these new iterations have been trained on approxi-
mately five times more tokens (text data), resulting in improved real-world performance. Moreover,
prominent companies such as Samsung Electronics are in the process of developing or considering
their own generative AI models.

Interest has also been growing in open-source LLM like Meta LLaMA and Falcon, which prioritize
learning volume over model size. NVIDIA is pursuing the concept of an “AI Factory,” which
involves integrating AI models into corporate data centers. They are also developing small Large
LanguageModels (sLLM) aimed atminimizing costs and providing easily deployablemodels within
businesses.

In a notable instance, Naver Cloud introduced “HyperCLOVA X” a Korea-focused ultra-large AI
model, in August. HyperCLOVA X is specialized for various fields such as e-commerce, finance,
law, and education. It can be customized to a company’s data and specific domain, and can be
deployed using an API or Neuro Cloud approach. This progression indicates that the LLM market
is transitioning from a focus on performance competition to amore specialized competition, marking
a new phase in its evolution.

In particular, open-source LLM have gained traction since the release of Alpaca, which is built
upon the LLaMA architecture. Following Alpaca’s introduction, various LLMs like GPT4All have
continued to be unveiled. GPT4All, in particular, is based on the LLaMA7Bmodel andwas inspired
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Table 2: Status of Generative AI model releases in 2023

Country Company Foundation Parameters Service Source Release
Model Date

USA OpenAI / MS GPT-4 Not disclosed ChatGPT, MS Bing AI, MS Closed 2023.03Copilot, MS365 Copilot
Google PaLM2 540B Bard Closed 2023.05
META LLaMA2 7∼65B - Open 2023.07

Stanford Univ. Alpaca 7B LLaMA 7B Fine-tuning Open 2023.03LLaMA-7B
Nomic GPT4All v2 30∼13B LLaMA7B Fine-tuning Model Open 2023.04

Hugging Face BLOOM 176B - Open 2022.07
China Huawei PanGu 3.0 100B Pangu-Weather, etc. Open 2023.07

Baidu Ernie 3.5 130B Ernie Bot 3.5 Self-utilization 2023.06

Alibaba Tongyi Qianwen 100B DingTalk, Tmall GenieOpen Self-utilization 2023.04source service: ModelScope Open
South Naver HyperClovaX Not disclosed Polaris Office AI, Lewis, etc. Closed 2023.08
Korea LG EXAONE2.0 300B AI artist Tilda, etc. Self-utilization 2023.07

NC Soft VARCO Not disclosed VARCO Art/Text/Human/Studio Closed 2023.08
KT MI:DEUM2 Not disclosed GiGA Genie, AICC, AI care service Self-utilization 2023.4Q

Kakao Ko GPT2.0 6∼65B Providing specialized platforms for Self-utilization 2023.4Qlogistics, medical care, finance, etc.

by Alpaca. It collected 800,000 prompt-response pairs from the GPT-3.5-Turbo model, encom-
passing code, conversations, and narratives. Among these pairs, around 430,000 were designed
in an assistant-style prompt-response format, making them approximately 16 times larger in scale
compared to Alpaca’s dataset. A notable advantage of this model is its ability to run on CPUs
without the need for GPUs.

The development of sLLM by startups is also progressing. LLM face hardware limitations and
cost issues due to their extensive parameter count required for training. In contrast, sLLM aim to
address these challenges by focusing on specific domains and languages, training on large datasets,
and offering performance tailored to particular areas such as everyday conversations and domain-
specific terminology. This development is highlighted as a potential solution to the limitations of
traditional LLMs [5].

The introduction of various AI models from different companies is expanding the range of applica-
tions for generative AI. Generative AI is already being utilized in diverse fields like art, gaming, and
entertainment. In recent times, the application of generative AI has extended to various industries.
In the medical field, it can be used to identify medical conditions in patients and develop new
drugs or treatment methods. In manufacturing, it can aid in creating new product designs and
optimizing production processes. In the financial sector, generative AI can assist in developing new
financial products and managing risks associated with financial transactions. This demonstrates
how the utilization of generative AI is expanding across various industries, including healthcare,
manufacturing, and finance.
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2.2 Key Elements of Generative AI

2.2.1 Foundation Model

Generative AI models are categorized based on the type of output they produce, such as language
models, image models, and video models. However, the current trend is the rapid development of
multi-modalmodels that can simultaneously learn from both images and text, with their performance
and capabilities evolving rapidly. These multi-modal models are also emerging as foundation
models, becoming a cornerstone in AI technology. The concept of foundation models was first
proposed by researchers at Stanford University, who published a paper titled “Opportunities and
Risks of Foundation Models” Foundation models are trained using vast amounts of data, which
includes text, images, audio, structured data, 3D signals, and more. These models are designed to
perform tasks involving human creativity and reasoning. The term “Foundation Model” refers to a
fundamental shift in the AI paradigm, highlighting their significance in the AI landscape [6].

In this context, extensive amounts of data are used for unsupervised learning to train the foundation
model. Once trained, the model is distributed and can be fine-tuned or undergo in-context learning
for downstream tasks according to the user’s requirements. Foundation models can handle various
types of data, allowing them to process any format of input, not limited to a single output type.

Foundation models exhibit the characteristic of emergence. This refers to the model’s ability to
derive knowledge for solving problems without being explicitly programmed beforehand. In the
case of AI neural networks, the model can make decisions or infer the next steps autonomously
based solely on the available data. This concept is rooted in the fundamental principle of emergence.
As the volume of data continues to grow, the characteristic of emergence will play an even more
significant role [7].

Furthermore, foundation models possess the characteristic of homogenization. This means that as
the model gradually extracts generalized knowledge, having a consistent dataset becomes pivotal.
With this, a massive foundation model can potentially tackle a wide range of problems. In essence,
the homogenization feature empowers the model to derive comprehensive insights and knowledge
from a unified dataset, enabling it to address various challenges [8].

Figure 2: The story of AI has been one of increasing emergence and homogenization
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2.2.2 LLM (Large Language Model)

Generative AI models, particularly LLM, are widely used in chatbot services like ChatGPT. These
models are trained on language data, such as text, and provide results through generating text-
based responses. LLMs, such as OpenAI’s GPT series and Google’s BERT, have gained significant
attention in the field of artificial intelligence. They are based on machine learning and deep learning
technologies, requiring large-scale datasets and substantial computational power for training [9].

LLMs serve as foundational models for Natural Language Processing (NLP) and Natural Language
Generation (NLG) tasks. To cope with the complexity and interconnectedness of language, these
models undergo pre-training on vast amounts of data, followed by fine-tuning and techniques like
in-context learning, zero/one/few-shot learning [10].

Notably, the quality of pre-training data strongly influences the performance of LLMs. Compared
to smaller language models, LLMs have a higher demand for high-quality data for pre-training. The
model’s capacity relies heavily on the collection of training corpora and the methods used for pre-
training. The following details describe the stages of training for LLMs, including data sources and
preprocessing methods.

LLM Training Stages

1) Data gathering and Preprocessing: The first step involves gathering the training dataset, which
serves as the learning resource for the LLM. Data can be sourced from various places, includ-
ing books, websites, articles, publicly available datasets, and more. To develop a capable
LLM, pre-trained text datasets are used. The sources of pre-trained corpora can be broadly
classified into two types: general data and domain-specific data. General data, like web
pages, books, and conversational texts, are large and diverse. Due to their accessible nature,
they are commonly utilized in most LLMs to enhance language modeling and generalization
capabilities.
Furthermore, there are studies that extend LLM training with more specialized datasets, such
as multilingual data, scientific data, and code, to equip LLMs with specific task-solving abili-
ties. FIGURE 3 depicts the typical process of data collection and pre-training for LLMs [11].

Figure 3: LLM Pre-Training Process

Model Selection and Configuration: Large models such as Google’s BERT and OpenAI’s
GPT-3.5 commonly employ the Transformer deep learning architecture, which has been a
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prevailing choice for sophisticated NLP applications in recent years. As part of configuring
the Transformer neural network, elements like the number of layers in the Transformer block,
the number of attention heads, the choice of loss function, and hyperparameters must be
specified. Model configuration can vary based on the desired use case and training data, and
it significantly influences the training time of the model.

2) Model Training: The model undergoes supervised learning using preprocessed text data. Dur-
ing training, a sequence of words is presented to the model, and it learns to predict the next
word in the sequence. The model adjusts its weights based on the difference between its
predictions and the actual next word. This process is repeated millions of times until the
model achieves a satisfactory level of performance. Due to the size of the model and the
data, training a model requires significant computational power, often utilizing techniques like
model parallelism to reduce training time. Training a large-scale language model from scratch
demands substantial investment. Therefore, a more economical approach is fine-tuning an
existing language model for specific use cases.

3) Evaluation and Fine-tuning: After training, the model’s performance is evaluated using a
separate test dataset that wasn’t used during training. Based on the evaluation results, fine-
tuning might be necessary to improve the model’s performance. This could involve adjusting
hyperparameters, changing the architecture, or further training on additional data. The goal is
to enhance the model’s capabilities based on the insights gained from evaluation.

2.2.3 Prompt Engineering

In ChatGPT, the quality of the generated responses greatly depends on how detailed and specific the
prompts (questions or requests) are conveyed. This is why the exploration of prompt engineering,
which involves finding combinations of prompt input values fromLLM, plays a crucial role. Prompt
engineering is important because it seeks to improve the quality of answers without the need for ex-
tensive parameter updates through large-scale data or fine-tuning processes. One effective approach
to enhance answer quality is by providing example answer instances when prompting questions.
This method guides the model to generate responses that are similar to the provided examples,
thereby improving response quality. This is achieved without necessarily relying on massive data
or fine-tuning procedures for parameter updates [3]. The approach of using examples within prompt
instructions can be categorized into three types: Zero-Shot, where no examples are included; One-
shot, where a single example is provided; and Few-shot Learning, where two or more examples are
included. Providing a variety of examples in the prompt tends to yield better responses above a
certain threshold [3, 11].

Furthermore, based on structure, functionality, and complexity, they can be classified into seven
types as depicted in FIGURE 4. [12], Prefix prompts represents the simplest form of prompt wherein
words or phrases indicating response type, format, and tone for control and relevance are added at
the beginning. Cloze prompts is based on the idea of filling in blanks by generating masked tokens
within the input text and requesting the language model to predict the missing words or phrases.
On the other hand, an Anticipatory Prompt guides the conversation by anticipating the subsequent
questions or commands based on experience or knowledge.
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Figure 4: Types of Prompts: [X]: context, [Y]: Abbreviation, [Z]: Expanded Form

As the size of LLMmodels increases, they exhibit emergent phenomena that even developers cannot
predict. One approach to finding accurate answers is by utilizing the Chain of Thought (CoT)
prompts, where prompts guide LLMs to construct answers step by step, connecting information to
generate accurate responses. This method of prompt engineering helps obtain precise answers for
complex questions. Heuristic prompts is a rule-based prompt that involves breaking down complex
queries into smaller parts to obtain comprehensive answers. On the other hand, the Ensemble
prompts combines multiple prompts using a majority vote on aggregated outputs, aiming for a more
comprehensive response. Various types of prompts are employed to generate multiple outputs for
the same input, and the most common output is chosen as the final answer through this prompt
approach.

As such, Prompt engineering is a technique used with LLM to generate creative content. LLMs are
AIs trained on extensive text and code datasets, enabling them to generate text, translate languages,
create diverse types of creative content, and respond to questions. Additionally, prompt engineering
emphasizes enhancing the quality of prompts provided to LLMs to boost their creative text gener-
ation capabilities. Prompts serve as instructions and guidelines for LLMs, varying from simple to
complex, and can specify the format, content, and style of the text LLMs are expected to produce.

Prompt engineering focuses on improving the following aspects of prompts:
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• Clarity: Prompts should be easy to understand and follow, using specific language and exam-
ples.

• Relevance: Prompts should be relevant to the text LLMs are expected to generate.

• Creativity: Prompts should provide diverse expressions and ideas to encourage LLMs to
produce creative and original text.

By doing so, the creative text generation capability of LLMs can be significantly enhanced. These
learning approaches showcase the diverse ways in which artificial intelligence models acquire new
information andmake predictions. Utilizing prompt engineering effectively can enhance themodel’s
learning and inference abilities.

2.2.4 Understanding the Generative AI Technology Stack

In order to comprehend the composition of the generative AI technology stack, we turn our attention
to FIGURE 5. This illustration provides insight into the current state of the technological stack,
with a focus on generative AI. Notably, this framework facilitates the analysis of generative AI
technologies, categorizing them into distinct sections, each accompanied by a selection of well-
established vendor examples [13]. Within the emerging landscape of generative AI, enterprises are
engaged in developing proprietary models, leveraging third-party generative AI through APIs, or
constructing applications by adapting finely-tuned open-source models to meet their specific needs.

• Application Layer: In the Applications layer, users either run their ownmodel pipelines (“E2E
Apps”) or utilize third-party APIs for generative AI models (e.g., Jasper and Copilot).

• Model Layer: This layer drives AI products provided through proprietary APIs or open-source
checkpoints (requiring hosting solutions). The Foundation Models encompass both private-
source proprietary models (e.g., GPT-4) and open-source models (e.g., Stable Diffusion),
along with model hubs that share and host Foundation Models.

• Infrastructure Layer: This tier encompasses the platforms and hardware (e.g., cloud platforms
and hardware) responsible for executing training and inference workloads for generative AI
models.

• Orchestration and Monitoring Layer: Within the generative AI stack, similar to this one, this
layer incorporates model monitoring capabilities to deploy, understand, and safeguard the
distribution of these models.

As revealed in FIGURE 5, the generative AI technology stack illustrates the intricate interplay
among these layers, offering insights into the dynamic landscape of generative AI technology and
its evolving applications [14].

2.3 Overview of the RAG Model

The advancement of conversational AI models utilizing LLM, such as ChatGPT, has garnered sig-
nificant interest across various domains. Applications developed using LLMs are gaining attention,
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Figure 5: Generative AI Tech. Stack

including scenarios like financial services where providing up-to-date information through customer
chatbots is crucial. However, there are challenges related to limited answer capabilities due to
insufficient information within LLMs. The phenomenon known as the “hallucination problem”
arises when models generate stories and information that seem plausible but are actually fabricated,
as the model creatively fills in gaps in its knowledge. This can lead to situations where seemingly
plausible but incorrect information is generated.

To address these challenges, strategies have been proposed, such as fine-tuning LLMs with new
data or directly injecting information into the prompt context. However, the former approach
incurs significant costs, while the latter approach of embedding all information into prompts is not
practical. As an alternative, the RAG (Retrieval-Augmented Generation) model has emerged. This
model stores information in databases and retrieves the necessary information to provide it to the
LLM when needed. By providing LLMs with relevant questions and associated reference materials
beforehand, the model utilizes these references to generate more accurate and reliable answers.
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In this section, we delve into the details of the RAGmodel, which is employed as an implementation
method in this paper. The RAG model stores information, leverages databases, and enhances
the generation process through the inclusion of relevant reference materials, ultimately leading to
improved answer quality and reliability.

2.3.1 Architecture of the RAG Model

The RAG (Retrieval-Augmented Generation) model is designed for text generation tasks, per-
forming a process that involves retrieving information from given source data and utilizing that
information to generate desired text. FIGURE 6 illustrates the data processing pipeline for RAG
usage, involving breaking down the original data into smaller chunks and converting text data into
numerical vectors through embedding, which are then stored in a vector repository [15].

Figure 6: RAG Model Diagram (Microsoft, 2023)

• Source Data Collection and Preparation: Relevant source data is required for the model’s
training and utilization. This data can include documents, web pages, news articles, etc. It
forms the foundation for the model to search for and generate content.

• Chunking of Searchable Units: Source data is divided into smaller units known as chunks.
Chunks are typically small text fragments, such as sentences or paragraphs, making it easier
to search for and utilize information at this granular level.

• Embedding: Generated chunks undergo embedding, a process of converting text into mean-
ingful vector representations. Pre-trained language models are often used to transform text
into dense vectors, capturing the meaning and related information in vector form.

• Construction of Vector Database: A vector database is built based on the embedded chunks.
This database represents the positions of each chunk within the vector space, enabling efficient
retrieval and similarity calculations.

• Search and Information Integration: To retrieve information relevant to the context of the text
to be generated, appropriate chunks are searched within the vector database. The retrieved
chunks are decoded back into original text data to extract information, which is then utilized
during the generation process.
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• Text Generation: Using the retrieved information as a basis, text is generated. Users can
specify the type, length, and linguistic style of the text to be generated. The RAG model
is designed to seamlessly integrate information retrieval and generation processes, aiming to
produce more accurate and meaningful text outputs.

2.3.2 Using Embedding in LLM

In the context of LLM (Language Model), embedding, or embedding vectors, refer to the represen-
tation of text as fixed-size arrays of floating-point numbers. These arrays form real-valued vector
shapes. When a specific word, sentence, or document is input into an embedding generation model,
it outputs a vector composed of floating-point values. Although these vectors might be hard for
humans to directly comprehend, calculating the distances between embeddings of different words
or documents can reveal semantic relationships.

In recent times, it has become common to train language models like LLMs with neural network
structures using large-scale document collections to create “Learned Embeddings.” During this
training process, the model takes in various words as input and learns semantic relationships by
making embedding vectors of contextually similar words closer together and those of dissimilar
words farther apart. This approach allows the model to capture meaningful relationships within the
context.

Embedding can utilize the following two methods to identify semantic relationships between dif-
ferent words or documents.

Semantic Search: Used when multiple documents exist and one of them must be searched based
on meaning or compared to each other.

Semantic Search is a function that finds and presents documents that are semantically related to
the text query presented by the user. The Semantic Search process using embedding is shown in
FIGURE 7 [4].

1) Calculate embeddings for each document in a collection and store them in a repository (e.g.,
local drive or vector database).

2) Compute the embedding for the query text.

3) Calculate the cosine similarity between the query embedding and each document embedding,
sorting the documents based on similarity.

4) Retrieve and return the text of the top k documents from the sorted results.

Question Answering: Question Answering is a method to provide additional information to LLM
for generating results. While LLM possesses general knowledge of publicly available internet
information, it lacks information about internal corporate or personal private data. Therefore, to
obtain answers to questions related to private information, the text containing that information
needs to be included in the prompt to LLM. However, current LLM services have limitations on the
length of input text, which requires breaking down long texts into smaller chunks. In cases where
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Figure 7: ‘Semantic Search’ using Embedding

longer texts need to be processed, relevant chunks are selected and included along with the question
in the prompt. This approach is a crucial consideration when implementing Question Answering
functionality.

The Question Answering process using general embedding, which allows LLM to answer a given
question based on information additionally injected, is shown in FIGURE 8 [4].

Figure 8: ‘Question Answering’ using Embedding

1) Divide the entire information-rich text into smaller chunks and calculate embeddings for each
chunk.

2) Compute the embedding for the query.
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3) Calculate cosine similarity between query embedding and each chunk embedding, sorting the
chunks based on similarity.

4) Retrieve the text of the top k chunks, which is then added to the prompt - k is determined by
the maximum text length allowed by the LLM service.

5) Input the completed prompt into the LLM and return the generated answer.

APIs like OpenAI’s Embedding API are commonly used to extract effective embeddings from text.
These approaches enhance the capability of LLMs to understand and respond to queries that involve
searching for information or generating answers based on specific context.

2.3.3 Vector Database

A vector database is a novel type of database developed to address the problem of long-term mem-
ory deficiency in LLMs. This database is specialized in efficiently storing and managing high-
dimensional real-valued vector indices. Unlike traditional databases, a vector database represents
queries in the form of real-valued vectors (embeddings) and supports a method to extract data with
similar vectors. Therefore, it is optimized for storing and utilizing vectors obtained as results from
AI models. The general pipeline for a vector database is illustrated in FIGURE 9 [15].

Figure 9: Pipeline for a Vector Database

1) Indexing: A vector database employs algorithms such as Product Quantization (PQ), Locality-
Sensitive Hashing (LSH), or Hierarchical Navigable Small World (HNSW) to index vectors.
This step maps vectors to data structures that enable faster searches.

2) Querying: In the vector database, indexed query vectors are compared to indexed vectors in
the dataset to find the nearest neighbors. The similarity metric used in the indexing is applied
during this process.

3) Post Processing: Depending on the scenario, the vector database may retrieve the nearest
final approximate data from the dataset and perform post-processing to return the ultimate
result. This step might involve re-ranking the nearest neighbors using different similarity
measurements.

As Claypot AI founder Chip Huyen mentioned, “If 2021 was the year of graph databases, then
2023 is the year of vector databases” highlighting the increasing interest in this field [16]. While
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standalone vector indexes like Chroma and FAISS (Facebook AI Similarity Search) enhance vector
embedding search, they lack robustmanagement functionalities. On the other hand, vector databases
address limitations of standalone vector indexes, such as scalability issues, cumbersome integration
processes, absence of real-time updates, and embedded security measures.

2.3.4 Orchestration Framework for LLM service implementation

Two prominent orchestration frameworks for implementing LLM services are LangChain and Se-
mantic Kernel. Both of these frameworks share the goal of efficiently utilizing the capabilities of
LLM and providing users with a convenient user experience.

LangChain Framework

LangChain is an open-source framework that emerged in October 2022 and has garnered close to
44,000 stars on GitHub as of June 2023. This project has experienced explosive growth within
its own community and is actively building an ecosystem on top of the framework. LangChain
utilizes LLM to perform various natural language processing tasks. It supports a range of LLM
models from sources like OpenAI and Hugging Face. Users have the flexibility to choose and
utilize models that best suit their specific requirements within the LangChain framework. At the
core of LangChain is the concept of chaining LLM prompts and external source executions (such
as calculators, Google searches, sending Slack messages, or running source code) to perform a
sequence of actions. Using LLM, LangChain can perform various tasks including translation,
summarization, question answering, text generation, and natural language inference by chaining
together different steps.

- Translation Service: LangChain allows the deployment and management of translation mod-
els, providing support for a variety of languages.

- Summarization Service: Summarizationmodels can be deployed andmanagedwithin LangChain,
offering summarization capabilities across different topics.

- Question Answering Service: LangChain enables the deployment and management of ques-
tion answering models, catering to various domains.

- Text Generation Service: The framework facilitates the deployment and management of text
generation models, supporting the creation of text in various formats.

- Natural Language Inference Service: LangChain can deploy and manage natural language
inference models, facilitating diverse natural language inference tasks.

Semantic Kernel Framework

Semantic Kernel is an open-source SDK developed byMicrosoft, designed to facilitate the seamless
integration of LLM into existing applications. It aims to provide developers with a user-friendly way
to incorporate LLM capabilities into their applications. The SDK supports a variety of programming
languages including C#, Python, Java, among others. It also enables integrationwith a range of LLM
services such as Azure OpenAI, OpenAI, and Hugging Face.
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Semantic Kernel leverages AI technologies such as natural language processing, machine learning,
and planning to imbue applications with the following capabilities:

- Natural Language Interface: Enabling users to interact with applications using natural lan-
guage.

- Text Generation: Creating diverse forms of creative textual content, including text, code,
scripts, musical compositions, emails, and letters.

- Question Answering: Furnishing users with informative and comprehensive answers to their
queries.

- Task Automation: Facilitating the automatic execution of tasks within applications as directed
by users.

Indeed, both LangChain and Semantic Kernel stand as robust frameworks for implementing LLM
services. Users have the flexibility to choose the most fitting framework based on their specific
requirements. Whether opting for LangChain’s chaining capabilities, which intertwine LLMprompt
execution and external source invocation, or embracing Semantic Kernel’s seamless integration
of AI technologies for natural language interfaces, text generation, question answering, and task
automation, these frameworks offer a versatile choice for users seeking to implement LLM-based
services.

2.3.5 AI Chatbot

Through AI chatbots like ChatGPT, generative AI services can be harnessed, allowing users to
input prompts for desired questions and receive corresponding responses. Today, AI-driven chatbot
systems encompass not only simple question-answer scenarios like FAQs, but have advanced to
the level of analyzing human emotions and intentions to provide tailored responses [17]. Recent
advancements in Natural Language Understanding (NLU) technology, coupled with the utiliza-
tion of context models and Transformer language models, have enabled the handling of intricate
conversations. Furthermore, the maturation of Speech-to-Text (STT) and Text-to-Speech (TTS)
technologies has popularized voice-based services [17].

Chatbots are AI-based interactive software that facilitate conversations between individuals and
service bots, offering appropriate answers and relevant information through text or voice interactions
[18]. Sánchez-Díaz, Ayala-Bastidas, Fonseca-Ortiz & Garrido define chatbots as intelligent agents
that enable users to engage in conversations typically through text or voice [19, 20]. Chatbots
leverage Natural Language Processing (NLP) technology to comprehend human queries and deliver
responses in a conversational and natural manner [21].

NLP consists of two primary components: Natural Language Understanding (NLU), which reads
and comprehends natural language questions, and Natural Language Generation (NLG), which
generates responses in natural language [21]. NLG employs Machine Learning (ML) to learn
from extensive corpora and generate answers. In 2020, OpenAI introduced the GPT-3 (Generative
Pre-trained Transformer-3) NLP model, which was trained on a dataset of 300 billion tokens with
175 billion parameters. In 2021, Microsoft and NVIDIA unveiled the MT-NLG (Megatron-Turing
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Natural Language Generation) model, boasting a massive 530 billion parameters in a LLM. This
advancement enabled automated conversation generation and translation capabilities [21].

Furthermore, in November 2022, OpenAI introduced the GPT-3.5 model, which was developed
through a learning process involving reinforcement learning from human feedback (RLHF). This
model, an AI chatbot named ChatGPT, was trained to generate human-like natural language in inter-
active conversations. Within just two months of its release, ChatGPT garnered immense attention,
surpassing over 100 million monthly users [21]. During the initial stages of chatbot adoption, due
to concerns over reliability, chatbots were primarily employed for simple tasks such as answering
basic queries in customer support functions. However, more recently, chatbots are being directly
integrated into business processes, often in conjunction with other solutions like Robotic Process
Automation (RPA) and Optical Character Recognition (OCR), to enhance efficiency [20]. Addition-
ally, chatbots are being leveraged in collaboration with automation platforms to serve as channels
for status updates, task notifications, and result dissemination [21]. In particular, in open-domain
chatbot dialogues like those with ChatGPT, the interaction interface occurs through prompts to
ChatGPT and LLM models. When applying parameters for interfacing between applications, it’s
crucial to be cautious about the information involved, especially with regard to personal data. While
laws exist to prevent developers from collecting and using user data without consent, in practice,
users often find it difficult to discern how much data developers are collecting and where it’s being
stored [22].

2.4 Summary of Generative AI Literature Review

The existing literature on generative AI and related technologies has provided insights into various
concepts and techniques. However, there is a lack of comprehensive guidance on how to effec-
tively combine and manage these diverse technologies to apply them as LLM services in real-world
business scenarios. Many resources focus on introducing generative AI and LLM or emphasize
security concerns related to utilizing generative AI with publicly available information. Moreover,
there is limited research that systematically addresses the utilization of internal business information
to resolve security issues within a framework that effectively orchestrates various generative AI
technologies.

To overcome these limitations, this study aims to address the shortcomings in existing generative
AI literature and its practical application in business contexts. By considering the gaps and defi-
ciencies, a framework for implementing LLM services will be employed to systematically present
a method for integrating and applying generative AI technologies. The ultimate goal is to provide
a comprehensive approach that effectively utilizes generative AI techniques within a framework,
addressing both security concerns and practical implementation for real-world business scenarios.

3. METHODS

In this chapter, we outline a comprehensive framework for implementing generative AI services
by effectively combining and orchestrating various technologies within the previously discussed
generative AI technology stack. We will describe how each component of the framework is applied
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to achieve efficient and harmonious integration of the diverse generative AI technologies. The
following sections detail the implementation process for each technology component within the
framework:

3.1 Framework for Implementing Generative AI Services using RAG Model

Based on previous research, we have designed a comprehensive framework for implementing gen-
erative AI services using the Retrieval-Augmented Generation (RAG) model. The framework en-
compasses a series of procedures and core functionalities, as depicted in FIGURE 10. The diagram
conceptually illustrates the process of utilizing LLMs to retrieve information from documents and
outlines the key steps involved. The major components of the framework are detailed below.

Figure 10: Framework for Implementing Generative AI Services using RAG Model

3.2 RAG model and LangChain integration implementation process

Within the framework for implementing generative AI services, various solutions exist for each
step of the process. Considering the awareness and cost aspects of these solutions, this study has
proposed a framework that primarily relies on open-source products in alignment with the findings
fromChapter 2. In this context, the framework takes advantage of bothOpenAI’s proprietarymodels
and open-source models to trigger the generative AI capabilities of LLMs. The composition of the
framework is illustrated in FIGURE 10.

For the overall orchestration framework, LangChain is adopted, while specific tasks like chunking
and embedding are accomplished using a combination of OpenAI models and GPT4All. The vector
repository is facilitated through Chroma DB, chosen for its ease of implementation. Regarding the
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LLM component, OpenAI’s GPT-3.5-turbo model and GPT4All are integrated, allowing developers
to harness diverse choices to achieve optimal development outcomes.

3.2.1 RAG based implementation procedure

The RAG model, as discussed in the architecture of the RAG model in Chapter 2, is a search-
augmented generative model used to retrieve and generate responses based on information relevant
to given questions or topics. Each step follows the procedure outlined in FIGURE 10.

1) Source Data Collection and Extraction: During the data collection phase, both structured and
unstructured data are gathered. Structured data is stored in standardized formats such as CSV,
JSON, or XML, while unstructured data is stored in formats like PDF, TXT, HTML, images,
and videos. Preparatory materials related to the task, such as regulations, user manuals, and
terms and conditions, are loaded into LangChain using the LangChain module.

2) Chunk Generation: Source data is processed to split it into smaller units known as chunks.
These chunks typically consist of sentences or paragraphs, serving as smaller text fragments
that can be used to search and retrieve information from LLM. LangChain’s module is utilized
to split data into chunks that are suitable for retrieval.

3) Embedding: The generated chunk-level text data is transformed into numerical vector repre-
sentations. This step involves mapping words or sentences to vectors, and libraries provided
by OpenAI or GPT4All can be employed for this purpose.

4) Building the Vector Database: Based on the embedded chunks, the vector database is con-
structed. This database represents the positions of each chunk in the vector space, facilitat-
ing efficient search and similarity calculations. Typically, content from each document is
included, embeddings and documents are stored in the vector repository, and documents are
indexed using embeddings. Tools like Chroma or FAISS for vector indexing can be used.

5) Integration of Prompt and Search Results: This step involves searching for information based
on the prompted question and integrating relevant information. To search for contextually
relevant information based on the prompt, appropriate chunks are retrieved from the vector
database. These retrieved chunks are then sent to LLM to aid in the response generation
process. Various search engines available within LangChain for vector store similarity search
are utilized.

6) Answer Generation: Using the retrieved information as a basis, the response text is generated.
At this stage, the type, length, and linguistic style of the generated text can be specified. LLM,
such as OpenAI’s GPT-3.5-turbo model or GPT4All, uses the similarity search module in
LangChain to retrieve relevant documents and generate responses.

4. EXPERIMENT

In this chapter, the generative AI service implementation framework introduced in Chapter 3 is
utilized to implement various scenarios based on enterprise internal data using the integrated RAG
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model and LangChain according to the implementation procedure. This provides a series of prac-
tical examples for each implementation step. Through these examples, we explore the methods of
implementation and consider the factors to be taken into account during the construction process.

4.1 Development Environment

The solutions and development framework applied in this case follow the basic approach presented
in FIGURE 10. The aim is to provide an implementation method using LangChain and the OpenAI
API to transform documents. The process includes dividing the documents into chunks, converting
them into embeddings, and storing them in ChromaDB. This approach ensures effective access to the
information required to provide context-based answers. The implementation is carried out using the
Python programming language. Python is widely used in AI development due to its diverse libraries
and frameworks that are well-suited for AI development.

The development environments for each implementation component are as follows:

• Orchestration Framework: LangChain

• Data Extraction and Chunking: LangChain Module

• Embeddings: OpenAI, GPT4All

• Vector Database: Chroma, FAISS

• LLM: OpenAI GPT-3.5-turbo Model, GPT4ALL

• Python Development Environment: Google Colab

4.2 Implementation Results by Step

4.2.1 Installing Basic Libraries and Setting OpenAI API Key

Initially, install the essential libraries including LangChain, which serves as the overarching orches-
tration framework, and the OpenAI library. For OpenAI, unlike open-source libraries, you need to
obtain an API key and configure it for usage during implementation. It is recommended to manage
the key securely, for instance, by storing it in a .env file in a specific location.

In your development source code, read the content of the file containing the key to authenticate the
API calls. FIGURE 11 demonstrates the installation of the dotenv library for managing environment
variables and successfully reading the .env file containing the key.

4.2.2 Implementation of Source Data Gathering and Data Extraction Step

Source data can exist in various forms, including unstructured data within documents like docx,
xlsx, csv, pptx from the MS Office suite, or other formats like txt, pdf. Additionally, data might be
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Figure 11: Basic library installation and OpenAI API key setting

available in the form of web pages or videos from platforms like YouTube. To extract information
from such diverse and unstructured raw data, loading the data is the first step. TABLE 3 outlines
the implementation code for loading different types of documents, specifically MS Office docu-
ments like ’Leave and Return Management Standards.docx’ as well as unstructured documents like
’Dress Code Standards.pdf’ and ’Payment Insurance Calculation.txt’ which are stored in designated
locations.

Table 3: Source data load type

Data Type Python Code

PDF from LangChain.document_loaders import PyPDFLoader
loader = PyPDFLoader(”/content/Dress Code Standards.pdf ”)

TXT from LangChain.document_loaders import TextLoader
loader = TextLoader(”/content/Payment Insurance Calculation.txt”)

DOC

from LangChain.document_loaders.word_document import UnstructuredWordDocu-
mentLoader
loader = UnstructuredWordDocumentLoader(”/content/Leave and Return Management
Standards.docx”)

Additionally, FIGURE 12. demonstrates the implemented code for loading PDF documents, which
is a common type of unstructured document. The remaining types of documents have also been
implemented for loading similar to TABLE 3.

4.2.3 Implementing the Splitting Chunks Step

The next step involves using the LangChain integration feature again to split the large source doc-
ument into smaller chunk units for embedding and vector storage. FIGURE 13. showcases the
code implementation to split documents into chunks, where each chunk contains a maximum of
500 characters (’chunk_size = 500’).
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Figure 12: Source Data gathering and Data load

Figure 13: Splitting Chunks

4.2.4 Implementation of Embeddings and Vector Database Construction Steps

First, Chroma, the vector database used to store embeddings, is installed. The chunks are then sent
to the OpenAI embedding engine to be transformed into numerical vectors. Each of these vectors,
generated in this manner, is stored in Chroma for future retrieval, as illustrated in FIGURE 14.
Chroma, which is open source, functions as an in-memory store that does not retain content when
sessions are restarted.

Figure 14: Embedding
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4.2.5 Implementation of question (Prompt) and search result integration steps

In this step, we utilize similarity search to retrieve relevant chunks for each query. When a user
submits a query, the first task is to convert it into an embedding to find the most relevant chunks
within the Chroma DB. The code to achieve this using LangChain is presented in FIGURE 15. For
instance, if a user asks, “What is the work dress code for male employees?” the vector database
containing the ’dress code standards.pdf’ document will be queried to find chunks with content
similar to the query. Furthermore, the implementation also suggests similar queries to enhance the
user experience.

Figure 15: Question and search results

4.2.6 Implementation of answer Generation step

In the “Answer Generation” step, after retrieving the four closest chunks from the Chroma DB
based on semantic similarity to the user query, these chunks are provided to the LLM to generate a
response. These chunks serve as context to enable the LLM to produce a coherent and contextually
relevant answer to the user’s question. The implementation ensures that the LLM has the necessary
information to craft an appropriate response.

FIGURE 16 demonstrates the provided answer for the question “What is the work dress code for
male employees?” Additionally, when further questions like “What is the purpose of the dress
code?” and “What dress code should male employees avoid?” are posed, FIGURE 17 illustrates
how the content from the document ’Dress Code Standards.pdf’ is effectively retrieved from the
vector database and used to generate accurate responses. This showcases the successful operation
of the system in generating contextually relevant answers based on the user’s queries.
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Figure 16: Answer generation using LLM

4.2.7 Implementing various other source data processing

In the previous sections, the implementation codes were described primarily for text document files
such as PDFs. Now, let’s move on to processing web-based information and YouTube videos as
sources of data. This will be accomplished using the open-source LLM and another vector database
called FAISS, providing diverse cases for demonstration.

1) Web-Based Data Processing
When dealing with source data from web pages like company websites, product descriptions,
or corporate portals, the open-source LLM GPT4All is an excellent choice. Based on the
LLaMA 7B model, GPT4All offers the advantage of running on CPUs without the need for
GPUs. FIGURE 18 demonstrates the use of GPT4All for embedding and employing LLM to
process source data from web pages and store it in the vector database.

2) Youtube Data Processing
In real business scenarios, it’s common for companies to share promotional materials, edu-
cational content, and other resources on platforms like YouTube. To facilitate the utilization
of such content, the open-source vector database FAISS can be employed. This enables the
retrieval of information from YouTube videos and answering questions based on the content
found within. FIGURE 19 showcases the implementation using FAISS to achieve this func-
tionality.
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Figure 17: Part of the contents of ‘Dress Code Standards.pdf’

4.2.8 Summary of implementation cases and expected effects

The provided implementations using Python, LangChain, OpenAI API, and the open-source Chro-
maDB offer a meaningful demonstration of how to easily integrate generative AI into business
operations using LLM. Additionally, transitioning from a development environment to a production
environment raises several key considerations and areas for improvement.

One crucial consideration is the choice of a vector database. While ChromaDB was used in the
presented cases, there are numerous vector databases available, each with varying features, perfor-
mance, and scalability. It’s essential to carefully evaluate and select a database that suits the specific
use case for optimal performance and efficiency. Furthermore, rigorous testing is vital to ensure that
LLM responses remain within expected bounds and align with business requirements. This might
involve improving the quality of input source data for the generative AI service, fine-tuning model
parameters or system prompts to achieve better response accuracy.
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Figure 18: Web Page Data Processing (LLM - GPT4All)

In conclusion, the generative AI service built in this implementation showcases the potential of
AI-powered support chatbots using internal documents. By referencing this implementation and
the considerations mentioned earlier, the process of selecting technical components and integrating
generative AI into business operations is expected to become smoother. It is also anticipated to
contribute to the development of supporting solutions in this domain.

5. CONCLUSION AND DISCUSSION

In this study, we presented methods and implementation cases for developing generative AI services
using LLM application architecture, aiming to explore avenues for advancing the development and
industrial utilization of generative AI technology.

We examined the theoretical background of LLM and generative AI, enhancing the understanding
of both the concept of generative AI technology and the characteristics of LLM models. We also
discussed ways to overcome the information scarcity challenge of LLM, either through fine-tuning
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Figure 19: Youtube Data Processing (VectorDB - FAISS)

or direct document information utilization, and delved into the specific functioning and key stages
of the RAG model. Furthermore, we explored methods for storing and retrieving information
using vector databases. By utilizing the latest LLM models and vector database technologies, we
showcased various practical implementation cases applying the RAG model in business contexts.
Through these cases, we confirmed that the RAG model operates by retrieving information through
search capabilities and supplementing generated results, thereby providing more accurate and valu-
able information. This study contributes to increasing the understanding of stakeholders who intend
to utilize generative AI technology within their domains, especially where research material for
implementing LLM-based service components is limited.

Although this study demonstrated the implementation of generative AI services using LLM for
business internal information, several limitations persist. Firstly, due to the size and complexity of
LLM models, model training and implementation could consume significant time and resources.
Secondly, the consistency and appropriateness of RAG model-generated results may vary, and the
challenge of information scarcity might still arise. Thirdly, while open-source-based implementa-
tions were provided in most cases, certain functional aspects might be lacking.

Future research should address these limitations and seek more efficient utilization of LLM and
RAG models. Firstly, research efforts should focus on reducing the size and complexity of LLM
models, exploring methods to achieve effective results with smaller and simpler models, such as
sLLM. Secondly, new approaches that enhance the search capabilities of the RAG model and
address information scarcity challenges could be developed to apply more accurate and efficient
information retrieval techniques, thereby enhancing model performance. Thirdly, finding ways to
improve the consistency and appropriateness of RAG model-generated results is essential. Ex-
ploring and applying various techniques to enhance the quality of generated content is important.
Additionally, consideration should be given to using high-performance LLM service component
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solutions that are commercially available for different business scenarios to enhance industrial
viability.

Lastly, it is vital to implement LLMandRAGmodels for generative AI services in various languages
and cultural contexts. This endeavor will promote the advancement and industrial utilization of
generative AI technology in diverse regions. The combined efforts of these initiatives are expected
to expand the scope of generative AI technology utilization, enabling practical applications in the
real world.
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