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Abstract
This paper investigates Gaussian copula mixture models (GCMM), which are an extension of
Gaussian mixture models (GMM) that incorporate copula concepts. The paper presents the
mathematical definition of GCMM and explores the properties of its likelihood function.
Additionally, the paper proposes extended Expectation Maximum algorithms to estimate
parameters for the mixture of copulas; the marginal distributions corresponding to each com-
ponent are estimated separately using non-parametric statistical methods. In the experiment,
GCMMdemonstrates improved goodness-of-fitting compared to GMMwhen using the same
number of clusters. Furthermore, GCMM has the ability to leverage un-synchronized data
across dimensions for more comprehensive data analysis.

Keywords: Gaussian Copula Mixture Models (GCMM), Gaussian mixture, Copula, Model
clustering, Gaussian processes, Machine learning, Kernels.

1. INTRODUCTION

Gaussian Mixture models have been employed in various areas of research [1, 2]. In the present
study, we extend Gaussian Mixture Models into Gaussian Copula Mixture Models to address the
following two concerns:

• Heavy-tailed data require increasing numbers of clusters to fit with GMMs. To control number
of clusters, heavy tails onmarginal distributions should not lead to significantly greater clusters
given the same underlying dependence structure.
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• GMMs are usually applied to a synchronized data matrix of dimension 𝑀 and number of
observations 𝑁 . In many problems, there are numerous unsynchronized data each dimension,
the number of which is denoted as 𝑛𝑚 for the 𝑚-th dimension. Such data should be utilized to
update the joint distribution shared by the different dimensions.

To address the concerns, we introduced copulas intomixturemodels and newExpectationMaximum
type algorithms are developed to estimate their parameters.

2. RELATED STUDIES

Gaussian mixture models have been used widely in various applications and the Expectation Max-
imum algorithm has been utilized for estimating their parameters. The convergence properties
of such Expectation Maximum algorithms have been discussed in Lei 1996 [3]. However, each
component of a GMM is a multivariate gaussian distribution that cannot effectively capture heavy
tails and the number of components become sensitive w.r.t heavy tails. The introduction of more
flexible components may help to further reduce number of components when working with heavy-
tailed data.

On the other hand, copulas have been used in research for model dependence. The definition of a
copula in the two dimensional case is given as below:

Let 𝑃 be a conditional bivariate distribution function with continuous margins 𝐹𝑋 and 𝐹𝑌 , and let
F be some conditioning set. There then exists a unique conditional copula 𝐶 : [0, 1] × [0, 1] such
that [4]:

𝑃(𝑥, 𝑦 |𝐹) = 𝐶 (𝐹𝑋 (𝑥 |F ), 𝐹𝑌 (𝑦 |F ) |F ),∀𝑥, 𝑦 ∈ 𝑅 (1)

The definitions above can easily be generalized to higher dimensions. The advantages of the copula
method include the following:

• Heavy-tailed joint distributions can be modeled;

• Marginal distributions and their dependence structure can be studied separately;

• Copulas can be calibrated to data sets that are sparse and unevenly distributed.

Upper tail dependence can be studied using copulas [5], and copulas can be estimated using a
two-step maximum likelihood method the properties of which are discussed in White 1994 [6].
In the two-dimensional case, Archimedean copulas such as BB1 are more flexible than Gaussian in
capturing heavy tails while the estimation of higher dimensional Archimedean copulas may not be
as fully studied as in the two-dimensional case [7]. Factor models have been introduced to control
model complexity as well [8]. On the other side, people are increasingly recognizing the limitations
of copulas as a parametric approach to modeling dependency, primarily due to the subjective nature
of assumptions made about copula functions. These assumptions can be quite restrictive when
attempting to capture the intricacies of complex dependencies present in empirical data.

1445



https://www.oajaiml.com/ | September 2023 Ke Wan and Alain Kornhauser

Within this context, a mixture of Gaussian copulas presents an effective alternative method for
improvingmodel performance if one wants to study complex dependence structures based on simple
copulas. Gaussian Copula Mixture Models are developed as the extension of Gaussian Mixture
Models [2], and [1], which aim to address the following two limitations of the GMM:

• Heavy-tailed data require increasing numbers of clusters to fit a GMM. To capture the control
number of clusters, heavy tails onmarginal distributionsmay lead to greater number of clusters
in GMMs. However, if the heavy-tailed data appear independently on each dimension, we
should not use increasing number of clusters to describe them; in another word, multidimen-
sional cluster should be introduced in copula space instead of the original data space and heavy
tailed marginal distributions should be modeled separately. These intuition leads to GCMMs,
in which marginal distributions can be updated using non-parametric methods, and mixture
models are used to model the dependent structure. Such a model potentially leads to fewer
number of clusters.

• GMMs are usually applied to a synchronized panel data matrix of dimension 𝑀 and number
of observations 𝑁 . In many problems, there are numerous unsynchronized data on each
dimension, the number of which is denoted as 𝑛𝑚 for the 𝑚-th dimension. Such data should
be utilized to update the joint distribution shared by the different dimensions. For a concrete
example, if we have 500 observations on variable A and 400 observations on variable B,
with 300 by 2 observations which are synchronized data between A and B, GMM will utilize
the 300 by 2 observations to update the mixture model while GCMM can utilize 300 by 2
observations points to update the mixture copula structure. But GCMMwill further utilize the
unsynchronized 200 observations for A and 100 observations for B to update their marginal
distributions respectively, which further contributes to the estimation of the copula mixture
during iteration.

Ke [9], proposed implicit Gaussian mixture models in 2010 and summarized its theoretical proper-
ties in the PHD dissertation as in 2014 [10]. Gaussian copula mixture models are extension to GMM
and expectation maximum method was used to generate estimates for the joint distribution of travel
time on nearby highways. This paper extends the PHD dissertation and discussed the theoretical
properties of the Gaussian copula mixture models and proposed ways to employed usage of un-
synchronized data in the EM algorithm. Such theoretical study provided foundations for all relevant
applications on different data set.

Independently there is a similar term called GaussianMixture CopulaModels which was introduced
by Tewari 2011 [11], where EM method and gradient descent method was proposed to estimate the
distributions. However, the theoretical properties of the log likelihood is not fully explored and how
marginal data can be explored in the estimation process can be further studied. Rajan 2016 [12],
used Gaussian mixture copulas, to model complex dependencies beyond those captured by meta–
Gaussian distributions, for clustering. Bilgrawu 2016 [13], presented and discussed an improved
implementation in R of both classes of GMCMs along with various alternative optimization routines
to the EM algorithm. Kasa 2020 [14], real high-dimensional gene expression and clinical data sets
showed that HD-GMCM outperforms state-of-the-art model-based clustering methods, by virtue of
modeling non-Gaussian data and being robust to outliers through the use of Gaussian mixture cop-
ula. Sheikholeslami 2021 [15], uses Gaussian mixture copulas to approximate the joint probability
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density function of a given set of input-output pairs for estimating the variance-based sensitivity
indices.

On Bayesian stats side, Feldman 2022 [16], developed a novel Bayesian mixture copula for joint
and non-parametric modeling of multivariate count, continuous, ordinal, and unordered categorical
variables. In Zou 2022 [17], a high-dimensional Vine-Gaussian mixture Copula model is combined
with Bayesian CNN-BiLSTM model to evaluate uncertainties of model output.

3. MATHEMATICAL DEFINITIONS

A Gaussian copula mixture model (GCMM) consists of a weighted sum of a finite number of
joint distributions, each of which contains a Gaussian copula. It is a generalization of the usual
a Gaussian mixture model (GMM). When the marginal distributions are restricted to be Gaussian,
the model reduces to a GMM. To begin, the multivariate Gaussian copula is defined by the following
probability function:

𝐹 (𝑢 |𝑃) =
∫ Ψ−1 (𝑢1 )

−∞
...

∫ Ψ−1 (𝑢𝑑 )

−∞

1
(2𝜋)𝑑/2 |𝑃 |1/2

𝑒𝑥𝑝

(
−1

2
𝑣𝑇𝑃−1𝑣

)
𝑑𝑣 (2)

whose density is given by

𝑓 (𝑢 |𝑃) = 1
(2𝜋)𝑑/2 |𝑃 |1/2

𝑒𝑥𝑝

(
−1

2
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) 𝐷∏
𝑑=1

1
1√
2𝜋

𝑒𝑥𝑝
(
−1

2 (Ψ−1(𝑢𝑑))2) (3)

where

• Ψ is the one dimensional cumulative distribution function for a standard normal distribution
with density 𝜓;

• 𝑃 is the copula parameter matrix;

• 𝑑 is the number of dimension.

Then, with the Gaussianlization of original data on each dimension, a GCMM for the joint distribu-
tion of a random vector 𝑋 can be defined as follows:

𝐹 (𝑋 |𝜋) =
𝐾∑
𝑘=1

𝜋𝑘

∫ 𝑌𝑘1

−∞
...

∫ 𝑌𝑘𝑑
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1
(2𝜋)𝑑/2 |𝑃𝑘 |1/2

𝑒𝑥𝑝

(
−1

2
𝑌𝑇𝑃𝑘𝑌

)
𝑑𝑌 (4)

where

• 𝑥 = [𝑥1 . . . 𝑥𝑑] is the marginal observation.

• 𝑌𝑘 = [𝑌1𝑑 . . . 𝑌𝑘𝑑] is the vector of the transferred data.

• 𝑌𝑘𝑑 = Ψ−1(𝐹𝑘𝑑 (𝑥𝑑)) is the d-th dimension of the transferred data.
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• 𝑍𝑘𝑑 = 𝑓𝑘𝑑 (𝑥𝑑) = 𝜕𝐹𝑘𝑑
𝜕𝑥 (𝑥𝑑) is the density of the marginal distribution.

• 𝜋𝑘 is the weight to the 𝑘-th copula.

Its density is given by

𝑓 (𝑋 |𝜋) =
𝐾∑
𝑘=1

𝜋𝑘
1

(2𝜋)𝑑/2 |𝑃𝑘 |1/2
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2 (𝑌𝑘𝑑)2) (5)

The density above is defined conditioned on the cumulative probability values and Gaussianized
random variables which are both determined by the marginal distributions. The marginal distribu-
tion on each dimension for each component can be estimated via nonparametric methods such as
kernel smoothing [18].

4. BASIC PROPERTIES OF GCMM

A GCMM is defined based on the separation of the mixture of copulas and marginal distribu-
tions, which may potentially lead to different behavior from GMM. To understand the properties of
GCMM, its likelihood function is studied so that appropriate estimation algorithms can be designed.
The major properties of GCMM are discussed below:

• A GCMM has a bounded likelihood function value on bounded domains and tractable deriva-
tives conditioned on the estimated marginal probability functions. The likelihood function is
given below:

𝐿 =
𝑁∑
𝑛=1

𝑙𝑛

(
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𝜋𝑘
1

(2𝜋)𝑑/2 |𝑃 |1/2
𝑒𝑥𝑝

(
−1

2
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1√
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𝑒𝑥𝑝
(
−1

2 (𝑌𝑛,𝑘𝑖)2)
)

(6)

We provide the following theorem to demonstrate the features of such a likelihood function
and the proof is given in the appendix.

Theorem 1 Under suitable conditions, the likelihood function is bounded above in bounded
region; non-decreasing and negative semi-definite w.r.t density 𝑍𝑛,𝑘𝑖; may contain both local
minimum and local maximum w.r.t transformed variables 𝑌𝑛,𝑘 .

• The value of its likelihood function is nondecreasing during iterations of Expectation-Maximum
algorithms that are applied with GCMM and the algorithms converge globally to local maxi-
mums under mild conditions [19]. The design and properties of these Expectation-Maximum
algorithms are discussed in the next section.

• Model selection can be conducted through Akaike information criteria [20], and cluster meth-
ods such as k-means or hierarchy clustering can be used to set the initial parameters of each
component.
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5. EXPECTATION MAXIMUM ALGORITHMS FOR GCMM

Essentially, we introduce enhancements to the conventional Expectation-Maximization algorithm
used for Gaussian Mixture Models (GMM) to create a more potent version. The novel algorithm
separates the estimation of Gaussian copulas from that of the marginal distributions. This approach
enables the use of fewer clusters while accommodating slightly more complex structures. Addi-
tionally, the algorithm has the capability to incorporate unsynchronized data in joint distribution
estimations, further augmenting its capabilities.

5.1 The Base Case Algorithm

The algorithm updates the mixture of copulas and the marginal distributions separately. Essentially
when estimatingGMMs, theweights 𝜋𝑚𝑘 &correlationmatrixes of components 𝑃𝑚𝑘 and the sufficient
statistics (mean 𝜇𝑚𝑘𝑖 and standard deviation 𝜎𝑚𝑘𝑖) of the marginal normal distributions are updated
[21], based on the posterior probability 𝑟𝑚𝑛𝑘 . In GCMMs, the sufficient statistics of marginal normal
distributions are replaced with non-parametric estimators to the marginal pdf 𝑓 𝑚𝑘𝑖 and cdf 𝐹

𝑚
𝑘𝑖 to

improve flexility, see the red boxes in FIGURE 1.

Figure 1: Comparison of GMM and GCMM base case: n: data index; m: iteration index; k: copula
index; i: dimension index

The major challenge of algorithm design lies in how the marginal distributions should be updated
considering the posterior probability. An updating formula is developed and given by the following
theorem:

Theorem 2 In the GCMM base case, the updating of the marginal distributions follows the follow-
ing formula with necessary normalizations:

𝐹′
𝑘𝑖 (𝑐) =

∑
𝑛

𝑟𝑛𝑘1𝑥𝑛𝑖≤𝑐

Updating the marginal distribution based on the estimated weights during the dependent struc-
ture update poses challenges when considering parametric families. To address this, employing
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a weighted nonparametric density estimator offers a more precise way to incorporate such informa-
tion. During testing, spline techniques are utilized to incorporate the weights and infer density from
cumulative probability functions. Alternatively, kernel density functions can also be employed for
the same purpose. Based on the theorem, the algorithm is further developed below:

• Expectation Step:

𝐷𝑚𝑛𝑘 =
𝐷∏
𝑖=1
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1√
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) (7)
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• Maximum Step:
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𝑚
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𝑁
(9)
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𝑚
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𝑚
𝑛𝑘 (𝑌

𝑚
𝑛𝑘)

𝑇∑𝑁
𝑛=1 𝑟

𝑚
𝑛𝑘

(10)

𝐹𝑚𝑘𝑖 (𝑦) =
∑
𝑛 𝑟
𝑚
𝑛𝑘1𝑥𝑛𝑖≤𝑦∑
𝑛 𝑟
𝑚
𝑛𝑘

(11)

∀𝑘-th copula, 𝑖-th dimension

• Termination condition: The iteration stops when incremental of log likelihood is smaller than
a provided threshold.

The problem lies in distinguishing between two classes of heavy-tail phenomena: those arising from
the marginal distribution and those originating from the dependence structure. GCMM addresses
this issue by separately estimating and controlling the number of clusters based solely on the com-
plexity of the heavy tails in the dependence structure (the latter). As a result, the number of clusters
can be further minimized, and the copula mixture remains resilient to heavy tails in the marginal
distributions (the former).

5.2 With Unsynchronized Data

GCMMs with unsynchronized data are developed based on the rationale that unsynchronized data
in each dimension can be used to update the marginal distribution, given the estimation of marginal
distribution is separated from the mixture of copulas. An additional posterior probability 𝑟 ′𝑚𝑛𝑖 ,𝑘 is
introduced to represent the probability of 𝑛𝑖-th unsynchronized data on the 𝑖-th dimension belonging
to the 𝑘-th component. An additional loop is then inserted into the ExpectationMaximum algorithm
for GCMM base case which further updates 𝑟 ′𝑚𝑛𝑖 ,𝑘 based on new information, see the orange loop in
FIGURE 2.

1450



https://www.oajaiml.com/ | September 2023 Ke Wan and Alain Kornhauser

Figure 2: Comparison of GCMM base case and GCMM with unsynchronized data: n: data index;
m: iteration index; k: copula index; i: dimension

The major challenge of algorithm design lies in how the marginal distributions should be further
updated given unsynchronized data and the existing nonparametric estimator. An updating formula
is developed and given by the following theorem:

Theorem 3 In the GCMMwith unsynchronized data, the updating formula of marginal distribution
follows by the following formula with necessary normalizations:

𝑟 ′𝑛𝑖 ,𝑘 =
𝜋𝑘 𝑓𝑘𝑖 (𝑥𝑛𝑖 )∑𝐾
𝑘=1 𝜋𝑘 𝑓𝑘𝑖 (𝑥𝑛𝑖 )

𝐹′
𝑘𝑖 (𝑐) =

∑
𝑛

𝑟𝑛𝑘1𝑥𝑛𝑖≤𝑐 +
∑
𝑛𝑖

𝑟 ′𝑛𝑖 ,𝑘1𝑥𝑛𝑖 ≤𝑐

Based on the theorem, the algorithm is further developed below (similar parts as the base case are
ignored to save space):

• In Expectation step:

– update 𝑟𝑚𝑛𝑘 for synchronized data;

– update 𝑟 ′𝑚𝑛𝑖 ,𝑘 for un-synchronized data using the following Bayes formula:

𝑟
′𝑚
𝑛𝑖 ,𝑘

=
𝜋𝑚𝑘 𝑓 𝑚𝑘𝑖 (𝑥𝑛𝑖 )∑𝐾
𝑘=1 𝜋

𝑚
𝑘 𝑓 𝑚𝑘𝑖 (𝑥𝑛𝑖 )

(12)

• In each iteration, update the marginal cdfs 𝐹𝑛 according to 𝑟𝑛𝑘 and 𝑟 ′𝑛′𝑘 . ∀ k-th copula, i-th
dimension:

𝐹𝑚𝑘𝑖 (𝑦) =
∑
𝑛 𝑟
𝑚
𝑛𝑘1𝑥𝑛𝑖≤𝑦 +

∑
𝑛𝑖 𝑟

′𝑚
𝑛𝑖 ,𝑘

1𝑥𝑛𝑖 ≤𝑦∑
𝑛 𝑟
𝑚
𝑛𝑘 +

∑
𝑛𝑖 𝑟

′𝑚
𝑛𝑖 ,𝑘

(13)

The philosophical question at hand is whether synchronized data truly provide an adequate repre-
sentation of the joint distribution, and whether incorporating unsynchronized data can enhance our
understanding of it. Introducing unsynchronized data into the Expectation-Maximization algorithm
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expands the information set of the probability space (Ω, F , 𝑃), enabling amore profound exploration
of the data [22]. This represents a substantial improvement over GMM, extending the flexibility
beyond the scope of the marginal distribution.

6. EXPERIMENT

6.1 Simulation Test

In this section, two-dimensional data are simulated based on a three-copula GCMMand the distribu-
tion of the data is given in FIGURE 3. Then the two Expectation Maximum algorithms are utilized
to estimate the model and Akaike information critera is used to select the number of clusters. It
is found that GMM needs five clusters to explain the data well while GCMM needs three. We
further aggregate the data in the three dimensions to see the fitting for their sum: additional data
are simulated with the estimated GMM and GCMM and their sum is compared with that for the
calibration data. Two sample KS test demonstrates that the simulated data based onGCMMcaptures
the distribution of the calibration data set.

• GCMM achieves better fitting with fewer clusters.
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Figure 3: Clusters for GMM v.s. Clusters for GCMM

• The p-values of two sample KS test for the sum of two random variables are compared in
TABLE 1, which suggests that the GCMM fits the distribution of sum better than the GMM
given the same number of clusters.

Table 1: p-values of two-sample KS test compared with the simulated distribution

GMM Base Case Extra-Data

0.0002 0.1304 0.1003

6.2 Test on Empirical Data

A real data set from the transportation system using the travel time of individual drivers in New
Jersey which is captured from GPS devices is employed for model testing. On each transportation
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link (a road segment) there are many travel time observations, and by matching the departure
time of the current link and the arrival time of the immediate downstream link, such data can be
synchronized to construct the vector for running GMM. However, not all data on each link can
be synchronized because the arrival times of drivers are random and sparse in time. The ultimate
goal is to aggregate such link level data for estimating the distribution of the travel time over a
path consisting of a few consecutive links. The same procedure is used as the simulation test in the
previous section except the calibration data set is real. The results are summarized below, to save
space the three-dimensional clusters are omitted:

• The comparison to the empirical path travel time distribution is presented in TABLE 2, for
a three-segment path. The Akaike information criteria suggest that both GMM and GCMM
require three clusters to adequately describe the data. However, the p-values obtained from
the KS tests for GCMM are notably higher, indicating a better fit compared to GMM when
employing the same number of clusters. Thus, GCMM achieves slightly better fitness given
the identical number of clusters in comparison to GMM.

Table 2: p-values of two-sample KS test compared with the empirical distribution

GMM Base Case Extra-Data

0.0518 0.9646 0.1157

• In FIGURE 4, a comparison of estimated distributions reveals that GCMM with unsynchro-
nized data captures heavier tails, as evidenced by the presence of higher values in the unsyn-
chronized data. This occurrence of heavier tails is attributed to discrepancies in the marginal
distributions, stemming from new information in the unsynchronized data, rather than substan-
tial alterations in the copula mixture. This test effectively demonstrates GCMM’s capacity to
discern changes in the marginal distribution from modifications in the dependent structure,
leading to more efficient estimation.
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Figure 4: Comparison of pdf (Red: GMM; Blue: GCMM base case; Cyan: GCMM with
unsynchronized data; Black: Empirical); Green QQplot Empirical(x) v.s. GCMM base
case(y); Black QQplot Empirical(x) v.s. GCMM with unsynchronized data(y)

1453



https://www.oajaiml.com/ | September 2023 Ke Wan and Alain Kornhauser

7. CONCLUSION

In this paper, Gaussian copula mixture models (GCMMs) are developed to estimate the joint dis-
tribution of a group of random variables and further estimate the distribution of their sum. The
Expectation Maximum algorithm is extended to estimate the GCMM models. Overall, GCMMs
first addmore flexibility to fit heavy tails onmarginal distributions while remaining relatively robust
against it; GCMMs further incorporate unsynchronized data into estimation, both of which improve
the approximation to the complex dependence structures given limited number of components.

For future research, it is crucial to focus on efficient implementations with appropriate smoothing
techniques when applying the method to large-scale applications; the empirical properties of this
new category of models on specific data sets can hence be studied further. Additionally, further
investigation into the impact of modeling the marginal distribution should be conducted. Exploring
the use of alternative copulas in mixture models could also be beneficial, as they have the potential
to better capture heavy-tailed dependencies with fewer clusters.

8. PROOFS

8.1 Proof to Theorem 1

Proof Consider maximizing the following function

𝐿 =
𝑁∑
𝑛=1

𝑙𝑛

(
𝐾∑
𝑘=1

𝜋𝑘
1

(2𝜋)𝑑/2 |𝑃 |1/2
𝑒𝑥𝑝

(
−1

2
(𝑌𝑛,𝑘)𝑇𝑃𝑌𝑛,𝑘

) 𝐷∏
𝑖=1

𝑍𝑛,𝑘𝑖
1√
2𝜋

𝑒𝑥𝑝
(
−1

2 (𝑌𝑛,𝑘𝑖)2)
)

(14)

with the constraints:
𝑍𝑛,𝑘 ⪰ 0, 𝑍𝑛,𝑘 ⪯ 𝐶, 𝑌𝑛,𝑘 ⪰ 0 and 𝑌𝑛,𝑘 ≺ 1

If it is changed into a minimization problem by multiplying the objective by -1, the full Lagrange
objective function will be:

𝐿̂ = −
𝑁∑
𝑛=1

𝑙𝑛

(
𝐾∑
𝑘=1

𝜋𝑘
1

(2𝜋)𝑑/2 |𝑃 |1/2
𝑒𝑥𝑝

(
−1

2
(𝑌𝑛,𝑘)𝑇𝑃𝑌𝑛,𝑘

) 𝐷∏
𝑖=1

𝑍𝑛,𝑘𝑖
1√
2𝜋

𝑒𝑥𝑝
(
−1

2 (𝑌𝑛,𝑘𝑖)2)
)

+
∑
𝑛

∑
𝑘

𝛼𝑇𝑛,𝑘 (−𝑌𝑛,𝑘) +
∑
𝑛

∑
𝑘

𝛽𝑇𝑛,𝑘 (𝑌𝑛,𝑘 − 1) +
∑
𝑛

∑
𝑘

𝑟𝑇𝑛,𝑘 (−𝑍𝑛,𝑘)

+
∑
𝑛

∑
𝑘

𝜃𝑇𝑛,𝑘 (𝑍𝑛,𝑘 − 𝐶)

with

𝛼𝑛,𝑘 ⪰ 0, 𝑟𝑛,𝑘 ⪰ 0, 𝛽𝑛,𝑘 ⪰ 0, 𝜃𝑛,𝑘 ⪰ 0

and

−𝑍𝑛,𝑘 ⪯ 0, 𝑍𝑛,𝑘 − 𝐶 ⪯ 0, −𝑌𝑛,𝑘 ⪯ 0 and 𝑌𝑛,𝑘 − 1 ≺ 0
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Then

𝜕𝐿

𝜕𝑍𝑛,𝑘 𝑗
=

1
𝑆𝑛

𝜋𝑘
1

(2𝜋)𝑑/2 |𝑃 |1/2
𝑒𝑥𝑝

(
−1

2
𝑌𝑇𝑛,𝑘𝑃𝑌𝑛,𝑘

) ∏
𝑖≠ 𝑗

𝑍𝑛,𝑘𝑖

1√
2𝜋

𝑒𝑥𝑝
(
−1

2𝑌
2
𝑛,𝑘𝑖

)
≥ 0

Where 𝑆𝑛 =
∑𝐾
𝑘=1 𝜋𝑘

1
(2𝜋 )𝑑/2 |𝑃 |1/2 𝑒𝑥𝑝

(
−1

2𝑌
𝑇
𝑛,𝑘𝑃𝑌𝑛,𝑘

) ∏𝐷
𝑖=1

𝑍𝑛,𝑘𝑖
1√
2𝜋
𝑒𝑥𝑝(− 1

2𝑌
2)

𝜕𝐿2

𝜕𝑍2
𝑛,𝑘 𝑗

=
1
𝑆2
𝑛

(0 − 𝑃2
𝑛,𝑘 𝑗)

≤ 0

where 𝑃𝑛,𝑘 𝑗 = 𝜋𝑘
1

(2𝜋 )𝑑/2 |𝑃 |1/2 𝑒𝑥𝑝
(
−1

2𝑌
𝑇
𝑛,𝑘𝑃𝑌𝑛,𝑘

) ∏
𝑖≠ 𝑗

𝑍𝑛,𝑘𝑖
1√
2𝜋
𝑒𝑥𝑝

(
− 1

2𝑌
2
𝑛,𝑘𝑖

) And
𝜕𝐿̂

𝜕𝑍𝑛,𝑘 𝑗
= − 1

𝑆𝑛
𝜋𝑘

1
(2𝜋)𝑑/2 |𝑃 |1/2

𝑒𝑥𝑝

(
−1

2
𝑌𝑇𝑛,𝑘𝑃𝑌𝑛,𝑘

) ∏
𝑖≠ 𝑗

𝑍𝑛,𝑘𝑖

1√
2𝜋

𝑒𝑥𝑝
(
−1

2𝑌
2
𝑛,𝑘𝑖

) − 𝑟𝑛,𝑘 𝑗 + 𝜃𝑛,𝑘 𝑗

𝑟𝑇𝑛,𝑘𝑍𝑛,𝑘 = 0,
𝜃𝑇𝑛,𝑘 (𝑍𝑛,𝑘 − 𝐶) = 0

𝜕𝐿̂2

𝜕𝑍2
𝑛,𝑘 𝑗

≥ 0

By taking 𝜕𝐿
𝜕𝑍𝑛,𝑘 𝑗

= 0, there should be the following relationship:

𝑍𝑛𝑘 𝑖 =
𝑆𝑛 (−𝑟𝑛,𝑘 𝑗 + 𝜃𝑛,𝑘 𝑗)

𝐷𝑛,𝑘
1

2𝜋 𝑒𝑥𝑝
(
−1

2𝑌
2
𝑛,𝑘𝑖

) (15)

𝑟𝑛,𝑘𝑖
𝑆𝑛 (−𝑟𝑛,𝑘 𝑗 + 𝜃𝑛,𝑘 𝑗)

𝐷𝑛,𝑘
1

2𝜋 𝑒𝑥𝑝
(
−1

2𝑌
2
𝑛,𝑘𝑖

) = 0 (16)

𝜃𝑛,𝑘𝑖
©­­«

𝑆𝑛 (−𝑟𝑛,𝑘 𝑗 + 𝜃𝑛,𝑘 𝑗)

𝐷𝑛,𝑘
1

2𝜋 𝑒𝑥𝑝
(
−1

2𝑌
2
𝑛,𝑘𝑖

) − 𝐶𝑖
ª®®¬ = 0 (17)

The objective 𝐿̂ may be minimized in the inner area, that is: (1)𝑟𝑛,𝑘 𝑗 = 0 and 𝜃𝑛,𝑘 𝑗 ≠ 0 the solution
is denoted as 𝑍𝑏1

𝑛,𝑘 ; (2) 𝑟𝑛,𝑘 𝑗 ≠ 0 and 𝜃𝑛,𝑘 𝑗 = 0, the solution is denoted as 𝑍𝑏2
𝑛,𝑘 ; (3) 𝑟𝑛,𝑘 𝑗 = 0 and

𝜃𝑛,𝑘 𝑗 = 0, the solution is denoted as 𝑍𝑐𝑛,𝑘 .

For 𝑌𝑛,𝑘 , the following analysis is conducted:

𝜕𝐿

𝜕𝑌𝑛,𝑘
=

1
𝑆𝑛

𝐵𝑛,𝑘𝐷𝑛,𝑘 (−𝑃 + 𝐼)𝑌𝑛,𝑘
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where 𝐵𝑛,𝑘 = 𝜋𝑘
1

(2𝜋 )𝑑/2 |𝑃 |1/2 𝑒𝑥𝑝
(
−1

2𝑌
𝑇
𝑛,𝑘𝑃𝑌𝑛,𝑘

)
and 𝐷𝑛,𝑘 =

∏𝐷
𝑖=1

𝑍𝑛,𝑘𝑖
1√
2𝜋
𝑒𝑥𝑝

(
− 1

2𝑌
2
𝑛,𝑘𝑖

) as defined in
the previous section

𝜕𝐿2

𝜕𝑌2
𝑛,𝑘

=
1
𝑆2
𝑛

(𝐵𝑛,𝑘𝐷𝑛,𝑘 (−𝑃 + 𝐼)𝑌𝑛,𝑘𝑌𝑇𝑛,𝑘 (−𝑃 + 𝐼) + 𝐵𝑛,𝑘𝐷𝑛,𝑘 (−𝑃 + 𝐼))𝑆𝑛

− 𝐵𝑛,𝑘𝐷𝑛,𝑘 (−𝑃 + 𝐼)𝑌𝑛,𝑘𝑌𝑇𝑛,𝑘 (−𝑃 + 𝐼)𝐵𝑛,𝑘𝐷𝑛,𝑘

=
1
𝑆2
𝑛

(𝐵𝑛,𝑘𝐷𝑛,𝑘 (−𝑃 + 𝐼)(𝑌𝑛,𝑘𝑌𝑇𝑛,𝑘𝑆𝑛 + 𝑆𝑛 − 𝑌𝑛,𝑘𝑌
𝑇
𝑛,𝑘𝐵𝑛,𝑘𝐷𝑛,𝑘)(−𝑃 + 𝐼)

=
1
𝑆2
𝑛

(𝐵𝑛,𝑘𝐷𝑛,𝑘 (𝑌𝑛,𝑘𝑌𝑇𝑛,𝑘𝑆𝑛 + 𝑆𝑛 − 𝐵𝑛,𝑘𝐷𝑛,𝑘𝑌𝑛,𝑘𝑌
𝑇
𝑛,𝑘) (−𝑃 + 𝐼)(−𝑃 + 𝐼)

Notice here (−𝑃 + 𝐼) is diagonalizable since 𝑃 is the covariance matrix of two normally distributed
random vectors. (−𝑃 + 𝐼)(−𝑃 + 𝐼) is then positive and semi-definite. Define

Λ𝑛,𝑘 = 𝑌𝑛,𝑘𝑌
𝑇
𝑛,𝑘𝑆𝑛 + 𝑆𝑛 − 𝐵𝑛,𝑘𝐷𝑛,𝑘𝑌𝑛,𝑘𝑌

𝑇
𝑛,𝑘

Since 1
𝑆2
𝑛
𝐵𝑛,𝑘𝐷𝑛,𝑘 is positive,Λ𝑛,𝑘 will determine the properties of the function with respect to𝑌𝑛,𝑘 .

1
𝑆𝑛

𝐵𝑛,𝑘𝐷𝑛,𝑘 (−𝑃 + 𝐼)𝑌𝑛,𝑘 − 𝛼𝑛,𝑘 + 𝛽𝑛,𝑘 = 0

𝛼𝑇𝑛,𝑘𝑌𝑛,𝑘 = 0
𝛽𝑇𝑛,𝑘 (𝑌𝑛,𝑘 − 1) = 0

if Λ𝑛,𝑘 ≥ 0, 𝜕𝐿2

𝜕𝑌2
𝑛,𝑘

⪰ 0 and 𝜕𝐿̂2

𝜕𝑌2
𝑛,𝑘

⪯ 0

if Λ𝑛,𝑘 < 0, 𝜕𝐿2

𝜕𝑌2
𝑛,𝑘

≺ 0 and 𝜕𝐿̂2

𝜕𝑌2
𝑛,𝑘

≻ 0

Then

𝑌𝑛,𝑘 =
𝑆𝑛

𝐵𝑛,𝑘𝐷𝑛,𝑘
(−𝑃 + 𝐼)−1(𝛼𝑛,𝑘 − 𝛽𝑛,𝑘) (18)

𝑆𝑛
𝐵𝑛,𝑘𝐷𝑛,𝑘

𝛼𝑇𝑛,𝑘 (−𝑃 + 𝐼)−1(𝛼𝑛,𝑘 − 𝛽𝑛,𝑘) = 0 (19)

𝛽𝑇𝑛,𝑘 (
𝑆𝑛

𝐵𝑛,𝑘𝐷𝑛,𝑘
(−𝑃 + 𝐼)−1(𝛼𝑛,𝑘 − 𝛽𝑛,𝑘) − 1) = 0 (20)

Then 𝑌𝑛,𝑘 can be solved using the equations above. Furthermore, extreme values of the 𝑌𝑛,𝑘 are
considered as follows:

If Λ𝑛,𝑘 ≥ 0 then the data point 𝑥𝑛 is classified as Type 1 for k-th copula. The objective𝐿̂ is always
minimized on the boundary. That is: (1) 𝛼𝑛,𝑘 = 0 and 𝛽𝑛,𝑘 ≠ 0, the solution is denoted as 𝑌1𝑏1

𝑛,𝑘 ;
(2)𝛼𝑛,𝑘 ≠ 0 and 𝛽𝑛,𝑘 = 0 the solution is denoted as 𝑌1𝑏2

𝑛,𝑘 .

If Λ𝑛,𝑘 < 0, then the data point 𝑥𝑛 is classified as Type 2 for k-th copula. The objective 𝐿̂ may be
minimized in the inner area. That is: (1)𝛼𝑛,𝑘 = 0 and 𝛽𝑛,𝑘 ≠ 0, the solution is denoted as 𝑌2𝑏1

𝑛,𝑘 ; (2)
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𝛼𝑛,𝑘 ≠ 0 and 𝛽𝑛,𝑘 = 0, the solution is denoted as 𝑌2𝑏2
𝑛,𝑘 ; (3) 𝛼𝑛,𝑘 = 0 and 𝛽𝑛,𝑘 = 0, the solution is

denoted as 𝑌2𝑐
𝑛,𝑘 .

In all cases, the value of the likelihood function is bounded above by a value determined by these
finite extreme values in 𝑌𝑛,𝑘 and 𝑍𝑛,𝑘 . Q.E.D.

8.2 Proof to Theorem 2

Denote 𝑥𝑛 as the observed synchronized data vector,𝑧 are the complete data. Recall in the Expecta-
tion step we calculate the posterior probability 𝑟𝑛𝑘 for 𝑛-th data vector belong to 𝑘-th cluster such
that the incomplete data likelihood function below is expressed explicitly. 𝑄(𝜋′, 𝑃′, 𝐹′ |𝜋, 𝑃, 𝐹) =
𝐸 (𝑙𝑜𝑔 𝑓 (𝑧) |𝑥𝑛, 𝜋, 𝑃, 𝐹)

In theMaximum step we calculate [𝜋′, 𝑃′, 𝐹′] = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋′ ,𝑃′ ,𝐹′𝑄(𝜋′, 𝑃′, 𝐹′ |𝜋, 𝑃, 𝐹) to obtain new
parameters based on such 𝑟𝑛𝑘 .

In this process, the poster distribution 𝑟𝑛𝑘 is 𝑟𝑛𝑘 = 𝑝𝑘 (𝑥𝑛 |𝜋, 𝑃, 𝐹)

So the natural estimator for the marginal distribution for the 𝑖-th dimension of the 𝑘-th component is
its histogram conditioned on the current weights: 𝐹′

𝑘𝑖 (𝑐) = 𝑝𝑘𝑖 (𝑥𝑛𝑖 ≤ 𝑐 |𝜋, 𝑃, 𝐹) = ∑
𝑛 𝑝𝑘 (𝑥𝑛𝑖 |𝜋, 𝑃, 𝐹)

1𝑥𝑛𝑖≤𝑐 =
∑
𝑛 𝑟𝑛𝑘1𝑥𝑛𝑖≤𝑐

Further normalization is used to maintain the properties of a cdf and other univariate non-parametric
estimator can be used. Q.E.D

8.3 Proof to Theorem 3

Denote 𝑥𝑛 as the observed synchronized data vector, 𝑥𝑛𝑖 as 𝑛𝑖-th observed unsynchronized data
on the i-th dimension and 𝑧 as the complete data Recall in the Expectation step of the likelihood
function is to calculate the posterior probability 𝑟𝑛𝑘 for 𝑛-th data vector belong to 𝑘-th cluster such
that the incomplete data likelihood function below is expressed explicitly. 𝑄(𝜋′, 𝑃′, 𝐹′ |𝜋, 𝑃, 𝐹) =
𝐸 (𝑙𝑜𝑔 𝑓 (𝑧) |𝑥𝑛, 𝑥𝑛𝑖 , 𝜋, 𝑃, 𝐹)

Moreover, we also calculate the posterior probability 𝑟 ′𝑛𝑖 ,𝑘 for 𝑥𝑛𝑖 (the 𝑛𝑖-th unsynchronized obser-
vation on the i-th dimension) to belong to 𝑘-th cluster based on 𝐹𝑘𝑖 (𝑐).

In theMaximum step we calculate [𝜋′, 𝑃′, 𝐹′] = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋′ ,𝑃′ ,𝐹′𝑄(𝜋′, 𝑃′, 𝐹′ |𝜋, 𝑃, 𝐹) to obtain new
parameters based on such 𝑟𝑛𝑘 and 𝑟 ′𝑛𝑖 ,𝑘 .

The poster distribution 𝑟𝑛𝑘 is 𝑟𝑛𝑘 = 𝑝𝑘 (𝑥𝑛 |𝜋, 𝑃, 𝐹)

The poster distribution 𝑟 ′𝑛𝑖 ,𝑘 is 𝑟
′
𝑛𝑖 ,𝑘

= 𝑝𝑘 (𝑥𝑛𝑖 |𝜋, 𝑃, 𝐹) =
𝑝𝑘 (𝑥𝑛𝑖 | 𝜋,𝑃,𝐹,𝐾=𝑘 )𝑃 (𝐾=𝑘 )∑
𝑘 𝑝𝑘 (𝑥𝑛𝑖 | 𝜋,𝑃,𝐹,𝐾=𝑘 )𝑃 (𝐾=𝑘 ) =

𝜋𝑘 𝑓𝑘𝑖 (𝑥𝑛𝑖 )∑
𝑘 𝜋𝑘 𝑓𝑘𝑖 (𝑥𝑛𝑖 )

So the natural estimator for the marginal distribution for the 𝑖-th dimension of the 𝑘-th component is
its histogram conditioned on the current weights for all data on that dimension. 𝐹′

𝑘𝑖 (𝑐) = 𝑝𝑘 (𝑥𝑛𝑖 ≤
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𝑐 |𝜋, 𝑃, 𝐹) + 𝑝𝑘 (𝑥𝑛𝑖 ≤ 𝑐 |𝜋, 𝑃, 𝐹) = ∑
𝑛 𝑝𝑘 (𝑥𝑛𝑖 |𝜋, 𝑃, 𝐹)1𝑥𝑛𝑖≤𝑐 +

∑
𝑛𝑖 𝑝𝑘 (𝑥𝑛𝑖 |𝜋, 𝑃, 𝐹)1𝑥𝑛𝑖 ≤𝑐 =

∑
𝑛 𝑟𝑛𝑘

1𝑥𝑛𝑖≤𝑐 +
∑
𝑛𝑖 𝑟

′
𝑛𝑖 ,𝑘

1𝑥𝑛𝑖 ≤𝑐

Further normalization is used to maintain the properties of a cdf and other univariate non-parametric
estimators can be used. Q.E.D
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