Advances in Artificial Intelligence and Machine Learning; Research 5 (1) 3465-3475 Received 15-12-2024; Accepted 19-03-2025; Published 26-03-2025

Interpretable Dimensionality Reduction Using Weighted Linear
Transformation

Erik Bergh er.bergh@gmail.com
Independent Researcher
Molndal, Sweden

Corresponding Author: Erik Bergh

Copyright © 2025 Erik Bergh. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Dimensionality reduction techniques are fundamental for analyzing and visualizing high-
dimensional data. With established methods like t-SNE and PCA presenting a trade-off
between representational power and interpretability. This paper introduces a novel approach
that bridges this gap by combining the interpretability of linear methods with the expressive-
ness of non-linear transformations. The proposed algorithm constructs a non-linear map-
ping between high-dimensional and low-dimensional spaces through a combination of linear
transformations, each weighted by Gaussian functions. This architecture enables complex
non-linear transformations while preserving the interpretability advantages of linear meth-
ods, as each transformation can be analyzed independently. The resulting model provides
both powerful dimensionality reduction and transparent insights into the transformed space.
Techniques for interpreting the learned transformations are presented, including methods for
identifying suppressed dimensions and how space is expanded and contracted. These tools
enable practitioners to understand how the algorithm preserves and modifies geometric rela-
tionships during dimensionality reduction. To ensure the practical utility of this algorithm,
the creation of user-friendly software packages is emphasized, facilitating its adoption in both
academia and industry.

Keywords: Dimensionality reduction, Interpretability, Visualization.

1. INTRODUCTION

Dimensionality reduction is a fundamental task in data analysis and machine learning. Its objective
is to transform high-dimensional data into a more compact and meaningful representation. This
process addresses critical challenges by reducing computational demands, improving visualization,
and highlighting essential structures while filtering out noise. By focusing on the most relevant
patterns, dimensionality reduction facilitates efficient computation and enhances the understanding
of high-dimensional datasets.

Over the years, numerous techniques have been developed for dimensionality reduction, ranging
from classical linear approaches to advanced non-linear methods. Principal Component Analysis
(PCA) [1], one of the earliest and most influential techniques, employs a linear transformation to
project data onto orthogonal axes that maximize variance. PCA is valued for its computational effi-

3465

Citation: Erik Bergh. Interpretable Dimensionality Reduction Using Weighted Linear Transformation. Advances in Artificial Intelligence
and Machine Learning. 2025;5(1):198.

https://www.oajaiml.com/ | March 2025 Erik Bergh

ciency, scalability, and ease of interpretation, as the principal components are linear combinations of
the original features. However, its reliance on linearity often limits its ability to capture non-linear
relationships.

To overcome these limitations, non-linear methods have been developed to capture complex patterns
in high-dimensional data. t-Distributed Stochastic Neighbor Embedding (t-SNE) [2], for example,
is extensively used for visualizing high-dimensional data. By optimizing a model that preserves
local similarities, t-SNE generates informative embeddings. Uniform Manifold Approximation and
Projection (UMAP) [3] leverages manifold learning to preserve both local and global data structures
effectively. Other notable methods, including Isomap [4] and Locally Linear Embedding (LLE) [5],
demonstrate strong representational capacity, revealing complex patterns in data. However, these
methods often lack interpretability, and some, like t-SNE, cannot extend their transformations to
new data without retraining. While UMAP, Isomap, and LLE can extend transformations, they
come with varying degrees of computational overhead.

Deep learning have further expanded the toolkit for dimensionality reduction, with autoencoders [6]
representing a common approach. Autoencoders, neural network architectures designed to encode
data into a compressed latent space and decode it back to the original space, offer remarkable
representational capacity by capturing complex relationships within data. However, they often
require substantial amounts of data and lack interpretability.

Despite these advancements, a gap remains in developing methods that combine the representational
power of non-linear approaches with the interpretability of linear techniques, motivating the need
for new solutions.

2. ALGORITHM

2.1 Mathematical Framework
2.1.1 Core transformation

Construct a non-linear transformation from R¥! to R¥2> (where dy < d1) by combining multiple lin-
ear transformations through Gaussian weighting. Each linear transformation is assigned a Gaussian
function. For an input vector x € R4, the transformation is defined as:

Fx) =D wiTi(x) (1)
i=1

where m is the number of linear transformations with corresponding weight functions, w;(x) are
weights, and 7; : R4 — R¥ are linear transformations.

2.1.2 Gaussian weight computation
The weight w;(x) for each transformation is computed using a Gaussian function:

3466

https://www.oajaiml.com/ | March 2025 Erik Bergh

112
£:(x) = exp (—M) @)
(o

i

These weights are then normalized to sum to 1:

gi(x)
TL18j(x)te

3)

wi(x) =

where:

* 05, the standard deviation, is optimized during training.
* ¢ is a small constant added for numerical stability.

« u; € RY represents the center of the i-th Gaussian function, initialized through random
sampling from the input dataset X. By default, these centers remain fixed during optimization.

2.1.3 Linear transformations

Each T; is a linear transformation represented by a matrix M; € R4*42 The transformation of a
point x by T; is computed as:

T;(x) = Mix (4)

2.2 Optimization Process
2.2.1 Objective function

The algorithm minimizes the difference between pairwise distances in the original and transformed
spaces. For a dataset X = {x1, ..., X, }, the loss function is:

1 2
L= N;(lei—lel—IIf(Xi)—f(xj)Il) &)
where N is the number of considered pairs.

2.2.2 Training procedure

The optimization process consists of two phases:

3467

https://www.oajaiml.com/ | March 2025 Erik Bergh

Initialization Phase

» The Gaussian centers y; are initialized through random sampling from the input dataset.

The standard deviations, oy, are initialized to unity.
* Transformation matrices M; are initialized using a random distribution.

» Compute pairwise distances between all points in the original space.
Optimization Phase For each iteration:

1. Forward pass: compute transformed points f(x;) for all data points.
2. Compute pairwise distances in the transformed space.
3. Update parameters using gradient descent, such as the Adam optimizer [7].

 Standard deviations o7.
» Transformation matrices M;.

» Optionally, Gaussian centers y; if enabled.

2.2.3 Distance computation optimization

To improve computational efficiency, the algorithm considers only the k nearest neighbors during
loss function computation:

Lkz%z D (i =x;l = £ () = F) (6)

i jeNK()

where Ny (i) represents the k nearest neighbors of point x; in the original space.

The optimization process stops based on the chosen termination criterion, such as exceeding a
predefined patience threshold or reaching the maximum number of epochs.

3. INTERPRETABILITY

To showcase the interpretability of a trained model, the algorithm is applied to a 3-dimensional
S-shaped dataset created using Scikit-learn s make s curve function. A total of 1,000 data points
are generated, as illustrated in FIGURE 1. For details, refer to https://scikit-learn.org/
stable/modules/generated/sklearn.datasets.make_s_curve.html. This section does not
present an exhaustive list of possible interpretability techniques for the proposed algorithm. Instead,
it presents those techniques implemented at https://github.com/erikbergh/interpretable_
dim_reduction, as of the time of writing.

3468

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html
https://github.com/erikbergh/interpretable_dim_reduction
https://github.com/erikbergh/interpretable_dim_reduction

https://www.oajaiml.com/ | March 2025 Erik Bergh

Figure 1: Visualization of a dataset generated using Scikit-learn'’s make s_curve.

The algorithm employs 100 Gaussian functions and accounts for all pairwise distances. The output
dimensionality is reduced to two, and the training is performed over 2,000 epochs. The resulting
dimensionality reduction is depicted in FIGURE 2.

The reconstruction error, which measures how well the distances are preserved, is given by:

_ il =l = 11 (i) = f (=)l

2ij l1xi = %ll2

(7

€1ror

The reduction shown in FIGURE 2, has a reconstruction error of 0.45 (rounded to two decimal
places), where a value of zero indicates a perfect preservation of distances.

3.1 Influence by Dimension

By comparing FIGURE 1, and FIGURE 2, it is evident that the y-axis contributes less prominently
in the reduced dimensions. Such comparisons are challenging for most datasets. The influence of
each dimension can be calculated as follows:

_ 1 2 [Mij|)
"N (zj,k [Mijid ®

i

3469

https://www.oajaiml.com/ | March 2025 Erik Bergh

1.0 A

0.5 A

0.0 A

—0.5 A

-1.0 i+ ;
-1.0 -0.5 0.0 0.5 1.0

Figure 2: The data points visualized in the reduced 2D space.

Here, i denotes the index of the linear transformations, j represents the column index, and k corre-
sponds to the row index. For this dimensionality reduction, w = [0.40, 0.25, 0.35] (rounded to two
decimal places), confirming that the y-dimension is less represented in the reduction.

Due to the non-linear nature of the dimensionality reduction, these values vary across the space. Un-
derstanding how the influence of each dimension changes spatially can provide additional insights.
By calculating:

1 Z(2k Iw(p)iM;jkl)

wip) = N 2k w(p)iMijk|

i

where p represents a point in the reduced-dimensional space, w(p) is evaluated for points forming
a mesh grid over the reduced space. The values of w(p),-2, corresponding to the original y-
dimension, are shown as the background in FIGURE 3, with the data points in the reduced space
plotted on top. The color of the points corresponds to their original y-values.

3470

https://www.oajaiml.com/ | March 2025 Erik Bergh

- 025

Figure 3: The values w(p) =2, corresponding to the original y-dimension, are shown as the
background. The data points in the reduced space are plotted on top, with the point colors
corresponding to their original y-values.

FIGURE 3 illustrates that the influence of the original y-axis is minimal at the center of the S-shape.
In contrast, other regions show a greater influence from the original y-axis, although this influence
remains less pronounced compared to the contributions of the x and z axes.

3.2 Influence Skewness

It is of interest to know if the reduced space is skewed to represent or under-represent one or more
original dimensions. By calculating the variance of w(p) in Equation (9) for each point p, we obtain
the variance of influence across the different dimensions.

In FIGURE 4, this variance is plotted as the background, with the data points in the reduced space
shown on top.

As shown in FIGURE 4, the maximum skewness occurs at the center of the shape. This is directly
related to the minimal influence of the original dimension y, as illustrated in FIGURE 3.

3471

https://www.oajaiml.com/ | March 2025 Erik Bergh

- 007

- 0.06

Figure 4: The variance Var(w(p)) over the mesh grid is plotted as the background. Data points in
the reduced space are plotted on top.

3.3 Expansion and Contraction of Space

It is useful to determine whether the reduced space is expanded or contracted at a given point. This
analysis helps compare the relative distances between neighboring points, such as a nearby pair
versus a distant pair.

The expansion or contraction at a point p is quantified using:

Z w(p)iM;

1

N(p) = ; (10)

2

where N(p) represents the norm of the transformation at point p. A value of N(p) > 1 indicates
that the space is expanded at p, while N(p) < 1 indicates contraction.

To visualize this, N(p) is computed over a set of points forming a mesh grid in the reduced space.
In FIGURE 5, N(p) is shown as the background, with data points in the reduced space plotted on
top.

3472

https://www.oajaiml.com/ | March 2025 Erik Bergh

- 0.90

—- 085

Figure 5: The values of N(p) calculated over the mesh grid are shown as the background. Data
points in the reduced space are plotted on top.

As shown in FIGURE 5, the background indicates that the space is contracted everywhere. The
contraction is minimal at the center of the S-shape.

4. DISCUSSION AND CONCLUSION

The proposed algorithm demonstrates both representational power and interpretability, addressing
key limitations of traditional dimensionality reduction techniques. Unlike t-SNE, which is con-
strained to the dataset on which it is trained, the proposed algorithm can extend its transformations
to new data points with no additional computational cost compared to processing a data point from
the training set. Furthermore, the algorithm’s representational capacity enables it to capture complex
patterns and relationships within the data, offering richer representations than linear methods like
PCA.

However, the algorithm presents several challenges. Like t-SNE, it requires substantial computa-

tional resources for training, limiting its scalability for very large datasets or resource-constrained
environments. Additionally, the risk of converging to local minima can affect result quality and

3473

https://www.oajaiml.com/ | March 2025 Erik Bergh

stability. The algorithm’s robustness remains an open question, particularly regarding whether the
risk of suboptimal representation increases with dataset complexity.

Future work should examine its computational complexity on large and complex datasets and com-
pare performance with methods such as t-SNE. Another key area is benchmarking its representa-
tional power against other algorithms. Additionally, improving model interpretability is essential.
While the algorithm shows promise in this regard, systematic methods for extracting insights and
articulating relationships in a user-friendly manner are needed. This is especially crucial for high-
dimensional datasets where in-depth investigation of each dimension is unfeasible. Developing
intuitive yet effective interpretation techniques without sacrificing insights would significantly en-
hance the algorithm’s usability, making it a valuable tool for analyzing complex data.

In conclusion, this algorithm combines representational power with interpretability, bridging the gap
between popular techniques like t-SNE and PCA. By creating intuitive and meaningful software
packages for interpretation, the algorithm has the potential to become a widely used tool in both
academic and industrial settings.

5. RESOURCES

A Python implementation of the proposed method is available at https: //github. com/erikbergh/
interpretable_dim_reduction. The repository includes the algorithm, a minimal working ex-
ample, and interpretability demonstrations.

6. CONFLICT OF INTEREST

There are no conflicts of interest known to the author.

References
[1] Hotelling H. Analysis of a Complex of Statistical Variables Into Principal Components. J Educ
Psychol. 1933;24:417-441.

[2] Van der Maaten L, Hinton G. Visualizing Data Using T-Sne. J Mach Learn Res. 2008;9:2579-
2605.

[3] Mclnnes L, Healy J, Umap MJ. Uniform Manifold Approximation and Projection for Dimension
Reduction. 2018. Arxiv preprint: https://arxiv.org/pdf/1802.03426

[4] Tenenbaum JB, de Silva VD, Langford JC. A Global Geometric Framework for Nonlinear
Dimensionality Reduction. Science. 2000;290:2319-2323.

[5] Roweis ST, Saul LK. Nonlinear Dimensionality Reduction by Locally Linear Embedding.
Science. 2000;290:2323-2326.

[6] Hinton GE, Salakhutdinov RR. Reducing the Dimensionality of Data With Neural Networks.
Science. 2006;313:504-507.

3474

https://github.com/erikbergh/interpretable_dim_reduction
https://github.com/erikbergh/interpretable_dim_reduction

https://www.oajaiml.com/ | March 2025 Erik Bergh

[7] Kingma DP, Ba JL. ADAM. A Method for Stochastic Optimization. 2014. Arxiv preprint.
Available from: https://arxiv.org/pdf/1412.6980v1

3475

	INTRODUCTION
	ALGORITHM
	Mathematical Framework
	Core transformation
	Gaussian weight computation
	Linear transformations

	Optimization Process
	Objective function
	Training procedure
	Distance computation optimization

	INTERPRETABILITY
	Influence by Dimension
	Influence Skewness
	Expansion and Contraction of Space

	DISCUSSION AND CONCLUSION
	RESOURCES
	CONFLICT OF INTEREST

