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Abstract
Convolutional neural networks (CNNs) have demonstrated remarkable success in vision-
related tasks. However, their susceptibility to failing when inputs deviate from the training
distribution is well-documented. Recent studies suggest that CNNs exhibit a bias toward
texture instead of object shape in image classification tasks, and that background information
may affect predictions. This paper investigates the ability of CNNs to adapt to different color
distributions of an image while maintaining context and background. The results of our
experiments on modified MNIST, CIFAR10 and CIFAR 100 data demonstrate that changes
in color can substantially affect classification accuracy. The paper explores the effects of
various regularization techniques on generalization error across datasets and proposes an
architectural modification using in a novel way color balancing and spatial dropout reg-
ularization. This enhances the model reliance on color-invariant intensity-based features
for improved classification accuracy. Overall, this work contributes to ongoing efforts to
understand the limitations and challenges of CNNs in image classification tasks and offers
a potential solution to improve their performance.
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1. INTRODUCTION

Deep learning models have made significant advancements in various domains, particularly in
vision and natural language processing [1, 2]. Among the popular architectures, convolutional
neural networks (CNNs) have emerged as powerful tools for visual tasks, finding applications in
diverse fields from medicine to construction. The success of CNNs can be attributed not only to
the increased computational capacity but also to their remarkable generalization capabilities [3].
However, recent studies have uncovered potential challenges associated with the generalization of
CNNs, revealing their susceptibility to learning non-causal features and their limited performance
on distributions different from the training data [4–7].

One fundamental objective of machine learning is to develop models that demonstrate high mod-
eling and generalization performance, that is, on the training and unseen test data respectively.
Overfitting occurs when amodel becomes overly specialized to the training data, capturing spurious
patterns that do not exist in the broader population, leading to poor generalization despite low
training error. To address this issue, various regularization techniques have been devised to improve
the model’s generalization bymitigating the impact of overfitting. These techniques include weight
penalization to discourage excessive importance on specific features and dropout regularization,
which introduces randomness by probabilistically excluding neurons, thereby encouraging the
model to rely on other informative features.

Pooling operations in CNNs contribute to their translation invariance, while data augmentation
plays a crucial role in enhancing their overall robustness. However, studies have shown that certain
distributional shifts, such as maintaining the shape while altering the texture of objects, can bias
CNNs towards prioritizing texture over shape information. It has been proposed [8], that improving
the shape bias of models can enhance their robustness against such perturbations. Furthermore,
investigations into the shape bias property of CNNs [5], revealed that CNNs do not inherently
exhibit a strong shape bias, leading to reduced accuracies in detecting negative images. The authors
argued that negative images, which are semantically similar to normal images, can pose challenges
for CNNs and demonstrated their limitations in this regard.

We investigate the generalization ability of CNNs in classifying images sampled from different
color distributions while maintaining pixel intensities identical to the training data. Our study
focuses on multiple representations of the datasets: custom-colored versions of MNIST [9], and a
more complex dataset, CIFAR10 [10], which is employed to validate the obtained results on real-
world images. Specifically, we modify the MNIST data to create three distinct datasets: the first
containing only green color, the second with a single-color channel, and the third incorporating
all three-color channels. Also, colored jitter is added to these datasets to see if the introduction
of colored noise influences generalization. Equal numbers of examples are assigned to each class
label within each color variant, ensuring no inherent correlation between color and class label. As
a result, these datasets are semantically similar, as color conveys no additional information for
classification purposes.
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Through systematic experiments, we empirically show that CNNs trained using traditional layers
like convolutions, Batch normalization and Max Pooling cannot generalize well to the distribu-
tional changes in color. So, we use a color balancing and spatial dropout [11], layer before using
convolutions on the input image as a form of regularization to improve the model’s reliance on
color invariant features for classification. We show experimentally that this method improves the
generalization ability of CNNs to distributional shifts in color.

Overall, this research aims to explore the behavior and capabilities of CNNs in the context of color-
invariant feature extraction and classification. The findings have implications for understanding
the underlying mechanisms of CNNs and can contribute to the development of more robust and
adaptable models in various image classification tasks.

2. RELATEDWORK

Lately, there have been numerous studies assessing the robustness of deep learningmodels and their
ability to generalize to out-of-distribution (OOD) testing data. Zhang, et al. (2016) [12], demon-
strated that Stochastic Gradient Descent (SGD) trained CNNs can memorize the entire training
dataset even when the labels are randomized, challenging the assumption that low generalization
error corresponds to better understanding rather than memorization. In a theoretical study [13],
Kabir et al. showed that the generalization of CNNs can be improved if an optimal background
class is used and proposed a methodology for developing background classes.

Geirhos, et al. (2018) [8], Geirhos, et al. (2020) [6], showed that ImageNet-trained CNNs exhibit
a bias towards the texture of objects rather than their shapes. They hypothesized that enhancing
shape bias could improve CNN performance on out-of-distribution images. This hypothesis was
further investigated by Islam, et al. (2021) [14], who studied latent representations to determine
the extent to which CNNs learn shape features. They concluded that shape cues are learned in the
early epochs and stored in a CNN’s deeper layers. In a study [15], it was shown that shape-biased
CNNs may perform well on out-of-distribution tasks that align closely with the shape features
learned during training but may falter when the out-of-distribution data involves unfamiliar shape
configurations or when texture plays a crucial discriminating role.

Mummadi, et al. (2021) [16], explored whether shape bias contributes to robustness against dis-
tributional shifts. They found that using different stylized augmentations can improve corruption
robustness, although shape bias may be a byproduct rather than a primary factor. Hosseini, et al.
(2018) [17], Hosseini, et al (2017) [5], Hosseini, et al (2018) [18], conducted several experiments
on MNIST and CIFAR-10 datasets to assess the shape bias property of CNNs. By creating a
complemented dataset of MNIST images with negative versions that preserve shape cues but alter
background and foreground, they demonstrated that CNNs trained on normal images struggle to
detect negative images. Mixing a few negative images with normal ones helped the neural network
learn to detect negative images. In a recent study by Li, et al.(2023) [19], it was shown empirically
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that enforcing the sparse coding constraint using a non-differential Top-K operation can lead to the
emergence of structural encoding in neurons in CNNs, resulting in shape-biased models.

Arjovsky, et al.(2020) [4], introduced Invariant Risk Minimization (IRM), a framework aimed at
improving the robustness of models by encouraging them to learn invariant predictors across dif-
ferent environments. This approach addresses the susceptibility of CNNs to spurious correlations
present in training data. This issue is further explored by D’Amour, et al. (2020) [20], who revealed
CNNs’ tendency to learn superficial patterns rather than understanding underlying concepts. Sauer
and Geiger (2021) [21], in their work on Counterfactual Generative Networks emphasized the
importance of counterfactual reasoning in mitigating biased data.

Data augmentation techniques are generally used to enhance the robustness of deep learningmodels
to account for image variations that arise in practical scenarios.Unlike geometric methods, photo-
metric methods modify the pixel content of the images while preserving their spatial structure
according to specified functions resulting in the compositional change in RGB channels. The most
commonly used photometric data augmentation approaches include color jittering, color space
conversion, and distortion techniques [22]. In [23], Karargyris proposes a color space transfor-
mation network, a simple CNN that incorporates a color space matrix to learn useful color space
parameters from data and then apply these parameters to the input samples during the training
process. Another approach is to use multi-branch networks [24], where each branch performs a
specific, pre-defined image transformation operation. The effect of color variability was studied by
De, et al. (2021) [25], and found that CNNs are sensitive to color changes to the level of individual
blocks. Dataset augmentation methods such as PSNR and Inverse PSNR [26], have been used to
improve the robustness of vision models with smaller datasets. Still, this approach requires longer
training times and can be effective only in the presence of known transformations. Although some
approaches may use data augmentation in connection with this problem, data augmentation was
not used here because the intent is to show the effect of the proposed architecture, regardless of the
data on which it is applied.

Recent research by Lengyel, et al. (2021) [27], on zero-shot day-night domain adaptation lever-
ages a physics prior to bridge the gap between day and night images, demonstrating a significant
advancement in handling domain shifts without requiring labeled data from both domains. This
work builds on foundational principles established by Geusebroek, et al. (2001) [28], in their
exploration of color invariance, where they introduced techniques to achieve consistent object
recognition regardless of varying illumination conditions. Finlayson, et al. (2006) [29], further
underscore the importance of preprocessing steps to enhance image quality and reduce artifacts that
could impede model performance. Collectively, these studies underscore the need for innovative
approaches to enhance the robustness and interpretability of CNNs, moving towards models that
are not only intelligent in terms of performance but also resilient to shifts in data distribution.
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3. METHODOLOGY

3.1 Dataset Description

To evaluate the generalization ability of CNNs, different custom versions of MNIST and CIFAR10
datasets were used in this paper. MNIST is a large collection of handwritten digits commonly
used for testing image classification models. CIFAR10 is a large collection of common real-world
objects like automobiles, ships, deer, etc. Both these datasets contain 10 different classes. Each
dataset was modified to include variations in color and background to test how well CNNs can
adapt to changes in input data that differ from the training scenarios. The customization process
for the datasets is described below:

3.1.1 MNIST customization

The MNIST dataset, typically comprised of grayscale images of handwritten digits, has been mod-
ified to produce six enhanced versions (illustrated in FIGURE 1. These variations are designed to
test the adaptability of CNNs to different color distributions and added visual complexities:

1. Green Images Dataset: All images were converted to a green color.

2. Green Images with Jitter Dataset: Random background jitter was added to the green images
to introduce colored noise.

3. Multi-Color Images Dataset: Digits were randomly colored either red, blue, or green.

4. Multi-Color Images with Jitter Dataset: Colored jitter was incorporated into the background
of the multi-colored images.

5. RGB Images Dataset: Images were converted to RGB, allowing digits to appear in combina-
tions of red, green, and blue.

6. RGB Images with Jitter Dataset: Colored jitter was added to the RGB images, increasing the
complexity.

Figure 1: Sample from each dataset variant.
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3.1.2 CIFAR-10 dataset customization

The CIFAR-10 dataset, which consists of 32 × 32 color images of objects from ten different classes
such as animals and vehicles, is widely used to assess the robustness and adaptability of CNNs in
real-world scenarios. These images closely capture the complexities of real-world visual data. To
evaluate the effect of varying lighting conditions that are common in real-world settings, the hue
of the CIFAR-10 images was systematically adjusted as described below and shown in FIGURE 2.

1. Original Images Dataset: Utilized the unmodified original CIFAR-10 images.

2. Slight Hue Adjusted Dataset: The hue of the images was adjusted by a slight increment
(Δℎ𝑢𝑒 = 0.1), equivalent to a 36-degree shift on the color wheel.

3. Moderate Hue Adjusted Dataset: The hue of the images was adjusted by a moderate incre-
ment (Δℎ𝑢𝑒 = 0.2), equivalent to a 72-degree shift on the color wheel.

4. High Hue Adjusted Dataset: The hue of the images was adjusted by a larger increment
(Δℎ𝑢𝑒 = 0.3), equivalent to a 108-degree shift.

Figure 2: Sample from each variant of CIFAR-10 datasets

3.2 Color Balancing Layer

We introduce a novel color balance layer designed to improve model generalization by adjusting
the influence of color channels within input images. The layer redistributes the information across
channels and facilitates a more balanced and informative representation of the input data. This
layer reduces the redundancy by redistributing information from the dominant channels to the less
represented channels, thus enhancing the overall information content of the image.

3.2.1 Mathematical description

The color balance layer implements an information exchange mechanism between the color chan-
nels through a linear weighted transformation:
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Let 𝑐𝑟 , 𝑐𝑔, and 𝑐𝑏 denote the red, green, and blue channels of an input image 𝐼.

Let 𝑤𝑝 be the primary weight and 𝑤𝑠 =
1.0−𝑤𝑝

2 be the secondary weight.

The transformation applied to each channel is defined as follows:

• For the red channel 𝑐′𝑟 :
𝑐′𝑟 = 𝑐𝑟 · 𝑤𝑝 + (𝑐𝑔 + 𝑐𝑏) · 𝑤𝑠 (1)

• For the green channel 𝑐′𝑔:
𝑐′𝑔 = 𝑐𝑔 · 𝑤𝑝 + (𝑐𝑟 + 𝑐𝑏) · 𝑤𝑠 (2)

• For the blue channel 𝑐′𝑏:
𝑐′𝑏 = 𝑐𝑏 · 𝑤𝑝 + (𝑐𝑟 + 𝑐𝑔) · 𝑤𝑠 (3)

This transformation ensures that each channel contains original and redistributed components from
other channels, enhancing the entropy of the image.

The primary weight (𝑤𝑝) in a color balancing layer plays a critical role in determining the influence
of each color channel’s original content on the output image as shown in FIGURE 3. Specifically,
this weight dictates the proportion of the original channel data that is retained in the transformed
output. A higher𝑤𝑝 signifies a stronger retention of the original channel color, thus maintaining the
dominance of each channel’s inherent characteristics. For example, setting 𝑤𝑝 close to 1.0 means
that an image’s red, green, and blue channels predominantly retain their original intensities, with
only a minimal contribution from the other channels. This scenario is beneficial when the intrinsic
color distribution is crucial for image interpretation, such as in scenarios requiring high color
fidelity to the original scene. Conversely, a lower𝑤𝑝 reduces the dominance of the original channel
intensities, thereby increasing the proportion of information obtained from the other channels
and lead to a grayscale image. This increased cross-channel interaction can enhance the overall
balance and uniformity of color representation in the image, potentially improving model’s visual
perception where original color biases need to be mitigated. By adjusting 𝑤𝑝, the color balance
layer can thus finely control the balance between preserving original channel characteristics and
promoting color uniformity, directly impacting the image’s visual qualities and its suitability for
further processing in tasks like image classification, where color cues might be crucial.
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Figure 3: Effect of varying primary weight on the color balance of an image. From top left to
bottom right: 𝑤𝑝 = 1, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.333.

3.3 Spatial Dropout Layer

The Spatial Dropout Layer is an adaptation of the traditional dropout regularization technique,
which is commonly used in training neural networks. Unlike standard dropout, which randomly de-
activates individual neurons, Spatial Dropout targets entire feature maps. This approach promotes
the development of more robust and spatially invariant features within the network, as it prevents
the model from overly depending on specific spatial patterns or locations within the feature maps.

Mathematically, the Spatial Dropout Layer is described by the transformation:

𝑥dropped = 𝑥 ⊙ 𝑚 (4)

where ⊙ denotes element-wise multiplication. The mask 𝑚 is a binary mask that has the same
spatial dimensions as the feature map 𝑥. This mask is randomly generated during each training
iteration, with each element of the mask being set to zero with a probability 𝑝, which controls the
rate at which feature maps are dropped, thereby adjusting the layer’s regularization effect.

The introduction of Spatial Dropout forces the network to learn redundant representations across
various spatial locations, enhancing the model’s generalization capabilities and improving its ro-
bustness to spatial variations in the input data.
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3.4 Network Architecture

3.4.1 For MNIST datasets

The CNN architecture employed in this study is specifically tailored to process MNIST images,
drawing inspiration from the VGG network [30] but simplified to suit the relatively straightforward
nature of the MNIST dataset. This adaptation involves reducing the number of layers while still
adhering to core architectural principles that have proven effective for image recognition tasks.

Convolutional Layers: The network starts with two initial convolutional layers, each equipped
with 32 3 × 3 filters, followed by additional layers that contain 64 filters. These layers are
designed to extract low to mid-level features from the images.

Pooling Layers: Max pooling layers are incorporated to reduce the spatial dimensionality of the
feature maps and to abstract the features further, reducing the computational load and to
prevent overfitting.

Fully Connected Layers: A series of fully connected layers were used followed by a SoftMax
activation to get the class probabilities of the input images.

This simplified VGG-inspired architecture effectively balances performance and computational
efficiency, making it ideal for tasks involving less complex image datasets like MNIST. The archi-
tecture of the network is shown in FIGURE 4.

Conv
32x3x3

Conv
32x3x3

Max
Pool

Conv
64x3x3

Conv
64x3x3

Max
Pool Dense SoftMax

Figure 4: The architecture of simplified VGG16 network for MNIST images

3.4.2 For CIFAR dataset

For the CIFAR dataset, which contains simple real-world image data, the VGG16 architecture was
adapted to suit the specific needs of this dataset. The VGG16 architecture, known for its depth
and robustness, is particularly well-suited for capturing detailed features necessary for classifying
real-world images. The adaptation includes:

Convolutional Blocks: The network consists of multiple blocks of convolutional layers, where
each block progressively increases the number of 3 × 3 convolutional filters from 64 to 512.
This setup is designed to enhance detailed feature extraction across the network.
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Pooling Layers: Following each convolutional block, a max pooling layer is employed. These
layers serve to reduce the spatial dimensions of the feature maps, thereby helping to prevent
overfitting and reducing computational complexity.

Fully Connected Layers: The architecture culminates in three dense layers, leading to a final
softmax activation function. The softmax layer is crucial for classifying the images into one
of ten categories, reflecting the class labels of the CIFAR dataset.

This adapted version of VGG16 is optimized for performance with the CIFAR dataset, providing
a robust framework for handling its diverse and complex image data. The architecture is shown in
FIGURE 5.

Conv 64 Conv 64 MaxPool Conv 128 Conv 128 MaxPool

Conv 256 Conv 256 Conv 256 MaxPool Conv 512 Conv 512 Conv 512 MaxPool

Conv 512 Conv 512 Conv 512 MaxPool Dense
4096

Dense
4096

SoftMax
1000

Figure 5: The architecture of VGG16 network used for CIFAR-10 images

3.5 Training and Evaluation

For both MNIST and CIFAR datasets, we train the respective CNN models on the original dataset
and evaluate their performance on the color-shifted versions using cross-entropy loss and classifi-
cation accuracy as the evaluation metric.

We used standard data augmentation techniques including random cropping, horizontal flipping,
and translation, during training to improve generalization. The models are trained using Adam
optimizer with an initial learning rate of 0.001 and batch size of 128 for 150 epochs.

3.6 Baseline Models

We first establish baseline performance by training the CNN architectures without color balancing
and spatial dropout layer on the original MNIST and CIFAR-10 datasets. These baseline models
serve as a reference for evaluating the impact of our proposed layers.
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3.7 Models With Modified Layers

We then train ourmodels using the proposed Color Balancing Layer and Spatial Dropout Layer after
the input layer, on Green MNIST and original CIFAR-10 datasets. We conducted a comparative
analysis against baseline models, models incorporating traditional normalization layers, such as
Batch Normalization [31] and Layer Normalization [32], and models with depth-wise convolutions
instead of normal convolutions. The models are tested on standard and color-shifted versions of the
datasets to measure their robustness and generalization capabilities across varied color conditions,
aiming to establish the effectiveness of the proposed layers.

4. RESULTS

4.1 Results of Standard Architectures on Modified MNIST and CIFAR10 Datasets

To establish a baseline for model performance, we tested different standard CNN architectures like
VGG16, Resnet50 [33], Mobilenetv2 [34]and EfficientNet [35] on modifiedMNIST and CIFAR10
datasets. The results are shown in TABLE 1 and TABLE 2. The accuracy of the models drops
significantly when tested on datasets different from the training distribution.

Table 1: Standard CNNs’ performance on various modified MNIST datasets

Model Green
Images

Green
Images +
Jitter

Multi-
Color
Images

Multi-
Color

Images +
Jitter

RGB
Images

RGB
Images +
Jitter

VGG16 0.9939 0.9915 0.7881 0.7876 0.9696 0.9666
Resnet50 0.9858 0.8763 0.4917 0.4914 0.6773 0.5645
Mobilenetv2 0.9888 0.4398 0.4525 0.4497 0.4760 0.4542
Efficientnet 0.9856 0.8447 0.4437 0.4368 0.6121 0.5326

In addition, all models, including Vision Transformers (ViT) [36] and ConvNeXt [37], are pre-
trained on ImageNet prior to fine-tuning onCIFAR-10 andCIFAR-100. Their performancemetrics,
reported in TABLE 3 and TABLE 4, provide further insights into the comparative effectiveness of
both transformer-based and modern CNN-based architectures on modified data.
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Table 2: Standard CNNs’ performance on various modified CIFAR10 datasets

Model Original
Images

Slight Hue
Adjusted
Images

Moderate
Hue

Adjusted
Images

High Hue
Adjusted
Images

VGG16 0.9258 0.8518 0.7578 0.6879
Resnet50 0.9346 0.8298 0.7572 0.6864
Mobilenetv2 0.9249 0.7945 0.6959 0.5901
Efficientnet 0.9314 0.7996 0.6432 0.6191

Table 3: Performance of Imagenet pre-trained models on CIFAR10

Model Original
Images

Slight Hue
Adjusted
Images

Moderate
Hue

Adjusted
Images

High Hue
Adjusted
Images

VGG16 0.942 0.8871 0.7963 0.6531
ResNet50 0.940 0.8577 0.7544 0.7212
MobileNetV2 0.943 0.8336 0.7481 0.6947
EfficientNet 0.9452 0.8394 0.7278 0.6702
ConvNeXtTiny 0.9504 0.7499 0.6573 0.6214
ViT 0.9492 0.6604 0.5342 0.4515

Table 4: Performance of ImageNet pre-trained models fine-tuned on CIFAR-100.

Model Original
Images

Slight Hue
Adjusted
Images

Moderate
Hue

Adjusted
Images

High Hue
Adjusted
Images

VGG16 0.7423 0.5420 0.4512 0.4202
ResNet50 0.8209 0.7104 0.6501 0.6197
MobileNetV2 0.7954 0.7233 0.6506 0.6055
EfficientNet 0.8542 0.7666 0.6921 0.6310
ConvNeXtTiny 0.8850 0.6244 0.5205 0.4777
ViT 0.8652 0.5561 0.4570 0.3642
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4.2 Results for the MNIST Dataset

TABLE 5 shows the performance of each model on the MNIST dataset. The baselines models
and models with traditional normalization layers exhibit a significant drop in performance when
evaluated on the color shifted versions of MNIST. By contrast, the model with our proposed layers
performed consistently across the color shifted datasets.

Table 5: Model performance on various modified MNIST datasets

Model Green
Im-
ages

Green
Im-
ages +
Jitter

Multi-
Color
Im-
ages

Multi-
Color
Im-
ages +
Jitter

RGB
Im-
ages

RGB
Im-
ages +
Jitter

Baseline 0.9972 0.7518 0.4378 0.3079 0.8777 0.8264
Baseline + colored jitter 0.9952 0.9941 0.4077 0.4111 0.9150 0.9378
Layer Normalization 0.9883 0.9784 0.4004 0.3997 0.9178 0.9129
Depthwise Convolution 0.9821 0.9821 0.4037 0.3904 0.6952 0.4439
Color Balancing 0.9821 0.9916 0.4004 0.3990 0.9434 0.8421
Spatial Dropout 0.9947 0.9942 0.4315 0.4311 0.9864 0.9876
Color balancing & Spatial Dropout 0.9980 0.9975 0.9745 0.9757 0.9666 0.9652

4.3 CIFAR Datasets

Similar to the MNIST results, the baseline model shows a significant drop in accuracy when tested
on color shifted images of CIFAR-10 and CIFAR-100, with accuracy decreasing by as much as
15% as shown in TABLE 6 and TABLE 7. Whereas, the models using color-balancing and spatial
dropout layer performed significantly better.

4.4 Effect of Primary Weight

We investigate the effect of primary weight on the model’s performance and generalization. As the
primary weight is decreased, the exchange of information between the color channels is increased.
This strategy is designed to enhance image representation by integratingmore diverse features from
each channel. However, it also leads to a noticeable compromise: a reduction in the distinctiveness
of the original color information as shown in the FIGURE 3. As the color is an important visual
discriminator, a decrease in the model performance is expected. The results are shown in the tables
below:
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Table 6: Model Performance Across Hue Adjusted Image Sets of CIFAR-10

Model Original
Images

Slight Hue
Adjusted
Images

Moderate
Hue

Adjusted
Images

High Hue
Adjusted
Images

Baseline 0.9258 0.8518 0.7578 0.6879
Color Balancing 0.9021 0.8256 0.7248 0.6818
Spatial Dropout 0.8130 0.7875 0.7638 0.7595
Color Balancing & Spa-
tial Dropout

0.9287 0.9181 0.9077 0.8992

Table 7: Model Performance Across Hue Adjusted Image Sets of CIFAR-100

Model Original
Images

Slight Hue
Adjusted
Images

Moderate
Hue

Adjusted
Images

High Hue
Adjusted
Images

Baseline 0.7184 0.6588 0.6062 0.5879
Color Balancing 0.7191 0.6462 0.6248 0.5918
Spatial Dropout 0.6830 0.6675 0.6438 0.6295
Color Balancing & Spa-
tial Dropout

0.7192 0.7084 0.6967 0.6793

Table 8: Model performance on modified MNIST datasets for different primary weights

Primary Weight Green
Images

Green
Images +
Jitter

Multi-
Color
Images

Multi-
Color

Images +
Jitter

RGB
Images

RGB
Images +
Jitter

0.95 0.9907 0.9918 0.9693 0.9543 0.9769 0.9777
0.9 0.9980 0.9975 0.9702 0.9709 0.9666 0.9652
0.8 0.9981 0.9980 0.9802 0.9809 0.9886 0.9884
0.7 0.9973 0.9982 0.9890 0.9872 0.9893 0.9898
0.6 0.9976 0.9985 0.9970 0.9914 0.9924 0.9915
0.5 0.9979 0.9918 0.9851 0.9913 0.9955 0.9935
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Table 9: Model performance on Hue adjusted images fromCIFAR 10 for different primary weights

Primary Weight Original
Images

Slight Hue
Adjusted
Images

Moderate
Hue

Adjusted
Images

High Hue
Adjusted
Images

0.95 0.9161 0.9031 0.8859 0.8892
0.9 0.9258 0.9181 0.9077 0.8989
0.8 0.9086 0.8924 0.8859 0.8892
0.7 0.9073 0.8899 0.8800 0.8761
0.6 0.9033 0.8863 0.8712 0.8861
0.5 0.8872 0.8793 0.8703 0.8724

From the tables above, it can observed that, decreasing the primary weight improved performance
on MNIST datasets, even though the network became invariant to color, as shown in TABLE 8.
However, model performance increased only until the primary weight was reduced to 0.9, it then
deteriorated as the primary weight was further decreased on hue-adjusted CIFAR-10 images as
shown in TABLE 9. Therefore, a lower primary weight is suitable for conditions where color does
not play a critical role, whereas a higher primary weight should be maintained in situations where
color is important for image classification.

4.5 DISCUSSION

Our experiments on both the MNIST and CIFAR-10 datasets demonstrate that CNNs trained on
a specific color distribution struggle to generalize to color-shifted images, even when traditional
normalization layers like Batch Normalization and Layer Normalization are employed. The pro-
posed Color Balancing Layer and Spatial Dropout Layer effectively address this issue by enhancing
the network’s robustness to color variations and spatial dependencies, respectively. The Color
Balancing Layer balances the color channels, reducing the impact of color shifts, while the Spatial
Dropout Layer encourages the network to learn more robust and spatially invariant representations.
The combination of these two layers yields the best performance, achieving significant accuracy
improvements on the color-shifted versions of both datasets. These results highlight the impor-
tance of incorporating specialized architectural components to improve the generalization ability
of CNNs on color shifted images.

While our proposed layers have shown promising results, there are potential limitations and future
research directions. The effectiveness of these layers may depend on the specific dataset and color-
shift characteristics. Further evaluation on a wider range of datasets and color-shift scenarios is
necessary to assess their robustness.
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Finally, exploring the integration of our proposed layers with other generalization techniques,
such as data augmentation or adversarial training, could potentially lead to further performance
improvements.

5. CONCLUSION

We addressed the challenge of improving the generalization ability of CNNs color shifted images.
We proposed a novel approach by using Color Balancing layer and Spatial Dropout layer. Spatial
Dropout effectively increases the robustness of the network by encouraging the model to learn more
diverse and representative features that are not overly dependent on specific channels in the input
image. The Color Balancing and Spatial Dropout layer balances the discriminative information
in the color channels of the input image, reducing the impact of color shifts on the network’s
performance. We evaluated the effectiveness of our proposed layers on the modified MNIST,
CIFAR-10 and CIFAR 100 datasets. Our experiments demonstrated that incorporating the Color
Balancing and Spatial Dropout layer significantly improves the generalization ability of CNNs on
color shifted images, outperforming baseline models.
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6. APPENDIX

In the appendix, we describe the algorithms used to create the color-shifted versions ofMNIST data.
These algorithms apply color transformations to the original grayscale images to simulate various
color processing scenarios, such as changing image hues or adding color jitters. The methods are
implemented to test the robustness of models against color variations and to enhance their ability
to generalize across different color distributions.

6.1 Convert Images to Green-Channel Only

Algorithm 1 Convert Images to Green-Channel Only
1: procedure RvgvbConv(𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦, 𝑛_𝑔𝑟𝑒𝑒𝑛_𝑜𝑛𝑙𝑦)
2: 𝑐ℎ𝑜𝑖𝑐𝑒_𝑙𝑖𝑠𝑡 ← [0, 1, 2] ⊲ Color channel indices: 0 = Red, 1 = Green, 2 = Blue
3: 𝑙 ← [] ⊲ Initialize list to store images
4: for 𝑖 ∈ range(len(𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦)) do
5: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← zeros((32, 32, 3), dtype = trainX.dtype)
6: 𝑖𝑚𝑎𝑔𝑒 ← 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦[𝑖, :, :]
7: if 𝑛_𝑔𝑟𝑒𝑒𝑛_𝑜𝑛𝑙𝑦 then
8: 𝑛← random.choice(𝑐ℎ𝑜𝑖𝑐𝑒_𝑙𝑖𝑠𝑡)
9: else
10: 𝑛← 1 ⊲ Always use green channel
11: end if
12: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[:, :, 𝑛] ← 𝑖𝑚𝑎𝑔𝑒 ⊲ Assign image to chosen channel
13: 𝑙.append(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
14: end for
15: return np.array(𝑙)
16: end procedure
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6.2 Algorithm for Random Color Jitter

Algorithm 2 Apply Random Color Jitter to Images
1: procedure ApplyJitter(𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦, 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ)
2: for 𝑖𝑚𝑔 ∈ 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦 do
3: 𝑗𝑖𝑡𝑡𝑒𝑟 ← random values within [−𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ]
4: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔 + 𝑗𝑖𝑡𝑡𝑒𝑟 ⊲ Add jitter to each pixel
5: 𝑖𝑚𝑔 ← clip(𝑖𝑚𝑔, 0, 255) ⊲ Ensure pixel values are valid
6: end for
7: return 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦
8: end procedure

6.3 Algorithm for Multi-Color Images with Color Jitter

Algorithm 3Multi-Color Images with Color Jitter
1: procedure rvgvb_with_jitter(image_array, n_green_only)
2: 𝑐ℎ𝑜𝑖𝑐𝑒_𝑙𝑖𝑠𝑡 ← [0, 1, 2] ⊲ List of color channel indices
3: 𝑙 ← [] ⊲ Initialize list to hold processed images
4: for 𝑖 ∈ range(len(𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦)) do
5: 𝑗𝑖𝑡𝑡𝑒𝑟_𝑚𝑎𝑠𝑘 ← np.random.rand(32, 32, 3) × 75
6: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← jitter_mask.astype(𝑛𝑝.𝑢𝑖𝑛𝑡8)
7: 𝑖𝑚𝑎𝑔𝑒 ← 𝑖𝑚𝑎𝑔𝑒_𝑎𝑟𝑟𝑎𝑦[𝑖, :, :]
8: if 𝑛_𝑔𝑟𝑒𝑒𝑛_𝑜𝑛𝑙𝑦 then
9: 𝑛← np.random.choice(𝑐ℎ𝑜𝑖𝑐𝑒_𝑙𝑖𝑠𝑡) ⊲ Choose a channel index randomly

10: else
11: 𝑛← 1 ⊲ Always use green channel if not random
12: end if
13: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒[:, :, 𝑛] ← 𝑖𝑚𝑎𝑔𝑒 ⊲ Assign image to chosen channel
14: 𝑙.append(𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
15: end for
16: return np.array(𝑙) ⊲ Return the processed image array
17: end procedure

6.4 Algorithm to Apply Dynamic Color Palette to MNIST Images

The function apply_dynamic_palette_to_batch enhances a batch of MNIST images by applying a
dynamic color gradient to each image, which is normally in grayscale. This is achieved by first
normalizing the pixel values to the range [0,1]. The function then calculates a gradient direction
based on a randomly chosen angle for each image, using this direction to determine the intensity of
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the color at each pixel based on its distance from the center of the image. If enabled via a boolean
flag, the function can also introduce a subtle random noise (jitter) to the background, thus adding
visual complexity. The final output is a batch of RGB images, where the originally visible parts of
theMNIST digits are now represented with a colorful gradient overlay, and the background remains
either black or slightly jittered.

Algorithm 4 Apply Dynamic Color Palette to MNIST Images
1: procedure ApplyDynamicPalette(𝑖𝑚𝑎𝑔𝑒𝑠, 𝑗𝑖𝑡𝑡𝑒𝑟)
2: rgb_images← zeros(shape = (len(𝑖𝑚𝑎𝑔𝑒𝑠), 32, 32, 3), dtype = 𝑛𝑝. 𝑓 𝑙𝑜𝑎𝑡32)
3: for idx, image ∈ enumerate(𝑖𝑚𝑎𝑔𝑒𝑠) do
4: norm_image← image.astype(𝑛𝑝. 𝑓 𝑙𝑜𝑎𝑡32)/255.0
5: angle← np.random.uniform(0, 2 × 𝜋)
6: direction← np.array([np.cos(𝑎𝑛𝑔𝑙𝑒), np.sin(𝑎𝑛𝑔𝑙𝑒)])
7: center← np.array( [16, 16])
8: for 𝑖 ∈ range(32) do
9: for 𝑗 ∈ range(32) do
10: if norm_image[𝑖, 𝑗] > 0 then
11: pos← np.array( [𝑖, 𝑗])
12: distance← np.dot(pos − center, direction)
13: max_dist←

√
2 × 16

14: normalized_distance← (distance +max_dist)/(2 ×max_dist)
15: color← plt.cm.viridis(normalized_distance) [: 3]
16: rgb_images[idx, 𝑖, 𝑗 , :] ← color × norm_image[𝑖, 𝑗]
17: else if 𝑗𝑖𝑡𝑡𝑒𝑟 then
18: rgb_images[idx, 𝑖, 𝑗 , :] ← np.random.rand(3) × 0.1
19: end if
20: end for
21: end for
22: end for
23: return rgb_images
24: end procedure

7. Algorithm for Custom Color Balance Layer
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Algorithm 5 Custom Color Balance Layer
1: Input: primary_weight
2: Output: balanced color channels
3: procedure CustomColorBalance(𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑤𝑒𝑖𝑔ℎ𝑡)
4: Initialize primary_weight
5: Compute secondary_weight← (1.0 − 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑤𝑒𝑖𝑔ℎ𝑡)/2.0
6: Split input tensor into three color channels: red, green, blue
7: new_red← red · primary_weight + green · secondary_weight + blue · secondary_weight
8: new_green← red · secondary_weight + green · primary_weight + blue · secondary_weight
9: new_blue← red · secondary_weight + green · secondary_weight + blue · primary_weight
10: Stack new_red, new_green, new_blue back together
11: return output
12: end procedure
13:
14: procedure get_config
15: config← super.get_config()
16: config.update({primary_weight: primary_weight})
17: return config
18: end procedure
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