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Abstract

Machine learning intends to be a biology-mimicking learning method, implemented by means
of technical computing. Their technology and methods, however, differ very much; mainly
because technological computing is based on the time-unaware classic computing paradigm.
Based on the time-aware computing paradigm, the paper discovers the mechanism of bio-
logical information storing and learning; furthermore, it explains, why biological and tech-
nological information handling and learning are entirely different. The consequences of the
huge difference in transmission speed in those computing systems may remain hidden in
“toy”-level technological systems but comes to the light in systems having large size and/or
mimicking neuronal operations. The biology-mimicking technological operations are in re-
semblance to the biological operations only when using time-unaware computing paradigm.
The difference leads also to the need of introducing “training” mode (with desperately low
efficiency) in technological learning, while biological systems have the ability of life-long
learning. It is at least misleading to use technological learning methods to complement
biological learning studies. The examples show evidence for the effect of transmission time
in published experiments.

Keywords: Learning, machine learning, Computing efficiency, Temporal logic, Time-Aware
computing, Neuronal computing, Computing paradigm.

1. INTRODUCTION

The ability to learn is a key factor in both the evolution of life and our individual survival. “The broad
definition of learning: use present information to adjust a circuit, to improve future performance”
needs explanation also [1], what is the “present information”, and information at all; furthermore
it implies that learning is a temporal process. There are many different definitions what actually
‘information’ means [2]. In neural science it was observed and theoretically discussed [3] that
when using neuronal spikes, “the more precisely spike timing is measured, the more information is
gained”. However, the conclusion, that timing delivers information, is missing from the information
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theory. Information handling is an overly complex process, and it includes coding, decoding,
transferring, storing, and retrieving processes, among others.

During learning, the organ uses the past information stored in its internal state variables. However,
“we should not seek a special organ for ‘information storage’ — it is stored, as it should be, in every
circuit” [1]. The definition also suggests to consider learning (and, because of this: information
processing) as a temporal process: the organs have a sensing time, a processing time, a storage
access time (despite that “information stored directly at a synapse can be retrieved directly” [1]) and
a transfer time (conduction time) to the next computing organ. The general model of computing [4],
based on the time-aware computing paradigm [5], correctly describes the general learning process
(is underpinned by anatomical evidence, but still needs dedicated experiments, designed with time-
aware behavior in mind).

2. THEORY OF TEMPORAL BEHAVIOR

The speed of interaction is finite [6] both in biological computing and technological computing.
The finite speed contributes finite transfering timing between computing units. The effect is well
known, but neglected. As pointed out [7], von Neumann’s computing model mentioned the fact that
in principle also transfer time must be considered. In the approximation which targeted implemen-
tation using vacuum tubes only, it could be neglected. However, the quickly developing technology
invalidated that approximation in a stealthy way. For today, timing relations of technological
computing are entirely different from those assumed in the classic computing paradigm, which
computing science is based upon.

Von Neumann in his famous ‘report’ did provide a “procedure” only for the case when the trans-
mission time can be neglected apart processing time. Actually, von Neumanns statement was that

if [timing relations of] vacuum_tubes
then Classic_Paradigm;
else Unsound;

The more general computing paradigm shall provide the proper procedure instead of the ‘unsound’
branch, when this omission corresponding to [the time relationships between] electron tubes is not
valid.

2.1 The General “Procedure”

In the general computing procedure we need to work — in addition to the spatial coordinates — also
with the time coordinate of the computing events; considering that those coordinates are connected
by the interaction speed. That is, we introduce a 4-D coordinate system, which we call fime-
space system. This representation is in close resemblance with Minkowski’s famous space-time
system; with the essential difference that a different scale factor is used. In the space-time system
all coordinates have dimension of distance, and the time coordinate is given as the corresponding
time multiplied by the interaction speed; free and homogeneous propagation is assumed. In our
time-space system [8, 6] the spatial distances are divided by the interaction speed and the time
represents itself.
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That is, all coordinates have dimension of time; this is the appropriate (measurable) quantity given
that both technological and biological computing must meet their timing constraints. We assume a
sectioned and directed propagation; furthermore the distance is measured along signal path, rather
than calculated from the coordinates of its endpoints.

Figure 1: The constrained computing operations in our time-space approach. The operating units
can be processors, networked computers, gates or neurons; depending on the context.
The finite interaction speed and the physical distance of computing elements results in
“idle waiting times” (see mixed-color vectors in figure). Idle waiting is one of the major
reasons of computing systems’ inefficiency.

We describe computing events in this time-space system as constrained vectors, see FIGURE 1.
A processing event happens at a given position, but its beginning and end have different time
coordinates; that is the processing vector is parallel with axis ¢. In contrast, a data transfer event
changes both spatial and time coordinates simultaneously, that is, the data transfer vectors are
not parallel with axis ¢ and are not in the plane perpendicular to it. The vectors are constrained
both in the sense that the interaction speed connects their spatial and time coordinates, and that a
processing cannot start until its operand arrives, and similarly, delivery of its result cannot start
until the processing finished: the two operations block each other. This constraint introduces ‘idle
time’ to computing. This idle time in one form leads to inefficiency of processors [9, 7], in another
form to inefficiency of parallelized sequential computations [5]. When there are several operands,
before the processing may begin, all operands must arrive at their destination.; similarly, all results
from multiple processors must be delivered from the output sections of the processing units. These
constraints must be emphasized when discussing operation of computing accelerators, especially
vector and tensor processors [10, 5].

2.2 The General Computing Model

In the computing model, although not explicitly, von Neumann assumed that special events im-
plement the computing constraints, as depicted in FIGURE 2. Those signals (representing the
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computing events) are handled differently in different implementations. Even, they may be replaced
by some ‘foreign’ signal, or they can be completely omitted.

Operand 1 available _[ 1
Operand 2 available __[

Begin computing

[
End computing N
Computing cycle | I N
M
[
I

Result available |

Refractory

Signal delivery

Signal transfer

Synchron signal

Figure 2: Timing relations of von Neumann’s complete timing model, with data transfer time
in chained operations; synchronization becomes an issue as the physical size of the
computing system grows. Notice that in systems with central clock synchron signals
must be bypassed or neglected

Von Neumann warned in his “First Draft” [11], section 5.4, that the operations must be synchronized
appropriately (in our wording, the participating processes must be properly aligned to satisfy the
blocking constraints).

Although von Neumann suggested to use central synchronization to symplify the initial design, he
limited the validity range of his suggestion for the case, when the dispersion of the clock signals
is negligible, which is not the case in modern technologies [12, 5]. As the system’s physical size
grows, the effect of transfer time also grows, or the processing time decreases apart from transfer
time. According to von Neumann, the difference in arrival times is critical: “The emphasis is on
the exclusion of a dispersion” [11]. In addition to its logical contraints, because of its technical
implementation, computing faces further limitations.

The operands must arrive at the operating unit before the ‘Begin Computing’ signal, and the pro-
cess must issue an ‘End Computing’ signal. However, the result signal must also be delivered
to the “output section” of the unit, so a ‘Signal delivery’ time is also needed. This latter time
must not be confused with the ‘Signal transfer’ time. In the event of chained operations, this
is required, to deliver data from the output section of one computing unit to the input section of
another unit (even if, as was the situation with processors, the same physical processor gets used in
both operations). The ‘Signal transfer’ time, as an approximation, is neglected in the classic com-
puting paradigm. The approximation, however, is increasingly invalid for modern technological
implementations.
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3. BIOLOGICAL LEARNING

In biology, the interaction speed (conduction velocity) is million times lower than the electromag-
netic wave’s propagation speed in wires, so the ‘spatiotemporal’ behavior of the neuronal operation
is commonly accepted (although it is handled by using an inappropriate method, using functions
with separable time variable).

3.1 Implementing Synchronization Signals

A spike arriving at a synapse experiences closed gate (zero conductance) [13, 14]. The stalled charge
delivery increases the local potential, which opens the voltage-gated channels, enabling charge
delivery to the membrane. That is, the ‘Operand available’ signal is generated by the operand itself;
and the arrival of the first operand generates signal ‘Begin computing’. The neuron membrane
makes the computation: integrates the received charge until it reaches its threshold potential and
generates the ‘End computing’ signal. The time until threshold reached depends both on the synaptic
current (conduction speed), and the proportion of charge the gsyn() function (the synaptic strength)
of the synapse [13, 14] enables to enter the membrane. When ‘End computing’ received, inside
the neuron membrane a ‘Refractory’ period begins (prepares for a new computing operation) and
at the same time at the hillock a spike is prepared (’Signal delivery’). The ‘Signal transfer’ period
starts when the spike starts towards its destination neuron, outside the source neuron. All signals
carry their synchronization signals; biology uses no central clock for synchronization [15]. Instead,
it natively synchronizes its signals (aligns them properly). Biology can modulate the interaction
speed; delivering the same charge with higher conduction speed means higher synaptic current;
an aspect which remains out of sight in technical implementations. The information essentially
contains the length of ‘Computing cycle’ and the end time of ‘Signal delivery’ (biology uses ‘firing
rate’, the inverse of length of ‘Computing cycle’, and the phase angle, the offset of the end time
of ‘Signal delivery’ relative to some basic frequency). That is, biology uses asynchronous auto-
synchronization [16], furthermore it uses a mixed-mode digital/analog computing method.

3.2 The Learning Mechanism

Given that spikes arriving to neurons’ synapses synchronize themself, a neuron has basically two
ways to adjust its time of spiking. Given that in neuronal communication essentially charge collec-
tion takes place, the neuron either uses more charge from its synaptic input or uses higher current.
In the first case the neuron increases the temporal width of its synaptic function gsyn() [13, 14]
through increasing local concentration of neurotransmitters; this mechanism is commonly mimicked
in machine learning through modifying the “synaptic weight” W; of the i-th synapse. In the second
case it increases the synaptic current (increases the delivery speed), so the same amount of charge
arrives at an earlier time; a mechanism which has no equivalent in machine learning. The dynamic
balance of the two mechanisms enables not only for learning, but also for forgetting, replacing,
redundancy, rehabilitation, etc. Noticeable that in both cases only the receiver neuron adjusts itself,
the sender neurons need not to adapt themselves.

The effect in both cases is the same: the threshold at an earlier time is reached by neuron. Biology
notices their effect as an increased firing rate (the inverse of the repetition time). The first method
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is quick (in the millisecond range) but energy wasting: keeping the concentration gradient needs a
lot of ion pumping.! The second method is slow (in the range of days to weeks): needs anatom-
ical changes, but the operation needs lower energy consumption. That is, biology finds the best
timing quickly (short-term learning), but if the external condition persists, it finalizes storing that
information: myelinates the corresponding axon (long-term learning; for anatomical evidence see
cited references in [17])? , and the higher delivery speed enables to decrease the local concentration
gradient. These two mechanisms are facets of the same coin: biological neuron adjusts its processing
and transfer times. That is, biology stores information locally, in the form of adjusting time (a
dynamic form). Any study attempting to grasp biology’s information storage and processing in
some static form, fails.

Figure 3: How neurons learn. A) The initial state B) Short time learning, changing synaptic weight
by +50% C) Long time learning, changing conduction velocity by +10%.

The cooperation of these two mechanisms is in accordance with Hebb’s original observation [18].
He actually observed the effect of long-term learning, in the form that “the persistence or repetition
of a reverberatory activity (or “trace”) tends to induce lasting cellular changes”. Actually, Hebbian
learning is a two-step process: at the beginning of learning, the synaptic strength is increased. One
can presuppose that exceeding membrane’s threshold repeatedly using the same pattern, “freezes”
neurotransmitter concentration, enabling to notice the changed gradient from the outside world. As
Hebb already described: “When one cell repeatedly assists in firing another, the axon of the first
cell develops synaptic knobs (or enlarges them if they already exist) in contact with the soma of
the second cell.” In the second step, synaptic strength may decrease to near of its original value
(enabling to economize energy), and the learned information is stored anatomically, as the changed
thickness of the myelination of the corresponding axon. Notice that here the anatomic consequences
are noticed; “the persistence or repetition of a reverberatory activity” actually means a special noise
averaging. The primary change, in the first step, is hard to measure.

The equivalence of the 2 mechanisms in getting to know is illustrated in FIGURES3, displaying how
the version explains in what form the data is saved and adjusted in biological neuron. Furthermore, it

! For mimicking this mechanism, on one side one must consider the finite speed of the neurotransmitters, that is, that the speed of
change in the value of W; is limited. On the other side, transmitters are physically moved from the region correspondig to one
synapse to another, that is the sum of all weights must be the same (renormalization by biology).

2 The evidence that neural networks must “invest” in information processing, is known, see for example chapter “Pricing Neural
Information” in [3]. However, connection between different anatomical characteristics and learning, furthermore the “economic
aspects” of operation are not discussed.
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explains and joins those 2 learning modes. In FIGURE 3 (FIGURE 1 shows an additional coordinate
system within it) We believe that the activation of a neuron at the coordinates will be beneficial
(—1,0,0) happens and a neuron that fires to participants of an assembly (aligned alongside coordinate
axis y at x values —0.3, 0.1 and 0.4). That figure assumes that the activation (after being forwarded
to the point of branching) branches toward 3 participants of assembly A. At location, the spikes are
transmitted to their common target neuron. (—1.5, 0.7) by A; members. W1,W2, W3 (assumed of
being equal for A) are the analogous synaptic weights of the targeted neuron, and 3acquired spikes
may also cause the destination neuron to fire (the aggregate of the three spikes’ ability contributions
is simply over the threshold).

Given that the location of the assembly participants and their firing timings barely vary, so vary
their arrival timings (see the red arrowheads) of the spikes from the assembly participants at goal’s
position.The frequently cited simplified form of Hebb’s rule “cells that fire together wire together”
is probably more correct in the form “neurons wire together if they fire together” [19]: neural spikes
to assembly members shall follow very similar path to be able to fire together.

The Target is initially in state of rest. Once the initial spike arrives, it will increase the membrane’s
potential, and so do rather later the 2nd spike and third spike, too. With the charge introduced
by the 3rd spike, The target reaches its verge, and (after some “sign transport time”: charging the
membrane) it fires. The computation’s length is denoted according to the length of the blue arrow:
Its bottom is at the arrival time of the initial spike, its top head is at the start of refractory period of
the neuron. Given that once accomplishing the threshold, a while is wanted to membrane’s charge
to its working potential, the measurement of the arrow consists of a further contribution. For more
details see [3]. Notice that some learning details are pre-programmed and that the learned new
knowledge is equivalent to the preprogrammed (maybe genetic) one, furher more that learning is a
native and life-long ability, as the elegant experiment [20] demonstrated.

Information may have different meanings in different contexts, and neuronal information theory [3]
claims that when using neuronal spikes, as observed: “the more precisely spike timing is measured,
the more information is gained”. In the case shown in FIGURE3, the assembly members fire after
they receive the spike from neuron Exc, so their spikings are not independent. Similarly, Target s
firin g is not independent at all from firing of the other mentioned neurons; just the opposite. As
a consequence, the fundamental assumption of a Poisson model that spikes are generated indepen-
dently, is not fulfilled. Furthermore, the presence of a spike is digital datum (one bit)*, the rest is
analog. Firing carries the information learned.

The beginning of the spike may shift and the firing rate may change; an analog information content.
Our findings are in good accordance with the claim [3], that the information is mainly encoded in
the “temporal precision” of the spikes and is estimated to need up to three bits/spike. We can also
add that this “temporal precision information” is contributed by the learning process. Given that
estimated information content of a spike is between one and three bits [1], the analog information
may even dominate. However, the claim that timing delivers information, is missing from the
mathematical theory; given that it assumes instant interaction. Using information theory for neural
information transfer needs revision (for a definition of neural information see [3]).

3 The shape may carry further digital information. According to [23], if the slope of a received spike exceeds a current threshold, it
leads to immediate spike generation; enabling direct sychronization. Worth to notice that this digital information piece is hidden in
the analog information (spike shape).

4 At the level of biological neuronal networks, firing rate is a chief way of information transfer.
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4. MACHINE LEARNING

The most attractive feature of biological learning is that the ability of learning seems to be a native
feature of the network of circuits, which can cope with the enormous amount of data from their
environment, without needing programming efforts. Computing technology attempts to organize
various number of computing units (ranging from a few-neuron “toy” systems to supercomputers)
into networks and attempts to mimic neuronal operations, including learning. To operate those
networks, HW/SW solutions and mathematical methods have been developed, both (more or less)
mimicking biology.

By analogy, and to distinguish it from biological learning, the methods used in those networks are
called ‘machine learning’ (sometimes mistakenly identified as “artificial intelligence” [21]). Those
networks are built from components designed for processor-based computing, and those “biology-
mimicking” systems are missing essential features of biological computing. Under these conditions,
in some very specialized fields (such as playing a game or identifying a pattern), those systems can
show up remarkable successes. However, in general, given that the performance scaling is strongly
non-linear [9], “core progress in Al has stalled in some fields” [22].

Although it is hard both to list the crucial differences between technological components attempting
to mimic a biological component and to separate completely the HW and SW issues, some of the
most important ones are mentioned below. In addition, some neuronal-operation specific issues are
also discussed. The final reason is in all cases the time-unaware computing paradigm.

4.1 Implementing Synchronization Signals

Special care must be taken when handling signals ‘Begin computing’, ‘End computing’ and ‘Signal
delivery’ signals®. An operating unit always has input signal levels for its operands and provides
output signal levels for its results, but the values of those signals correspond surely to their expected
values only if the timing signals are properly aligned. All operands ought to be brought to the enter
phase of the computing unit before ‘Begin Computing’ arrives. Similarly, ‘Signal delivery’ can
begin only after ‘End computing’ arrives, and it can terminate only after all operands delivered to the
corresponding output sections. Especially in the case of more number of operands and results, one
may need a shared bus for delivering them, which can prolong the delivery time; to an unpredictable
value.

For real-life computations chained computing operations must be considered and their phases must
be appropriately synchronized. Synchronization can be accomplished by different means. The
availability signal for an operand can be generated either by a central control unit (synchronous
operation) or on a per-operand basis (asynchronous operation). Most of the today’s technical com-
puting systems apply a central clock. As an admission that the commonly utilised synchronised
operating mode is extremely inefficient in non-dispersion less systems, the concept of asynchronous
operation is around [24-27]. The central synchronization means that signals ‘Operand available’,
‘Begin computing’, ‘Result available’, etc. are derived from central clock signal as an internal offset
time to it. Signal ‘Refractory’ is implemented as a short internal reset of circuits, immediately before

5 Modern accelerating solutions in implementations, such as pipelining, ‘out of order’ execution, branch predicting, etc. make details
of description much more complex, but the logical need of considering these signals persists.
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the falling edge of the synchron signal. Similarly, ‘Signal delivery’ must finish before the falling
edge of the synchron signal arrives. Given that the length of the ‘Signal transfer’ is undefined, in
technical designs transfer time is not included; that is, immediate interaction (infinitely large transfer
speed) is assumed.

At inter-component level the “skew” of clock signal leads to introducing clock domains and clock
distribution, and causes dozens of percentage loss in energy efficiency [12, 28]. Neglecting the intra-
component skew introduces non-intended flops. Both effects increase the dispersion of clock signals
[7], and is majorly responsible for the experienced inefficiency [9] of computing. Considering
transfer time leads to, among others, discovering the performance limitation of supercomputers [29],
Artificial Neural Network ANNs [10] and brain simulation [30] and explains why “Core progress
in Al has stalled in some fields” [22].

We can add: the proper synchronization needs special care when using accelerated and parallelized
computations. Similarly, one must think about the temporal sequence when considering results
from feedback and recurrent relations. For examples see section 5. On one side, it is true that “The
analog memristor array is effectively the neural network laid out in the form of a crossbar, which
can perform the entire operation in one clock cycle” [27]. On the other side, as in brackets fairly
added: “(not counting the clock cycles that may be required to fetch and store the input and output
data)”; which action may take clock cycles in the order of the number of operands; furthermore,
it may comprise very time-consuming memory access or 1/O operations. All the memristor array’s
operands must arrive at its input section (They must also be computed or otherwise manufactured
before they may be used), furthermore the operation terminates only when all results are sent to their
destination from its output section. To form a fair analogy, the total computing time (including data
transfer time) shall be compared to conventional operations’ total computing time. The total time
of operation must include data delivery to and from the memristor array. Even when continuous-
time data representation is utilised, the problem still exists [32], where the need for additional clock
cycles is not mentioned.

4.2 Hardware Issues

In technological computing, we have technology blocks, among others, memory chips. In biology,
“we should not seek a special organ for ‘information storage’ — it is stored, as it should be, in every
circuit”; the idea of “in-memory computing”. The information “is stored directly at a synapse and
can be retrieved directly” [1]. In technological computing, registers are essentially another memory
with short address and short access time; simulating data stored directly at synapse would need a
huge number of registers. Using conventional “far” memory instead of the direct register memory
introduces two-three orders of magnitude worse performance. Summing synaptic inputs means
scanning all registers, which needs several thousands of machine instructions; introduces another
three-four orders of magnitude worse performance.

6 The temporal behavior of components and their materials can easily be misidentified in the time-unaware model. Even memristance
has been introduced [31] as a fundamental electrical component, meaning that the memristor’s electrical resistance is not constant
but depends on the history of current that had previously flowed through the device. It happened five decades ago; for today there
are some serious doubts as to whether a genuine memristor can actually exist in physical reality [34]. In our analysis demostrated,
some temporal behavior surely exists; the question is how much it is related to material or biological features, if our time-aware
computing method is followed.
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Biological axons, from computational point of view, represent a private connection between com-
puting units, but billions of such (very low speed) “buses” work in parallel, without contention. The
usual technological implementation is to use a single very high speed bus, which must be “owned”
for every single communication. When using a serial bus, Arbitration consumes the great majority of
probable processing time (see FIGURE 4 for a temporal diagram and [8] for a case study). Given that
the required arbitration (which grows with the number of neurons!) rather than the bus speed limits
the transfer time, utilising a single high-speed bus in large-scale systems is at best dubious: “The idea
of using the popular shared bus to implement the communication medium is no longer acceptable,
mainly due to its high contention.” [33]. Bus arbitration, addressing, and latency all increase time
to the transfer process (and reduce system efficiency). This form of communicational burst can
easily result in a “communicational collapse [35],” but it can also result in accidental “neuronal
avalanches” [36]. According to [8], the shared medium is the largest contributor to computing time
consumption at a large number of communicating units.

FIGURE 4 represents the case of multiple processing units connected to the bus in terms of time-
aware computing. It explains why linking current computer components with high-speed buses
results in significant performance degradation. The processors are positioned at (—0.3,0) and (0.6,0)
on the temporal diagram, whereas the bus is at location (0,0.5). The two processors wish to con-
vey their results to their destinations when they’ve completed their computations (green arrows at
processor locations). We assume they want to communicate at the same moment in the diagram.
They must first be able to board the shared transport (red arrows). Because the core at (-.3,0) is
closer to the bus in terms of proximity, it receives priority. The grant signal is then sent to the
asking core, which starts the bus operation, and the data from the core is sent to the bus. When the
data reaches to the bus, it is sent because of the bus’s rapid speed. The other core’s bus request can
then be granted, and the second core’s computed result can ultimately be bused. In both situations,
notice the variation in temporal distances between the ‘bus requested’ and ‘bus granted’ messages,
FIGURE 4.

Bdty

Figure 4: The temporal operating diagram of a technological high-speed single bus: the bus delivers
data only in the fractions denoted by vertical green arrows.

In the figure, we pretended that our two cores wanted to communicate using a single shared bus
at the same time. The effective processing time is several times longer than the actual processing
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time since they have shared access to the bus. Furthermore, if a single high-speed bus is employed,
the number of cores linked to the bus increases the overall time of operation linearly. Because the
(temporal) distance between cores is often in the picoseconds region, but the bus (and the arbiter)
are at a distance much beyond nanoseconds, the real temporal behaviour of the bussed data (and the
idle time resulting from it) is significantly worse than the figure depicts.

When using a shared bus, raising the processing or communication speeds has no linear effect on
the total execution time. Furthermore, performance is not limited by bus speed. A relatively modest
change in transfer time can result in a quite substantial change in processing time value. This change
causes an inexplicable slowdown in the computing system: The slowest component plus mutual
blocking determines the system’s efficiency.

Given that conventional processors are implemented in SPA, as Amdahl coined the wording [37],
communication between them is implemented through I/O instructions. This approach is why
“artificial intelligence, it’s the most disruptive workload from an I/O pattern perspective’”. Better
performance can be hoped only in a drastically different approach [38]. Technological computing
optimizes for single-thread performance without networking, biology uses simple processors with
very good networking ability.

Biology uses three-state logic, which enables a very low energy consumption. Neurons are “off”
until some input is received by their synapses, then for some time they get “open”, after some
time “inactivated”, and again after some time “off” again. As discussed in [17], the three-state
operation mode is desirable from several points of view; among others it defines the direction of
time. The present design point of view, replacing “inactivated” state with a “down” edge, enables
reaching higher operating frequency [4], but large designs shed light on the limitations, caused
by attempting to replace the energetically needed three-state operation [39, 40] with a simplified
two-state operating mode.

4.3 Software Issues

As discussed in connection with biological neurons, signal timing has crucial role in network’s
operation. SW methods, not handling explicitly the simulated time, cannot align computing con-
straints properly. The usual SW organization is prepared to imitate single-thread processes. There
are sofware libraries (such as SystemC [41]) which provide special engine enabling event schedul-
ing on top of OS’s event scheduling. However, handling events is only possible through using
services of the OS, which is very costly in terms of non-payload instructions [42, 43]. Handling
events at a reasonable non-payload performance, one needs to have entirely different architec-
ture [38].

It was already admitted that “building this new hardware [neuromorphic computing] necessitates
reinventing electronics”; furthermore that “more physics and materials needed” [26]. ‘Rebooting
computing’ is needed, from the ground up.

7 https://www.nextplatform.com/2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/
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Total time

Figure 5: Implementing neuronal communication in different technical approaches. For a more
detailed legend, see text. A (the biological implementation): the parallel bus; B and
C(the technical implementation): the shared serial bus, before and after reaching the
communication “roofline” [41].

4.4 Neuronal Issues

Given that neurons must exchange information about the result of their elementary operations after
every single operation, an extra handicap is introduced by ANN type workload. A simple neuro-
morphic use case is shown in the inset of FIGURE 5.3. one output neuron and One input neuron
are connected by a hidden layer. The hidden layer comprises only two neurons.

FIGURE 5A shows a system of “parallel buses”, the biological implementation: (axons). In a
parallel implementation like this, with increasing either payload processing speed or non-payload
communication speed, the total time (processing + transmitting), that is system’s performance,
increases linearly.

FIGURE 5B shows the technological implementation of a high-speed shared bus for exchnging
information.; see also FIGURE 4. The action that loads the bus at the stated time is to the right
of the grid. The communication bandwidth is represented by a double arrow, which has a length
proportionate to the amount of packages the bus can convey in a given time unit. We assumed
that, input neuron may convey all of its information in a single message to the hidden layer, and
that processing in the hidden layer begins and ends at the same time. Because neurons compete for
access to the bus, only one of them is capable of delivering a message right away, others will have
to wait until the bus arrives. The message can only be received by the output neuron once the first
neuron has finished transmitting it. The second message from the bus must first be obtained by the
output neuron, and it can only begin processing after both input arguments have arrived. During
non-payload processing and payload processing, this limitation generates successive bus delays in
the hidden layer and output neuron. Adding more neurons to the layer causes the delay to increase.

There are two possible outcomes at this stage. Either the 2"Yneuron must wait until its second input
arrives (in biology, a spike also carries its synchronisation signal and triggers integration), or it can
update its output in real time as inputs arrive, if its processing speed permits. (in “technical neurons,”
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this synchronisation facility isn’t used because continuous levels are used instead of pulses).In the
latter scenario, however, until the second input arrives, the neuron produces an output signal that
is different from the one predicted by the mathematical dependence (and is processed). The output
signal, which may be briefly incorrect [§], is known in the field of electronics, and those “glitches”
are eliminated by applying a “worst-case” delay for the output signal. Incorporating a serial bus
into that calculation would significantly increase the required “worst-case” delay.

Because the bus must be reached twice throughout the Ty time, (not just the operand given to the bus,
but also the time spent waiting for arbitration: the right to use the shared bus). The physical delivery
T4 through bus must be included, making the transfer time Ty = 2. Tg+T4+X. “Foreign contribution”
is represented by the X. Any other traffic burdens the bus if it is not devoted to “neurons in this layer
exclusively.” Processing may be slowed by messages from other layers as well as general system
communications (and can contribute to faking the biological function that is being imitated).

Even if the hidden layer has only one neuron, it must apply the process of bus sharing on a case-
by-case basis. A direct link to a nearby neuron takes longer than physical delivery to the bus (The
arbiter and the bus are both in the cm range, implying many n sec transfer periods; direct transfers
between connected gates might be in the p sec range.) If there are more neurons on the bus (such
as a buried layer) working in parallel, they must all wait for the bus. The high-speed bus is only
mildly loaded when only a few neurons are present. The number of neurons in the buried layer rises
linearly with the load on the bus (or, possibly, all neurons in the system), but the bus’s temporal
behaviour is different.

When mimicking neuronal operation, all inputs from the buried layer must be waited for by the
second neuron. The neuron behind the concealed layer has a transmission time of Ty = L.2.Tg +
Tq + X if there are L neurons in the hidden layer.

The reason for this is explained by the temporal behaviour. “shallow networks with many neurons
per layer scale worse than deep networks with less neurons” [45]: If the layer organisation requires
several arbitrations to reach the bus, both the physical bus delivery time T4 and the processing
time T), become negligible: transfer time is determined by the amount of neurons in the buried
layer. Although the common bus continues to limit communication in deeper networks, the system’s
messages may be transmitted at different times in each of its layers (despite having independent
buses across the layers). There is no method to organise the message traffic because there is just
one bus.

The role of the system’s burden becomes clear here: both neurons in the hidden layer wish to
communicate using the single common bus at the same time. The perceived processing time is
several times greater than the physical processing time because they obstruct each other, and it
increases in direct proportion to the amount of neurons in the hidden layer (if a single high-speed
bus is employed, and possibly also with the total number of neurons in the system).

As the scale of the system grows, the fraction of time required to forward data on the high-speed bus
gradually reduces. Bus speed becomes marginal in excessive systems, especially when they attempt
to imitate neuromorphic workload.The times depicted in the graph are not in any way proportional.
The (temporal) distances between cores are in the hundreds of picoseconds range, whereas the bus
(and the arbiter) are well above nanoseconds. The real temporal behaviour (and the resulting idle
time) is far worse than the graph depicts.
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In addition to wasting valuable time for contenting for the exclusive use the single serial bus,
utilization of the bit width (and package size) is also inefficient. The information is mainly encoded
in the “temporal precision” of the spikes and is estimated to need up to three bits/spike [3]. The
time-unaware time stamping of artificial spikes does not encode temporal precision, given that the
message comprises sending the time coordinate of the event, instead of the relative time to a local
synchron signal (a base frequency); furthermore the conduction time is not included in the message:
the time coordinate of receiving the time-stamped event is missing.

S. TRAINING ANNS

One of the most startling characteristics of ANNs is their multi-week training duration, even for
(in comparison to brain functionality) easy tasks. The mathematical methods, on the other hand,
do not include time-dependence; nevertheless, the technical implementation of ANNs does. New
neuronal outputs (which provide as new neural inputs as well) are only loosely coupled in terms of
delivery times, as discussed in [8]: the assumption that producing an output means simultaneously
producing an input for some other neuron only works in timeless “classic computing,” as discussed
in [8].

Show the temporal diagram of a 1-bit adder in [8], to see what effect considering temporal behaviour
might have. When we use adders, we have a set amount of time to read out the result. We don’t
want “glitches,” so we specify a maximum period until all bits relax, and we’ll only get the final
result (at the cost of some performance); the adder is synchronised.

The case of ANNSs, on the other hand, is unique. The bits are plugged directly in the adder, and
the outputs of bit n are the inputs of bit n + 1 (there is no feedback). The signals in ANNs are
provided via a bus, and the type and sequence of interconnections are determined by a variety of
criteria (starting with the type of tasks and ending with the actual inputs). The case becomes more
complicated when ANNs are being trained.

The sole constant in timing is that a neural input will always arrive after a partner has generated it.
The timing of delivered events, on the other hand, is uncertain: it is determined by technological
delivery factors rather than the logic that generates them. There are two awful options when it comes
to time stamping. Option one is for neurons to have a (biological) sending time-ordered input queue
and to start processing once all partner neurons have sent their messages. This necessitates the use
of a synchronisation signal and results in significant performance loss (in parallel with the one-bit
adder). New neuronal outputs (which function as new neuronal inputs) are only weakly coupled
in terms of delivery times. This technical approach allows us to provide feedback to a neuron that
fired later (based on its time stamp) and define a new neuronal variable state; this is a “future state”
while processing a message received physically later but with a time stamp pointing to a biologically
earlier time.

A third, perhaps better, alternative is to keep a biologically-timed queue and send out feedback and
output in time windows (much less time than the commonly used “grid time”), or to independently
evaluate received events and transmit feedback and output promptly. In both circumstances, it’s
worth considering whether their impact is significant (exceeds a certain tolerance threshold as
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compared to the previous condition) and whether they can reduce the need for communication in
this way.

We start showing an input when training ANNSs, and the system starts to work. It validates its
synaptic weights before displaying that input. Its initial weights might be randomised, or they could
be based on past input data. The system sends correct signals, a receiver, on the other hand, processes
a signal only after it has been physically transmitted®, meaning that it may happen that it (and its
dependents) start to adjust their weights to a state that is not yet defined. In [8], the indefinite time
of the first AND gate is quite a short, while the OR has a long indefinite time.

When playing chess against another player, a quicker computer can be utilised to analyse upcoming
moves more effectively. Even before its opponent makes the next move, it can calculate all possible
future moves. However, before publishing its next move, it must wait for its opponent’s next move,
Otherwise, it might publish a wrong move. Sending the feedback to its opponent as soon as the
next move is computed —i.e., without synchronization— results in a quickly computed but maybe
wrong move. The faster the computer is, the lower its performance as a chess player is without
synchronisation. When it comes to synchronisation, the faster the computer is, the more idle activity
it has.

At the operation’s beginning, Some of the network’s component neurons may have undefined states
and weights. In their operation (essentially an iteration), without synchronization, In most circum-
stances, the actors employ incorrect input signals, and they will almost certainly adjust their weights
to false signals at first, and with significant time delay at a later stage.

If we’re lucky (and keep in mind that in the case of more complicated systems, we’re dealing
with unstable states), the system will converge, albeit painfully slowly. Alternatively, nothing
at all. Neglecting the temporal nature of networks results in excruciatingly sluggish and shaky
convergence.

Even in ANNSs, synchronisation is required. When using accelerators, feedback, and recurrent
networks, we must exercise caution. The time matters. Computing neural outcomes faster in order
to deliver faster feedback isn’t going to help. It takes time to deliver feedback information, and in
order to do so, we must use the same common media, which has its own set of drawbacks. The
magnitudes of “computing time” and “communication time” in biology are similar.

Communication time in computing can be substantially longer than calculation time for a variety
of reasons. In other words, the received feedback returns state variables that were valid a long
time ago. In biology, spiking is also a “look at me” signal: the feedback shall be addressed to
that neuron, which caused the change’. Neurons receive data regarding “the influence of all other
neurons, including myself,” without taking spiking time into account (organised neuron polling in a
software cycle). The beginning of a signal’s validity is defined by receiving a spike; the “expiration
period” is defined by “leaking.” Spiking networks rely on their temporal dynamics.

Because of extensive waiting, some result/feedback events must be dropped in excessive systems
in order to provide a false sense of improved performance.The logical reliance that feedback is
computed based on the results of the neuron that receives the feedback, the computing system’s

8 Whether or not the message envelope contains a time stamp
9 See the Hebbian learning: the neuron uses its inputs and output, exclusively.
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physical implementation becomes time-dependent [8]. The neuron will receive the feedback later
(even if at the same biological time, according to the time stamp they contain), therefore those
messages will be at the end of the line. As aresult, they’re quite likely to be “dropped if the receiving
process is congested over numerous delivery cycles” [46]. The feedback in the learning process in
excessive systems involves outputs based on undefined inputs and feedbacks, and the computed and
(perhaps correct) feedback may be overlooked.

An excellent “experimental proof” of the claims above is provided in [47]. With the words of that
paper: “Yet the task of training such networks remains a challenging optimization problem. Several
related problems arise: very long training time (several weeks on modern computers, for some
problems), the potential for over-fitting (whereby the learned function is too specific to the training
data and generalizes poorly to unseen data), and more technically, the vanishing gradient problem”.
“The immediate effect of activating fewer units is that propagating information through the network
will be faster, both at training as well as at test time.” The intention to compute feedback faster,
based maybe on undefined inputs, reaches the previous layer’s neurons faster, but the speed has its
price: “As A increases, the running time decreases, but so does performance.” The addition of
ANNSs’ spatio-temporal behaviour boosted the efficacy of video analysis greatly [48], Even in its
most basic form, the use of segregated (i.e., not connected in the way proposed above and in [8])
time and space contributions to describe them.

Investigations in the time domain confirmed directly the role of time (mismatching): “The CNN
models are more sensitive to low-frequency channels than high-frequency channels” [49]: When
opposed to rapid changes, the feedback can follow the slow changes with less effort.

6. CONCLUSION

Machine learning arised from the intention of mimicking biological learning on technical imple-
mentations, having several million times higher transfer and processing speed. However, the speed
difference sheds light to a common fallacy of their operation: their design does not consider that
chained operations must consider also transfer time; furthermore that the computing operation
and the transfer operation are blocking each other. Methods of learning and machine learning
have mostly orthonal methods, because of their “implementation”: biological operation natively
considers transfer time, technical implementation assumes immediate interaction (neglects transfer
time).
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