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Abstract
A famous definition of AI is based on the terms weak and strong AI from McCarthy. An
open question is the characterization of these terms, i.e., the transition from weak to strong.
Nearly no research results are known for this complex and important question. In this paper
we investigate how the size and structure of a Neural Network (NN) limits the learnability
of a training sample, and thus, can be used to discriminate weak and strong AI (domains).
Furthermore, the size of the training sample is a primary parameter for the training effort
estimation with the big O function. The needed training repetitions may also limit the learn-
ing tractability and will be investigated. The results are illustrated with an analysis of a
feedforward NN and a training sample for language with 1,000 words including the effort
for the training repetitions.

Keywords: Power of AI, Weak and strong AI, NN, Betti numbers, Training Repetitions of
NN, Training Sample, Dimension of NN.

1. INTRODUCTION

Artificial Neural Networks (NN) have a limitation in their power, since the number of neurons
that enable the storing of information is bounded. The challenge is twofold: First, to describe the
computational limitation of a NN, and second, what is the maximum complexity of a domain that
can be learned by a NN? Instead, the human brain and its areas are considered in order to analyze
how much effort must be spent to train a certain brain area. The human brain has dedicated areas
for thinking, sensing and perceiving like logic thinking, speech, or for planning [1-3]. Liu states
that weak AI ”represent computational systems that exhibits as if they own human intelligence,
but they do not” [4]. The aforementioned brain areas are partitions of the brain and their neurons
are effectively connected with each other neurons, i.e., each neuron is in average with 1,000 other
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Figure 1: Activated brain areas for human language processing comparing words with letter stings
’X’ [5].

neurons connected. As an example consider FIGURE 1, showing the activated brain areas for human
language processing comparing words with letter stings ’X’: left and right inferior and frontal lobe,
the left precentral gyrus, left and right upper and lower parietal regions, the left and right occipital
regions, and the SMA and upper cerebellar regions [5].

The approach is to interpret a brain area as a domain, resp. model, for training a NN. And the goal
is to determine the computational effort for learning this model. This complexity can be estimated
using Betti numbers: Betti numbers are used in algebraic topology to analyze the connectivity of
simplicial complexes like lines and holes[6]. They represent invariants about the surface, resp. struc-
ture of a NN. Knowing the complexity for learning a model, the number of required neurons to
learn a model can be estimated and applied to the complexity in order to determine whether the
domain is computationally tractable or not [7], which may limit the power of weak AI [8,9], where
machines are assumed to be able to think and have genuine understandings. Furthermore, domains,
i.e. training data for NN, can grow by O(𝑛2) due to bias mitigation, where 𝑛 denotes the number of
features [10]. As brain area the human speech is considered assuming that we use 1,000 words with
in average six different meanings. For this domain the computational effort to train a feedforward
NN is analyzed and discussed.

The paper is organized as follows: Section 2 contains upper bounds for the number of hidden layers
and hidden neurons of a NN. Subsequently, the complexity of NNs based on Betti numbers is
described in Section 3. The number of required training repetitions is highlighted in Section 4.
Then, in Section 5 an example for the required size and the training effort of a feedforward NN
for language is calculated simulating the brain access for language understanding. The conclusion
contains an outlook with description of future research steps.

2. MODELING A NN BASED ON UPPER BOUNDS FOR THE NUMBER
OF HIDDEN NODES

Maier and Dandy (2001) investigate the number of hidden layers and upper bounds for the number
of hidden neurons of a NN. FIGURE 2 shows for illustration a NN with one hidden layer and
FIGURE 3 a NN with more than one hidden layer, here three hidden layers. They describe that
any continuous (learning) function for a multi-layer NN can be approximated by a NN with one
hidden layer (given sufficient degrees of freedom) [11]. Additionally, they state that the use of two
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Figure 2: Neural Network with one hidden layer.

Figure 3: Neural Network with more than one hidden layer, here three hidden layers.
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Figure 4: Three-dimensional torus to illustrate Betti numbers.

hidden layers is only justified for ”the most esoteric applications”. Further reading can be done
in the work of Maier and Dandy [p. 676][11]. They provide two upper bounds for the number of
hidden neurons:

𝑛ℎ ≤ 2 · 𝑛𝑖 + 1 (1)

and
𝑛ℎ ≤ 𝑛𝑡𝑟

𝑛𝑖 + 1
(2)

with 𝑛ℎ is the number of hidden neurons, 𝑛𝑖 is the number of input neurons, and 𝑛𝑡𝑟 is the number
of training samples. For performance reasons the smaller number obtained from (1) and (2) should
be taken, or even fewer. Note, these bounds help to prevent over-fitting, since oversized NNs tend
to learn a domain by heart, and as a consequence, they are weak predictors.

3. ANALYSIS OF THE COMPLEXITY FOR TRAINING A NN USING
BETTI NUMBERS

From the former section an upper bound for the number of hidden neurons is known depending on
the number of input neurons (Equation 1) and for Equation 2 the size of the training sample. The
core question to be answered is twofold, namely which number of hidden neurons is (a) required for
training a NN given an domain (training sample) and (b) computationally tractable for a NN? For
the analysis feedforward NNs are considered. A well-investigated measure for the complexity of a
NN are Betti numbers [6]. These numbers are known from algebraic topology and are applied to
characterize NNs. Betti numbers are used to describe spaces with different topological properties.
More formally, assume a feedforward NN N that implements a function 𝑓N : R2 → R, then
the complexity of the function 𝑓N is given by the topological complexity of the set 𝑆N = {𝑥 ∈
R𝑛 | 𝑓N (𝑥) ≥ 0} , with 𝑆N contains only positively classified patterns [6]. Then, for any subset
𝑆N ⊂ R𝑛 exist 𝑛 Betti numbers

𝑏𝑖 (𝑆N), 0 ≤ 𝑖 ≤ 𝑛 − 1. (3)

The first Betti number 𝑏0(𝑆N) can be interpreted as the number of connected components of 𝑆N ,
and the 𝑖-th Betti number 𝑏𝑖 (𝑆N) represents the number of (𝑖 + 1)-dimensional holes in 𝑆N . For
example a three-dimensional torus 𝑇 (FIGURE 4) has the Betti numbers 𝑏0(𝑇) = 1 (number of
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Figure 5: Letters ’A’ to ’F’ with three dimensions for the illustration of Betti numbers.

Table 1: Upper bounds, depending on the activation function of a NN, the number 𝑛𝑖 of input
neurons, and the number 𝑛ℎ of hidden neurons [6].

Activation function Bound
Threshold O(𝑛ℎ𝑛𝑖 )
Arctan O((𝑛𝑖 + 𝑛ℎ)𝑛𝑖+2)

connected components), 𝑏1(𝑇) = 2 (number of two-dimensional or ”circular” holes), 𝑏2(𝑇) = 1
(number of three-dimensional ”voids” or ”cavities”), and for 𝑖 > 2 is 𝑏𝑖 (𝑇) = 0.

For compact manifolds like the torus is the sequence of Betti numbers zero from some point onward,
since Betti numbers vanish above the dimension of a space, and thus, they are all finite (Equation
3).

As second example, shows FIGURE 5, the three-dimensional letters ’A’ to ’F’: the Betti numbers
for ’A’ and ’D’ are the same as for the torus, since they also have one hole. For the letter ’B’ holds
also 𝑏0(𝑇) = 1 (one connected component), 𝑏1(𝑇) = 3 (number of circular holes with both holes
separately and the two holes together), and 𝑏2(𝑇) = 2 (three-dimensional cavities). And the letters
’C’, ’E’ and ’F’ have the Betti numbers 𝑏0(𝑇) = 1, and no holes, so 𝑏1(𝑇) = 𝑏2(𝑇) = 0. For all
letters hold 𝑏𝑖 (𝑇) = 0 with 𝑖 > 2. For the string ’AB’ holds 𝑏0(𝑇) = 2, since the letters ’A’ and ’B’
of the string are disconnected.

The total complexity of the space 𝑆N is the sum of the Betti numbers 𝐵(𝑆N) =
∑

𝑖 𝑏𝑖 (𝑆N). Then,
upper bounds for the structure of N can be proven (TABLE 1) [6], depending on the activation
function of the NN N , the number 𝑛𝑖 of input neurons, and the number 𝑛ℎ of hidden neurons. For
the number 𝑙 of hidden layers is 𝑙 = 1 assumed, as argued in the former section.

TABLE 1 indicates that for feedforward NNs with threshold-based and arctan activation functions
the upper bounds for the complexity are polynomial, in case for one hidden layer (aka shallow
networks). As a simple example for illustration, consider the NN in FIGURE 2, with 𝑛𝑖 = 8
input neurons and 𝑛ℎ = 9 hidden neurons: with a threshold activation function the Betti number
complexity of the NN structure is bound by the constant O(98) for threshold-based activation
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functions. Maier and Dandy (2001) showed, that for several hidden layers (𝑙 > 1), so-called
deep networks, the complexity can grow exponentially. However, the polynomial for shallow
NN depends on the number of input neurons 𝑛𝑖. The tractability of polynomials with bigger 𝑛𝑖
is exemplary considered in Section 5.

4. ESTIMATION OF THE REQUIRED TRAINING REPETITIONS FOR A
NN

To avoid over-fitting upper bounds for the number of hidden neurons (Equation 1 and Equation2)
are presented in Section 2. Additionally, to ensure a proper NN training, Iyer and Rhinehart (1999)
developed a performance optimizer to find the best model with the lowest error, based on the lowest
sum-of-squared errors of a training data set: the idea is to train the NN with random samples (with
replacement) and to measure the training errors [7]. Then, order the measured errors from low to
high and create a probability distribution. The probability that any single optimization has an error
value 𝑥 less than or equal to 𝑎 is 𝐹𝑋 (𝑎) =

∫ 𝑎

0 𝑓𝑋 (𝑥)𝑑𝑥. 𝐹𝑋 (𝑎) is the cumulative distribution function
(CDF) of 𝑎 with 𝑓𝑋 (𝑥) which is the probability distribution function of the error values 𝑥 ∈ 𝑋 . From
𝐹 the CDF can be derived for the best trial from 𝑘 independent trials:

𝐹𝑘 (𝑎) = 1 − (1 − 𝐹𝑋 (𝑎))𝑘 (4)

Now, if someone decides on the confidence level (𝐹𝑘 (𝑎)) and the percentage vicinity of the lower tail
of the CDF, then Equation 4 can be rearranged to find the number 𝑘 of required training repetitions:

𝑘 =
𝑙𝑛(1 − 𝐹𝑘 (𝑎))
𝑙𝑛(1 − 𝐹𝑋 (𝑎))

(5)

Note, Equation 5 is independent of the domain (data set), the NN size and structure, the activation
function, etc. These values are implicit contained in 𝑓𝑋 (𝑥) resp. 𝐹𝑋 (𝑎). Additionally, if the lower
𝑥% of all possible errors (i.e., 𝑥 random training repetitions) is not close to the global optimum, then
Equation 5 can be used to determine the number of random training repetitions to achieve a trained
NN with a particular percentile of generalization errors. As an example consider 𝐹𝑋 (𝑎) = 0.02 (the
best 2% values of all errors for the sum-of-squared-errors) with 𝐹𝑘 (𝑎) = 0.99 (99% confidence),
then

𝑘 =
𝑙𝑛(1 − 0.99)
𝑙𝑛(1 − 0.02) � 228 (6)

random training repetitions are required. This formula (Equation 6) serves for the investigation
example in the following section.

5. INVESTIGATION OF A FEEDFORWARD NN FORMODELING THE
HUMAN LANGUAGE PROCESSING

The human brain contains an area for language and reading, and some smaller used (activated)
parts (FIGURE 1) [5,12,13]. In the following application of the former results, the dimension of an
artificial NN is calculated to simulate the human brain area for language.
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Figure 6: Average word length of the German language [14].

For the investigation we assume that humans use in average 1,000 words for communication, each
word with up to six different meanings, resp. contexts, resulting in 6,000 words. The positive
training data consist of these 6,000 positive examples, and additionally of the same number of
negative examples with wrong meanings, these may also include antonyms. Thus, the sample data
𝑛𝑡𝑟 contain in total 12,000 training patterns (positive and negative).

FIGURE 6 shows the average word length with 10.6 characters of the German language, with the
x-axis denoting the number of characters per word and the y-axis denoting the number of the most
frequently used words in the German language [14]. If 1,000 words are randomly picked, then all
words with a length up to 23 are candidates for a training pattern. Thus, 𝑛𝑖 = 23 + 1 = 24 input
neurons are needed (’+1’ to distinguish positive and negative patterns). Then, Equation 1 provides
the upper bound for the number of hidden neurons with 𝑛ℎ ≤ 2 · 24 + 1 = 49. Maier and Dandy
(2001) provide also an upper bound dependent on the sample size (Equation 2) to avoid over-fitting:
𝑛ℎ ≤ 12,000

24+1 = 480. Here, 𝑛ℎ is large due to the size of the training sample.

The Betti numbers for the complexity of the NN (with activation function arctan) are bounded by
O((𝑛𝑖 +𝑛ℎ)𝑛𝑖+2) = 7326 = 7, 9644𝑒+48 (FIGURE 7). This huge number justifies scepticism for the
computational tractability of the NN and the training sample. The required training repetitions of
228 seem to bemoderate for the 2% best values (Equation 6). Language understanding and speaking
are only some parts of the human brain that contains also many other areas like perception, thinking
and sensing.

6. CONCLUSION AND OUTLOOK

This paper considers and applies upper bounds for the number of hidden neurons in a single-layer
NN. The Betti numbers provide a measure for the effort to train a NN, e.g., polynomial in big
omicron for a feedforward NN with the activation function arctan. They are invariants about the
surface, resp. structure of a NN. Even this result is polynomial, the degree of the polynomial depends
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Figure 7: Plot of the polynomial 𝑓 (𝑥) = 𝑥26 with degree 26.

strongly on the number of hidden neurons, and thus, the computational tractability for larger NN
is questionable. This result limits already weak AI numerically, which has been applied (only) to
parts of the human brain. To train a NN the expected error is aimed to be minimized, and thus, this
requires training repetitions which may have to be repeated several hundreds times. The expected
number of repetitions can be calculated based on the cumulated error distribution.

Some questions are still open, despite for the complexity analysis with Betti numbers: Which
dimensions of a NN are in practice computational tractable? Domains, i.e. training data for NN,
can grow by O (𝑛2) due to bias mitigation, where 𝑛 denotes the number of features [10]. Another
aspect is: do the theoretical bounds allow a complete modeling and simulation of parts of the
human brain without severe capability restrictions? Especially, the latter question requires a deeper
understanding and investigation of the human brain functionality, even with a simplification in order
to enable an artificial modeling. As a next step the enhancement of domains (training data) by bias
mitigation knowledge to achieve stronger AI will be investigated.
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