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Abstract

The tropical cyclone formation process is one of the most complex natural phenomena which
is governed by various atmospheric, oceanographic, and geographic factors that varies with
time and space. Despite several years of research, accurately predicting tropical cyclone
formation remains a challenging task. While the existing numerical models have inherent
limitations, the machine learning models fail to capture the spatial and temporal dimensions
of the causal factors behind TC formation. In this study, a deep learning model has been
proposed that can forecast the formation of a tropical cyclone with a lead time of up to 60
hours with high accuracy. The model uses the high-resolution reanalysis data ERAS, and best
track data IBTrACS (International Best Track Archive for Climate Stewardship) to forecast
tropical cyclone formation in six ocean basins of the world. For 60 hours lead time the models
achieve an accuracy in the range of 86.9% — 92.9% across the six ocean basins. The model
takes about 5-15 minutes of training time depending on the ocean basin, and the amount of
data used and can predict within seconds, thereby making it suitable for real-life usage.

Keywords: Tropical Cyclone, Formation, Forecast, LSTM, CNN.

1. INTRODUCTION

The formation of any natural disaster is a complicated phenomenon that involves multiple causal
factors which have temporal, spatial, and altitudinal dimensions. Understanding the evolution
process of a natural disaster and modeling it, is always a challenging task. One such natural disaster
is tropical cyclone(TC) (also known as hurricanes or typhoons) which occurs frequently in the
tropical and subtropical waters of the world. Near the equator, the warm air rises over the surface
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of the sea and creates a low-pressure system (LPS), also known as a tropical depression. This
causes the air around the LPS to move towards it, which further gets warmed and rises above.
The rising moist air cools down and forms the cloud. The process of cloud formation and wind
rotation intensifies with the help of favorable conditions like- sea surface temperature greater than
26°C, low vertical wind shear, high relative humidity, and atmospheric instability. The difference
of temperature between the warm core with rising moist air and the adjoining cool environment
leads to rapidly rising buoyant air. Moreover, out of these LPSs, only a small number developed
in a full-fledged TC under the above favorable conditions. As the theory behind the development
process of a TC is still not settled, predicting TC formation is a challenging problem. TCs bring
with themselves heavy rainfall, thunderstorm, and flash floods in the coastal areas, thereby causing
huge ecological, infrastructural and human loss. All this makes, the development of a model that
can forecast the formation of a TC well advance in time, important from a disaster mitigation point
of view. This will provide the disaster managers adequate time to take preventive measures. In this
work, a deep learning model has been proposed to successfully forecast TC formation with a lead
time of up to 60 hours (h) using as less as 12h of preceding data for the six ocean basins, North
Atlantic (NA), North Indian (NI), South Indian (SI), West Pacific (WP), South Pacific (SP), and
East Pacific (EP) of the world.

There are mainly two approaches for detecting TCs, one is model driven approach based on equa-
tions governing the physical phenomenon of TC development (including numerical simulations)
and the other is data driven approach that utilizes historical data relating to TCs (including machine
learning methods). The earliest conventional way to detect a TC is early-stage Dvorak analysis
(EDA) (an extended Dvorak technique [1]) which utilizes satellite cloud images, however this
technique includes subjective interpretation of parameters and hence not sufficiently scientific [2].
EDA is used by the National Hurricane Center (NHC), Central Pacific Hurricane Center (CPHC),
and the Japan Meteorological Agency (JMA) to forecast typhoon initiation, up to 48 hours before
its formation, with an accuracy of up to 57% [3]. In [4], authors shows that the global ensembles
models [European Centre for Medium-Range Weather Forecasts (ECMWF), Japan Meteorological
Agency (JMA), National Centers for Environmental Prediction (NCEP), and Met Office in the
United Kingdom (UKMO)] along with EDA can be used to improve the accuracy up to 79%. In [5],
authors evaluated the performance of five global NWP systems [Global Forecast System (GFS),
ECMWE, Canada’s Global Environment Multiscale Model (CMC), UKMO, and Navy Operational
Global Atmospheric Prediction System (NOGAPS)] for TC forecast in the North Atlantic (NA)
ocean for the period 2004-2011, and shows the best hit rate of 44% can be achieved. Over the
years the accuracy of numerical models is improved based on better initialization and improved
computing power. But still, these models are not suitable for long lead time forecasts as the nu-
merical methods are prone to error accumulation over iterations. But the factors that lead to a TC
formation have a non-linear complex relationship that makes these linear methods unsuitable for
the TC formation prediction task. Recently, machine learning methods and deep learning methods
have been successfully applied to answer the TC formation forecast problem, which we will discuss
more in the next section.

The rest of the paper is organized as follows: in Section 2 related work is described, Section 3
presents the data used, Section 4 describe the proposed deep learning model, Section S presents the
findings of this work, and finally in Section 6 we conclude with a summary and future directions.
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2. RELATED WORK

Various machine learning models have been successfully applied to a TC formation forecast prob-
lem. In [6], Decision trees (DTs) are used to detect developing and non-developing tropical dis-
turbances in the North Pacific Ocean for the months, June to September of 2004-2013, using five
derived parameters from Navy Operational Global Atmospheric Prediction System (NOGAPS).
They reported accuracy of 84.6% for a lead time of 24h. They differentiate between developing
and non-developing disturbances based on relative vorticity. In [7], DTs, random forest (RF), and
support vector machine (SVM) are used to detect the formation of TC in the western North Pacific
Ocean for the period 2005-2009 using eight derived predictors from WindSat satellite data. They
classify a tropical depression as TC when the maximum sustained wind speed (MSWS) reaches
13m/s (or 25 knots) and the satellite image available with at least 60% coverage in a circle with 4°
radius around the center of the tropical disturbance. In [8], the authors use 13 predictors derived
from mesoscale convective system (MCS) data and ERA-Interim dataset to predict TC formation
using the following machine learning tools - Logistic Regression (LR), Naive Bayes (NB), DT, K-
Nearest neighbors (KNN), Multilayer perceptron (MLP), Quadratic Discriminant Analysis (QDA),
SVM, AdaBoost (ADA), and RF. The authors reported the accuracy in terms of F1-score, precision,
and recall for lead times 6h, 12h, 24h, and 48h for global (consisting of all ocean basins), NA, and
west north Pacific (WNP) ocean basins.

Various deep learning studies have successfully captured the spatial and temporal dimensions of
causal factors to answer the prediction problems related to TC’s track, intensity [9-13], and its
landfall’s characteristics [14, 15]. Recently, a few deep learning studies have been proposed that
forecast TC formation. In [16], CNN has been used to detect the TC and its precursors in the six
ocean basins of the world using 30 years of simulated outgoing longwave radiation (OLR) data
generated through a cloud-resolving global non-hydrostatic atmospheric model. The TC and its
precursors are categorized as one class and identified based on TC tracking algorithm [17, 18], which
takes temperature, horizontal components of wind, and sea level pressure (SLP) as inputs. The study
restricted it to the limited range of latitudes 30°S - 30°N. In [19], the authors have presented a deep
learning model to detect an ongoing TC with the help of satellite data of eight TCs in NI ocean basin.
n [20], a hybrid CNN-LSTM model is used to predict if an ongoing TC will be intensified to the
level of a typhoon (wind speed greater than 64 knots) with a lead time of 24h, using preceding data
of 6h, 12h, 18h or 24h. The International Best Track Archive for Climate Stewardship (IBTrACS)
data and ERA-Interim datasets are used for three ocean basins WP, EP, and NA. Thus we see that
very few deep learning studies exists, and each has their own criterion of detecting TC formation.

3. DATA

Inspired by the successful usage of reanalysis dataset in the recent works [14, 20-22], to answer TC
related track, intensity, and landfall’s characteristics problems, we have used ERAS high-resolution
reanalysis dataset provided by ECMWF!, a high-resolution data that provides hourly weather and
climate data for the whole globe. The formation process of a TC is determined by large-scale
atmospheric factors at various altitudes around the center of a LPS.

I https://cds.climate.copernicus.eu/
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For this study we have extracted wind fields u, v, geopotential z, relative humidity r, and temperature
t at three pressure levels (altitudes) 225hPa, 5S00hPa, and 700hPa. These variables largely determine
the development process of a TC as follows: u and v fields represent the east-west and north-south
movement of air along with its speed, z represents the gravitational potential energy relative to sea
level, r represents the water vapor pressure, and ¢ represents the atmospheric temperature. As the
atmospheric causal factors behind TC formation may have horizontal extends up to 1000 kilometers
(km) these variables are extracted for a spatial region 10° x 10° with a resolution of 0.25° which
resulted in a grid of 41 X 41. As one degree is around 110 km near the equator and decreases as we
move pole-wards, this resulted in a spatial extend of around 1000 km with a resolution of around
25 km. A graphical representation of used reanalysis data is shown in FIGURE 1.
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Figure 1: Pictorial representation of reanalysis data.

The IBTrACS dataset [23], maintained by National Oceanic and Atmospheric Administration’
keeps three hourly global records of all TCs in the form of its time, track (latitude and longitude),
intensity, and many more other variables from the very initiation of a TC when it was first detected
as a tropical depression or LPS. As the definition of TC genesis time is ambiguous [24], we take
the time when a TC is recorded first as LPS in IBTrACS as TC formation time. We extracted the
record of TC formation time and corresponding location (latitude, longitude) for all TCs for the
earlier mentioned six ocean basins of the world from 1980 to 2021. All these TCs form the positive
class in our classification problem. The total number of positive cases are 653 (NA), 360 (NI), 832
(SI), 1431 (WP), 509 (SP), 983 (EP). To generate the negative classes (non-TC formation data), for
a particular ocean basin we followed the Algorithm 1. This way we have equal number of positive
and negative classes in our dataset. A negative class sample represents a time ¢ and location /oc such
that there is no existing TC formation in a time window of 5 days and if ¢ lies within a window of 5
days, then there is no existing TC formation in a spatial window of 5°. This way we have selected
all TC formation samples and non-TC formation samples. Next, for each sample, we downloaded
the above described reanalysis data for grid size 41 x 41 centered at the location of each sample, for

2 https://www.ncdc.noaa.gov/ibtracs/
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Algorithm 1 Generating negative classes (non TC) in a ocean basin, say OB.
Input: Set T and L of time points and location (lat, lon) of all TC formation in ocean basin OB.
Parameter: count (No. of positive class in OB), A Kernel Density Function say LocGen fitted on
the set L.
Output: Set 71 and L1 of time points and location (lat, lon) of all non TC formation (negative
classes) in ocean basin OB.

1: Letcountl1 =0,T1 ={},, L1 ={}.

2: while countl < count do

3: Generate a random time 71 (between 01/01/1980 and 01/09/2021) and random location say

(latl,lonl) through LocGen.

4; if (latl,lonl) lies over land then

5 continue

6: end if

7: if Abs(t —t1) > 5days Vr € T then

8: Add t1toT1 and (latl,lonl) to L1, count1 + +.

9: else

10: if Abs(lat — latl) > 5° and Abs(lon — lonl) > 5° V (lat,lon) € L. then
11: Add t1to T1 and (latl, lonl) to L1, count1 + +.

12: end if

13: end if

14: end while
15: return 71 and L1.

time points t — 6k, 12 > k > 4, where ¢ is the time of TC formation or randomly selected time of
a non-TC formation sample. Thus the reanalysis dataset is extracted for 9 time points from ¢ — 72h
to ¢t — 24h at an interval of 6 hours. The genesis location of all samples (TC formation and non-TC
formation) are shown in FIGURE 2, for all six ocean basins.
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Figure 2: Location of TC and non TC formation.
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3.1 Training Dataset Preparation

For a TC, 9 data points are available at an interval of 6h as described above. Suppose we want to
use T number of data points ((T-1)*6 hours of data) to predict the formation of a TC. For this, we
generate 10 — T training data points, where a single training point is a sequence of T vectors of the
form:

(u225(1), v225(1) 2225(1), r225(1), t225(t),
u500(z), vb00() z500(¢), r500(¢), t500(¢),
u700(z), v700(z) z700(¢), r700(¢), t700(¢))

where k <t < T + k — 1 and k varies from 1 to 10 — T. For each such training point, the target
variable is 1 (positive class) or 0 (negative class). One must note that the above process forms 10—T
training points at leads hours 6k where 4 < k < 9+ 4 —T. All such training points for all the TCs
form the training dataset.

4. MODEL AND ITS IMPLEMENTATION

As our dataset has both spatial and temporal dimensions, the model utilizes a combination of CNN
[25, 26], and LSTM [27, 28], networks to effectively capture the causal factors behind a TC for-
mation. The input training dataset is of the dimension (7, 15, 41, 41), where T stands for the length
of sequential data points (of 6 = (T — 1)h), 15 stands for the number of channels (corresponding to
u, v, z, r, and t fields at three pressure levels), and (41, 41) is the shape of the grid centered at TC
formation location. The model consists of four alternating convolution and max-pooling layers that
generate sequential features of length 7' using TimeDistributed layer of Keras, which are further
fed into a stacked LSTM consisting of three LSTM layers. To avoid over-fitting dropout 0.15 is used
between two successive LSTM layers. The model and input-output size of each layer is shown in
FIGURE 3, for T = 3. This resulted in a lightweight model with just 2,83,073 trainable parameters.

4.1 Training and Implementation

We experimented with various configurations of above model by varying number of layers and
nodes in it, activation functions, and learning rates. The configuration which works well across all
ocean basins is reported. The activation function ReL.U(x) = max(0, x) is used in all layers except
the last layer which uses Sigmoid(x) = m activation function. The input variables are scaled
in the range (—1, 1) for faster and stable training using MinMaxScaler of Scikit learn library [29].
The model uses optimizer Adam, default learning rate 0.001, binary cross-entropy loss function,
32 batch size, and 30 epochs. The model is implemented in Keras API developed over low-level
language TensorFlow on Nvidia Tesla V100 GPU platform with 16 GB RAM, that takes around
5-15 minutes for 30 epochs depending on ocean basin and 7.
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input: | [(None, 3, 15, 41, 41)]
output: | [(None, 3, 15, 41, 41)]

)

input: | (None, 3, 15, 41, 41)
output: | (None, 3, 32, 41, 41)

l

TimeDistributed(MaxPooling2D)

l

input: | (None, 3, 32, 20, 20)
output: | (None, 3, 48, 20, 20)

}

TimeDistributed(MaxPooling2D)

!

input: | (None, 3, 48, 10, 10)
output: | (None, 3, 64, 10, 10)

}

TimeDistributed(MaxPooling2D)

l

input: (None, 3, 64, 5, 5)
output: | (None, 3, 128, 5, 5)

!

TimeDistributed(MaxPooling2D)

}

input: | (None, 3, 128, 2, 2)
output: (None, 3, 512)

l

InputLayer

TimeDistributed(Conv2D)

input: | (None, 3, 32, 41, 41)
output: | (None, 3, 32, 20, 20)

TimeDistributed(Conv2D)

input: | (None, 3, 48, 20, 20)
output: | (None, 3, 48, 10, 10)

TimeDistributed(Conv2D)

input: | (None, 3, 64, 10, 10)
output: (None, 3, 64, 5, 5)

TimeDistributed(Conv2D)

input: | (None, 3, 128, 5, 5)
output: | (None, 3, 128, 2, 2)

TimeDistributed(Flatten)

input: | (None, 3, 512)
LSTM
output: | (None, 3, 64)
input: | (None, 3, 64)
Dropout
output: | (None, 3, 64)
input: None, 3, 64
LSTM P ¢ )
output: | (None, 3, 32)
input: | (None, 3, 32)
Dropout
output: | (None, 3, 32)
input: None, 3, 32
LSTM pu (None, )
output: | (None, 16)
input: | (None, 16)
Dense

output: | (None, 1)

Figure 3: Model description for 7' = 3.
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4.2 Evaluation Metrics

As reported in [8], we have evaluated the performance of proposed model in terms of metrics -
Precision, Recall, Accuracy and F1-score (F1) which are defined as:

. TP TP
Precision(P) = ————— Recall(R) = —————
TP+ FP TP+ FN
TP+TN 2PR
Accuracy = F1=
TP+TN+FP+FN P+R

where TN, TP, FN, FP are shown in TABLE 1, for our classification problem. A higher precision and
recall are desirable. A higher precision indicates that a warning from the model for a possible TC
formation can not be ignored, whereas a higher recall indicates that the model can detect a possible
TC formation with a high probability. F1 score is a measure of the balance between precision and
recall. To report the performance of the model in terms of these metrics, we have used 5-fold
validation technique, whereas the dataset is partitioned into five equal subsets, and the model is
evaluated on one subset after it is trained on the other four subsets. Finally, the average of five runs
along with variation is reported for various leads time, which is called 5-fold validation accuracy.

Table 1: Truth Table

Predicted
Actual Non TC TC
Non TC TN FP
TC FN TP

5. RESULTS AND ANALYSIS

The proposed model takes any 12h, or 24h (corresponding to T = 3, or 5) of continuous data at an
interval of 6h as input from # — 72 to ¢ — 24 hours, where ¢ is the time of possible TC formation, and
predicts whether a TC will be formed or not. This way for a particular 7', the model predicts at lead
times 6k, 4 < k < 13—T. Thus the model predicts at a lead time of at least 24h, which is a minimum
requirement for practical utility purpose. For various leads time the model performance is reported
in terms of the 5-fold accuracy along with the variation (std), in terms of above mentioned metrics
in TABLE 2 and TABLE 3. Increasing or decreasing values of T do not improve the results further.

The accuracy for 24h lead time, vary in a range of 91.7% — 97.7% and 93.5% — 97.4% for T equals
to 3 and 5 respectively. So for a 24h lead time forecast, 36h (for T = 5) of data gives better results.
The Precision remain quite high in the range of 88.4% — 96.4% for both T = 3, 5. This implies that
model has a very small false alarm rate and any warning by model regarding possible TC formation
can not be ignored. Also the Recall remains in the range of 94.4% — 99.2% for both T = 3, 5, which
is quite high, implying that model is detecting nearly all TC formation cases, and it can be used
reliably for practical purposes. The F1-score vary in the range of 92.0% — 97.8%.

The accuracy for 36h lead time is even better than 24h lead time across all ocean basins, which is in
the range 96.4% —99.3% and 97.2% —99.1% for T equals to 3 and 5 respectively. A possible reason
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Table 2: 5-fold performance (+std) of the model for T =3 (12h).

Ocean Basin  Lead Time(h) Accuracy Precision Recall F1
NA 24 0.943 £0.01 0.922 £0.02 0.965 +0.01 0.943 +0.01
36 0.982 +£0.01 0.981 £0.02 0.983 +0.01 0.982 +0.01
48 0.977 £0.00 0.977 £0.01 0.976 +£0.01 0.976 +0.00
60 0.912 £0.02 0.925 £0.02 0.901 £0.03 0.912 +0.02
NI 24 0.977 £0.01 0.964 £0.02 0.992 +0.01 0.978 +0.01
36 0.990 £0.01 0.983 £0.01 0.997 +£0.01 0.990 +0.01
48 0.989 £0.01 0.984 £0.02 0.994 +0.01 0.989 +0.01
60 0.929 £0.02 0.939 +£0.03 0.918 +£0.03  0.928+0.02
SI 24 0.955 £0.01 0.932 £0.02 0.982 +0.01 0.956 +0.01
36 0.993 £0.01 0.989 £0.01 0.996 +0.00 0.992 +0.00
48 0.991 £0.01 0.995 £0.00 0.987 +£0.01 0.991 +0.00
60 0.913 £0.01 0.932 £0.02 0.892 +0.02 0.912 +0.01
WP 24 0.931 £0.01 0.920 £0.02 0.944 +0.02 0.931 +0.01
36 0.975 £0.00 0.982 +£0.01 0.968 +£0.00 0.975 +0.00
48 0.972 £0.01 0.978 £0.01 0.966 +0.01 0.972 +0.01
60 0.869 +£0.02 0.910 £0.03 0.818 +£0.02 0.862 +0.02
SP 24 0.930 £0.03  0.898 +£0.06 0.977 £0.03 0.933 +0.03
36 0.964 £0.03 0.945 £0.05 0.992 +0.01 0.967 +0.02
48 0.954 £0.04 0.926 £0.07 0.991 +£0.01 0.956 +0.03
60 0.899 +£0.02 0.872 £0.05 0.943 +0.05 0.903 +0.02
EP 24 0917 £0.01 0.884 £0.02 0.959 +£0.01 0.920 +0.02
36 0.966 £0.02 0.955 £0.02 0.979 +£0.01 0.979 +0.01
48 0.966 £0.01 0.963 £0.01 0.971 £0.02 0.967 +0.01
60 0.904 +£0.02 0.915 £0.02 0.891 +£0.02 0.903 +0.02

for this is that the reanalysis variables that we have selected in our study are more distinguishable
and represent the TC formation well at this lead time. The Precision and Recall remain quite high
again in the range of 94.5% — 99.3% and 96.8% — 99.7% respectively for both 7' = 3, 5.

The accuracy for lead time 48h is in the range 95.4% — 99.1% which is greater than lead time 24h
and slightly less than lead time 36h in the case of T = 3. The accuracy for 48h lead time decreases
by approx 5% — 9% in comparison of lead time 24h and 36h for 7 = 5. This implies that for 48h
lead time prediction T = 3 is a better choice. For T = 3, model can predict with a lead time of 60h,
which is quite a large time for early prediction of TC formation. In this case also model achieves
an accuracy in the range of 86.9% — 92.9%, which can be considered good because the dynamics
of causal factors behind TC formation change rapidly with time.
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Table 3: 5-fold performance (std) of the model for T =5 (24h).

Ocean Basin  Lead Time(h) Accuracy Precision Recall F1
NA 24 0.953 £0.01  0.951 £0.02  0.956 +0.03  0.953 +£0.01
36 0.986 £0.01  0.993 +0.01  0.980 +0.02  0.987 +0.01
48 0.913 £0.02  0.949 +0.02  0.873 £0.03  0.909 +0.02
NI 24 0.974 £0.02  0.959 £0.03  0.992 +0.01  0.974 +£0.02
36 0.991 £0.01  0.988 £0.01  0.992 +0.01  0.990 +£0.01
48 0.925 £0.01  0.964 +0.03  0.941 £0.02  0.952 +£0.01
SI 24 0.960 £0.02  0.942 +0.03  0.982 £0.02  0.961 +£0.01
36 0.987 £0.01  0.986 £0.01  0.988 +0.01  0.987 +0.01
48 0.936 £0.01  0.941 £0.03  0.933 £0.04 0.936 +0.01
WP 24 0.935+0.02 0.912 +0.04 0.965 £0.01  0.937 £0.02
36 0.972 £0.02  0.966 +0.03  0.980 +0.01  0.973 +£0.02
48 0.888 £0.02  0.899 +0.04 0.877 £0.02  0.887 +£0.02
SP 24 0.960 £0.01  0.936 +0.03  0.988 +0.01  0.961 +£0.01
36 0.980 +£0.02 0.978 +0.02  0.984 +0.01  0.980 +0.02
48 0.930 £0.01  0.940 +0.03  0.920 +£0.04  0.928 +0.01
EP 24 0.949 £0.01  0.933 £0.02  0.968 +0.01  0.950 +£0.01
36 0.982 £0.01  0.980 £0.01  0.984 +0.01  0.982 +0.01
48 0.919 £0.01  0.936 £0.01  0.900 +0.01  0.917 £0.01

Table 4: Comparision with best 5-fold performance reported in [§].

Ocean Basin  Lead Time(h)  Precision  Recall F1
NA 24 0.937 0.880  0.908
0.951 0.965  0.953
48 0.888 0.683 0.757
0.977 0976  0.976
WP 24 0.948 0.754  0.817
0.920 0.965  0.937
48 0.889 0.642  0.701
0.978 0.966  0.972

5.1 Comparison

As discussed in section 2, the existing deep learning studies are not suitable for a direct comparison,
as [19, 20], deals with detecting an ongoing TC, and in [16], the TC formation definition is based on
cloud cover and uses simulated satellite data. We will make a direct comparison with the machine
learning work [8], where the TC formation definition coincides with our definition, and authors
evaluated nine machine learning models in terms of Precision, Recall, and F1-score for lead times
up to 48h in NA, and WNP ocean basins. Out of nine classifiers, overall AdaBoost works best in
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all cases. In TABLE 4, we have reported the AdaBoost accuracy for lead times 24h and 48h along
with accuracy achieved by our model (in bold). From TABLE 4, we observe that for 24h lead time
Precision is more or less same but there is a big difference in terms of Recall, whereas we achieve
a recall value of 96.5% both in NA and WP ocean basin in comparison of 88% and 75.4%. In the
case of lead time 48h, we achieve a better performance both in WP and NA ocean basins with an
improvement of more than 9% in precision and more than 28% in the recall.

6. CONCLUSION

In this work a deep learning model is proposed which can forecast a TC formation using as less
as 12h of data and lead time up to 60h with high precision, recall, and F1-score across six ocean
basins of the world. An early information regarding potential cyclone formation has huge social,
economical, and environmental benefits. Through this work, the authors establish that the reanalysis
dataset has enough information to capture the complex and non-linear natural phenomenon behind
a cyclone formation. One can further attempt to use the reanalysis dataset for a longer lead time
forecast. The reanalysis dataset provides many other variables like cloud cover, vorticity, sea surface
temperature, etc, one can explore these variables to further improve the model.

References

[1] Dvorak VF. Tropical Cyclone Intensity Analysis And Forecasting From Satellite Imagery. Mon
Weather Rev. 1975;103:420-430.

[2] https://repository.library.noaa.gov/view/noaa/19322/

[3] Cossuth JH, Knabb RD, Brown DP, Hart RE. Tropical Cyclone Formation Guidance Using
Pregenesis Dvorak Climatology. Part I: Operational Forecasting And Predictive Potential.
Weather Forecasting. 2013;28:100-118.

[4] Yamaguchi M, Koide N. Tropical Cyclone Genesis Guidance Using the Early Stage Dvorak
Analysis and Global Ensembles. Weather Forecasting. 2017;32:2133-2141.

[5] Halperin DJ, Fuelberg HE, Hart RE, Cossuth JH, Sura P, et. al. An Evaluation of
Tropical Cyclone Genesis Forecasts From Global Numerical Models. Weather Forecasting.
2013;28:1423-1445.

[6] Zhang W, Fu B, Peng MS, Li T. Discriminating Developing Versus Nondeveloping Tropical
Disturbances in the Western North Pacific Through Decision Tree Analysis. Weather
Forecasting. 2015;30:446-454.

[7] Minsang Kim, Myung-Sook Park, Jungho Im, Seonyoung Park, Myong-In Lee. Machine
Learning Approaches for Detecting Tropical Cyclone Formation Using Satellite Data. Remote
Sens. 2019;11:1195 .

[8] Zhang T, Lin W, Lin Y, Zhang M, Yu H, et. al. Prediction of Tropical Cyclone Genesis
From Mesoscale Convective Systems Using Machine Learning. Weather Forecasting.
2019;34:1035-1049.

2728



https://www.oajaiml.com/ | September 2024 Sandeep Kumar et al.

[9] Alemany S, Beltran J, Perez A, Ganzfried S. Predicting Hurricane Trajectories Using a
Recurrent Neural Network. Proceedings of the AAAI Conference on Artificial Intelligence.
2019;33:468-475.

[10] Chen BF, Chen B, Lin HT, Elsberry RL. Estimating Tropical Cyclone Intensity By Satellite
Imagery Utilizing Convolutional Neural Networks. Weather Forecasting. 2019;34:447-465.

[11] Kumar S, Biswas K, Pandey AK. Track Prediction Of Tropical Cyclones Using Long Short-
Term Memory Network. In: 11th Annual Computing and Communication Workshop and
Conference (CCWC). IEEE PUBLICATIONS. 2021:251-257.

[12] Kumar S, Biswas K, Pandey AK. Will A Tropical Cyclone Make Landfall? Neural Comput
Appl. 2023;35:5807-5818.

[13] Maskey M, Ramachandran R, Ramasubramanian M, Gurung I, Freitag B, et. al. Deepti:Deep-
Learning-Based Tropical Cyclone Intensity Estimation System. IEEE J Sel Top Appl Earth
Obs Remote Sensing. 2020;13:4271-4281.

[14] Kumar S, Biswas K, Pandey AK. Predicting Landfall’s Location and Time of a Tropical
Cyclone Using Reanalysis Data. In: Artificial Neural Networks and Machine Learning —
ICANN. Springer International Publishing. 2021:372-383.

[15] Kumar S, Biswas K, Pandey AK. Prediction of Landfall Intensity, Location, and Time
of a Tropical Cyclone. In Proceedings of the AAAI Conference on Artificial Intelligence.
2021;35:14831-14839.

[16] Matsuoka D, Nakano M, Sugiyama D, Uchida S. Deep Learning Approach for Detecting
Tropical Cyclones and Their Precursors in the Simulation by a Cloudresolving Global
Nonhydrostatic Atmospheric Model. Prog Earth Planet Sci. 2018;5:1-16.

[17] Sugi M, Noda A, Sato N. Influence of the Global Warming on Tropical Cyclone Climatology:
An Experiment With the Jma Global Model. Journal of the Meteorological Society of Japan.
2002;80:249-72.

[18] Yamada Y, Satoh M, Sugi M, Kodama C, Noda AT, et. al. Response of Tropical Cyclone
Activity and Structure to Global Warming in a High-Resolution Global Nonhydrostatic Model.
J Climate. 2017;30:9703-9724.

[19] Shakya S, Kumar S, Goswami M. Deep Learning Algorithm for Satellite Imaging Based
Cyclone Detection. IEEE J Sel Top Appl Earth Obs Remote Sensing. 2020;13:827-39.

[20] Chen R, Wang X, Zhang W, Zhu X, Li A, et. al. A Hybrid Cnn-LSTM Model For Typhoon
Formation Forecasting. Geoinformatica. 2019;23:375-396.

[21] Boussioux L, Zeng C, Guénais T, Bertsimas D. Hurricane Forecasting: A Novel Multimodal
Machine Learning Framework. Weather and forecasting. 2020;37:817-831.

[22] Giffard-Roisin S, Yang M, Charpiat G, Kumler Bonfanti CK, Kégl B, et. al. Tropical Cyclone
Track Forecasting Using Fused Deep Learning From Aligned Reanalysis Data. Front Big Data.
2020;3:1.

[23] Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ. The International Best
Track Archive For Climate Stewardship (Ibtracs): Unifying Tropical Cyclone Data. Bull Am
Meteorol Soc. 2010;91:363-376.

2729



https://www.oajaiml.com/ | September 2024 Sandeep Kumar et al.

[24] Horn M, Walsh K, Zhao M, Camargo SJ, Scoccimarro E, et. al. Tracking Scheme
Dependence of Simulated Tropical Cyclone Response to Idealized Climate Simulations. J
Clim. 2014;27:9197-9213.

[25] Krizhevsky A, Sutskever I, Hinton G. Imagenet Classification With Deep Convolutional
Neural Networks. Neural Inf Process Syst. 2012;25:1097-1105.

[26] LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, et. al. Backpropagation Applied To
Handwritten ZIP Code Recognition. Neural Comput. 1989;1:541-551.

[27] Gers FA, Schmidhuber J, Cummins F. Learning To Forget: Continual Prediction With LSTM.
Ninth International Conference On Artificial Neural Networks ICANN 99. 1999;2:850-855.

[28] Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997;9:1735-1780.

[29] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, et. al. Scikit-Learn: Machine
Learning In Python. J Mach Learn Res. 2011;12:2825-2830.

2730



	INTRODUCTION
	RELATED WORK
	DATA
	Training Dataset Preparation

	MODEL AND ITS IMPLEMENTATION
	Training and Implementation
	Evaluation Metrics

	RESULTS AND ANALYSIS
	Comparison

	CONCLUSION

