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Abstract
Autoencoders have become a prominent focus in unsupervised learning research due to their
ability to capture essential data features, perform efficient dimensionality reduction and aid
in noise reduction. In this paper, we propose a novel approach that integrates autoencoders
with deep learning classifiers for the efficient reception of Binary Phase Shift Keying signals.
Specifically, three distinct autoencoders–Linear, Long Short-TermMemory, andConvolutional–
are cascaded with deep learning classifiers to denoise received signals corrupted by Additive
White Gaussian Noise. This streamlined methodology not only enhances signal quality and
interpretability but also facilitates the development of a more efficient receiver, outperform-
ing conventional designs that rely on multiple processing blocks paving the way for robust
and adaptive communication systems.

Keywords: Autoencoders, BPSK, Linear autoencoder, LSTM autoencoder, Convolutional
autoencoder, Deep learning classifiers, MSE,BER

1. INTRODUCTION

High-speed data transport across several platforms is made possible by digital communication net-
works, which are the foundation of contemporary information exchange [1]. In hostile situations,
communication lines are frequently vulnerable to noise and interference, compromising reliable
detection and degrading signal quality [2]. Consequently, receivers adept at managing the diverse
impairments caused by noise and interference in the communication channel are essential for deci-
phering incoming signals and accurately recovering transmitted data [3–5]. The correlation receiver
[6], is a crucial design among the several receiver types utilised in digital communication. Owing
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to its user-friendliness, affordability, and efficacy in enhancing Signal-to-Noise Ratio (SNR), it has
been utilised for an extended period in systems reliant on binary modulation techniques, including
Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK). Conversely, these
designs are most effective in the presence of consistent, predictable noise. However, they contend
with additive white Gaussian noise and interference since they are designed for idealised settings and
lack the adaptive, nonlinear capabilities required to mitigate complex noise and interference. Their
inability to adapt to varying noise levels, combined with threshold limitations and linear processing,
results in an elevated Bit Error Rate in loud or challenging conditions. Noise and interference
can collect in pulse-shaped signals over multiple bit intervals, especially when sent over extended
distances or through memory-containing channels. These receivers may neglect the cumulative
impact of noise over successive bits, as they evaluate signals on a per-symbol basis, potentially
leading to decoding issues.

Recent developments in deep learning(DL) [7–11], have shown immense potential in getting over
the limitation of traditional receivers. Techniques such as Long short-Term Memory (LSTM),
Convolutional Neural Networks (CNN), and more recently, Transformer architectures [12–14],
have demonstrated exceptional flexibility in handling a variety of unpredictable noise environments,
outperforming conventional receivers in terms of bit error rate (BER) and signal recovery in the
presence of additive white Gaussian noise. Numerous studies have laid the groundwork for inte-
grating neural networks into communication systems, achieving superior performance in the face
of complex noise environments. In their early approach for using CNNs in modulation and signal
decoding tasks, O’Shea and Hoydis (2017) [15], introduced the idea of end-to-end learning for the
physical layer. In a similar vein, Ye, Li, and Juang (2018) [16], demonstrated notable improvements
in noise tolerance by utilising CNNs and LSTM networks for channel estimation and detection in
OFDM systems. Samuel et al.(2017) [17], expanded on these ideas with CNN and LSTM models
for MIMO detection and time-varying channel adaptation, respectively, which underscored the
ability of deep learning to dynamically adjust to channel conditions. Huang et al. (2019) [18],
further explored the role of LSTMs and CNNs in managing 5G environments, highlighting these
models’ adaptability to complex, multi-path channels.Other contemporary studies also demonstrate
the long-term resilience of these deep learning models, which can dynamically adapt to the varying
characteristics of communication channels without depending on predetermined assumptions about
noise characteristics by utilizing data-driven features. In our previously published work, Intelligent
Deep Learning-Based Speech Receivers [19], we explored how deep learning techniques can effec-
tively decipher transmitted data in the presence of AWGN, demonstrating superior noise mitigation
capabilities compared to conventional correlation receivers.

We propose the integration of autoencoders as a significant improvement in receiver design, building
on these advancements. To enhance receiver design, autoencoders are used as a preprocessing layer
integrated with deep learning models, resulting in improved BER performance and enhanced noise
resilience. Our model utilises LSTM, convolutional, and linear autoencoders [20, 21], to adapt to
different noise profiles, efficiently denoising signals prior to final processing by the deep learning
layer. LSTM-based autoencoders effectively manage sequential dependencies, whereas convolu-
tional autoencoders excel at capturing spatial noise patterns, demonstrating particular efficacy in
high-SNR and AWGN-dominated environments. This cascaded architecture effectively decreases
BER through dynamic adaptation to complex noise, thereby exceeding the performance of conven-
tional and standard deep learning receivers, and providing substantial, data-driven improvements in
noisy communication environments.
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2. BACKGROUND AND THEORETICAL FRAMEWORK

2.1 Binary Phase Shift Keying (BPSK) Conventional Transmission System

A sequence of N input bits, 𝑏𝑖 is produced during BPSK transmission, where each 𝑏𝑖 is either 0 or
1. NRZ (Non-Return-to-Zero) modulation [22], is then used to transfer each bit 𝑏𝑖 to a symbol 𝑠𝑖
with amplitude values of -A and +A. A pulse shaping filter, typically a Raised Cosine pulse(RCC)
𝑝(𝑡) [23], shapes the modulated signal to create a continuous-time signal 𝑥(𝑡) in order to increase
spectral efficiency and reduce inter-symbol interference (ISI).

𝑥(𝑡) =
𝑁−1∑
𝑖=0

𝑠𝑖𝑝(𝑡 − 𝑖𝑇) (1)

where T is the symbol duration.

Additive White Gaussian Noise 𝑛(𝑡), that features a noise power spectral density (𝑁0) and uses
noise samples taken from a Gaussian distribution with zero mean and variance (𝜎2), corrupts the
signal (𝑥(𝑡)) during transmission:

𝑛(𝑡) ∼ 𝑁 (0, 𝜎2) (2)
The received signal 𝑟 (𝑡) at the receiver end is the sum of the transmitted signal 𝑥(𝑡) and noise 𝑛(𝑡):

𝑟 (𝑡) = 𝑥(𝑡) + 𝑛(𝑡) (3)

To assess BER performance under varied noise situations, the noise variance 𝜎2 is changed based
on different Signal to Noise Ration(SNR) levels. The correlation receiver determines the correlation
between the pulse shape 𝑝(𝑡) and the received signal segment 𝑟 (𝑡) in order to detect each sent bit
𝑏𝑖. This decision rule can be expressed as:

𝑏𝑖 =

{
1, 𝑖 𝑓

∑(𝑟𝑖 · 𝑝(𝑡)) > 0,
−1, otherwise. (4)

where 𝑟𝑖 is the received signal corresponding to the bit. The BER for each SNR level is computed
by comparing the detected bits 𝑏𝑖 with the original transmitted bits 𝑏𝑖:

𝐵𝐸𝑅 =

∑𝑁−1
𝑖=0 | 𝑏𝑖 − 𝑏𝑖 |

𝑁
(5)

The theoretical BER for BPSK in an AWGN channel is given by:

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐵𝐸𝑅 =
1
2
𝑒𝑟 𝑓 𝑐(𝑠𝑞𝑟𝑡 (𝑆𝑁𝑅)) (6)

By emphasising on how closely the received signal resembles the pulse shape, this correlation-based
detection improves robustness and offers resilience against noise.

2.2 Deep Learning Models as Advanced Alternatives for Receiver Design

Previous research [19, 24], of ours investigated how sophisticated deep learning architectures [10],
could be applied at the receiver level to improve the accuracy and robustness of signal decoding in
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the presence of communication noise. To address the issue of additive white Gaussian noise, we
developed LSTM-based receiver models that are able to effectively reduce its impact by capitalising
on the temporal linkages present in sequential data. The memory persistence and adaptive learning
capabilities of these models were enhanced by sequential LSTM layers, which were reinforced by
thick layers that utilised regularisation techniques like dropout to prevent overfitting. Bit error
rate and other performance indicators were substantially improved when the ADAM optimiser
and binary cross-entropy [24–26], loss were used together, laying the groundwork for practical
application.

The effectiveness of CNN receiver models in extracting and using spatial aspects of noised signals
was further proven by our work with Conv1D and Conv2D variations. As a result of utilising two-
dimensional data transformations, the Conv2D model provided a more thorough feature representa-
tion than the Conv1Dmodel, which was optimised for one-dimensional sequential data. Combining
sophisticated optimisation techniques with the layered architectures of convolutional, pooling, and
dense layers, these models demonstrated their efficacy in precise binary classification tasks. These
earlier studies highlight the possibility of reimagining conventional paradigms of signal decoding
by combining LSTM and CNN designs at the receiver level.

The architecture and learning process of the LSTM and CNNmodels–how they convert information
into output probabilities–form the basis of their prediction process. For both LSTM and CNN
models:

𝑏 =

{
1, if 𝑃(𝑟 = 1 | 𝑋; 𝜃) ≥ 0.5,
0, if 𝑃(𝑟 = 1 | 𝑋; 𝜃) < 0.5. (7)

• 𝑃(𝑟 = 1 | 𝑋; 𝜃) is the probability that the received bit is 1, computed by the model.

• 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑃] represents the input feature vector of length P.

• 𝜃 represents the learned parameters (weights, biases) of the model.

The input features (𝑋) are processed by the LSTM or CNN through their levels to calculate 𝑃(𝑟 =
1 | 𝑋; 𝜃), which is usually the result of the sigmoid activation in the last layer.

2.3 Autoencoder Architectures

Effective data representations can be learnt unsupervisedly using autoencoders [26–28], a kind of
artificial neural network.These models are composed of two components. An encoder that com-
presses the input data into a latent-space representation and a decoder that reconstructs the input
from this compressed form as shown in FIGURE 1. An autoencoder’s goal is to reduce errors
in reconstruction between the input and the output. They are quite adaptable and frequently used
for noise reduction, feature extraction, and data compression. This work explores three types of
autoencoders: Linear, LSTM and Convolutional-based. Each architecture contributes uniquely to
noise removal, highlighting the versatility of autoencoders in communication and signal processing
applications.

A linear autoencoder [28, 29] uses fully linked linear layers for both the encoder and the decoder. It
does not have the advanced representation capabilities of non- linear models, but it is nevertheless
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Figure 1: Architecture of an Autoencoder for Signal Denoising

a good method for eliminating noise from structured, low-dimensional data. A linear autoencoder
carefully transforms the noisy input signal into a clean, reconstructed output for noise reduction.
Initially, the autoencoder receives the input noisy signal . By reducing the dimensionality of the in-
put, the encoder effectively filters away noisy components while maintaining the essential features.
The Latent Space, a compressed representation that captures the key features of the input signal
without the majority of noise distortions, is the end result of this transformation. The decoding stage
then re- constructs the signal from this latent representation to reverse the compression process and
maintain the noise-free properties that were learnt during encoding. Ultimately, a denoised version
of the original input emerges as the output clean signal, ready for further processing. This procedure
demonstrates in detail how autoencoders extract and preserve significant data while eliminating
noise by leveraging their compression and reconstruction capabilities.

Advanced architectures such as LSTM and Convolutional autoencoders [20, 30–32], which build on
the foundation of linear autoencoders, significantly improve noise removal in BPSK transmission
over an AWGN channel. These architectures make use of spatial patterns, temporal dependencies,
and non-linear relationships to improve signal reconstruction and mitigate noise. In order to effec-
tively capture long-term temporal dependencies, the LSTM autoencoder architecture uses LSTM
layers in both the encoder and the decoder. The encoder compresses sequential data into a compact
latent space, and the decoder uses the learnt latent representation to reconstruct the original signal.
LSTM layers are well-suited for time-series data because they can handle varying noise levels across
sequential bit streams, such as those encountered in BPSK signals. The symmetric LSTM layers
in the encoder and decoder guarantee that the temporal features are efficiently compressed and
reconstructed. Convolutional layers constitute the basis for encoding in convolutional autoencoder
architecture, and transposed convolutional layers are employed for decoding. Because convolu-
tional layers are good at extracting spatial features, they are perfect for working with signals that
are displayed in two dimensions, like spectrograms or reshaped signal features. The isolation of
significant patterns in spatial data and extraction using convolutional layers filters noise. In the
latent space, these characteristics are further improved, reducing the influence of AWGN. Thus
by focusing on key signal characteristics and adapting to varying noise patterns, these models
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demonstrate significant improvements in signal reconstruction, particularly in noisy communication
environments.

2.4 Detailed System Workflow

The proposed method improves communication reliability in noisy conditions by employing sophis-
ticated signal processing techniques. By combining autoencoders with deep learning classifiers,
the system  denoises signals corrupted by an AWGN channel efficiently when compared decoding
with deep learning classifiers alone. The block diagram FIGURE 2, explains the complete flow of a
dependable communication system, which effectively reduces noise in BPSK transmissions through
the integration of autoencoders and deep learningmodels. The procedures include generating binary
data, modulating it with BPSK, and simulating its transmission via an AWGN channel using a
Python-based implementation.

Figure 2: System Workflow for Noise Mitigation in BPSK Transmission Using Autoencoders and
Deep Learning Classifiers

2.4.1 Transmitter

The system initiates by generating a stream of random binary bit sequences, 𝑏𝑖 (0’s and 1’s ) that
require transmission over a noisy channel. This data represents the digital information that will
undergo modulation and subsequent processing. We modulated the binary data using Non-Return-
to-Zero (NRZ) Binary Phase Shift Keying (BPSK). This modulation method makes sure that binary
data {0, 1} are mapped to the transmitted signal with two possible amplitudes {−1, 1}. This way,
the signal stays the same during the bit duration, which lowers the chance of errors and makes the
communication link more reliable in a range of transmission environments.The NRZ signal is pro-
cessed through aRoot RaisedCosine filter ℎ𝑟 (𝑡) to shape thewaveform, ensuring smooth transitions,
minimizing inter-symbol interference (ISI), and optimizing bandwidth utilization. During receiver
training, various roll-off factor values (0 < 𝛼 < 1) are considered to evaluate their impact on system
performance. Additionally, the impact of up-sampling on the signal power relative to noise SNR
is considered. Since up-sampling to 49 samples per bit can introduce an apparent improvement
due to increased signal power, care is taken to ensure that the observed performance gains arise
from the deep learning model’s effectiveness rather than an artificial boost in SNR. This is done
by ensuring proper noise generation and normalization by confirming that noise power is correctly
scaled relative to signal power (accounting for up-sampling) prevents artificial improvements in
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SNR.

ℎ𝑟 (𝑡) =



4𝛼
𝜋
√
𝑇
· cos( (1+𝛼) 𝜋𝑡/𝑇 )+ 𝑇

4𝛼𝑡 sin( (1−𝛼) 𝜋𝑡/𝑇 )
1−( 4𝛼𝑡

𝑇 )2 , if 𝑡 ≠ ± 𝑇
4𝛼 ,

𝛼√
2𝑇

[ (
1 + 2

𝜋

)
sin

(
𝜋

4𝛼
)
+
(
1 − 2

𝜋

)
cos

(
𝜋

4𝛼
) ]
, if 𝑡 = ± 𝑇

4𝛼 ,

1−𝛼+ 4𝛼
𝜋√

𝑇
, if 𝑡 = 0.

(8)

Thus a modulated signal, 𝑥(𝑡) is ready for transmission through the channel. The Additive White
Gaussian Noise channel block is an essential component in communication systems.It introduces
disturbances in the transmitted signal, emulating the random noise, 𝑛(𝑡) that affects real communi-
cation channels, such as thermal noise or electromagnetic interference.The received signal, 𝑟 (𝑡) is
a sum of the transmitted signal, 𝑥(𝑡) and noise, 𝑛(𝑡).

𝑟 (𝑡) = 𝑥(𝑡) + 𝑛(𝑡) (9)

2.4.2 Receiver

The receiver is designed to handle noisy signal, 𝑟 (𝑡) transmitted through anAdditiveWhite Gaussian
Noise channel. It leverages a two-stage approach:

• Denoising Autoencoders (DAE)–Linear, LSTM, or Convolutional– that mitigates noise by
reconstructing clean signals, 𝑥(𝑡) from noisy inputs.

• Deep Learning Classifier which processes the denoised signal to predict binary values, 𝑏𝑖 (0
or 1).

By utilising deep learning capabilities, autoencoders offer a contemporary, data-driven alterna-
tive for the traditional correlation-based digital communication receiver architecture. The linear
processing nature of correlation receivers, their incapacity to dynamically adjust to fluctuating
noise levels, and their disdain for cumulative noise effects across subsequent bits are some of their
drawbacks. Conversely, autoencoders are unsupervised neural networks that are made to efficiently
learn input data representations while maintaining key characteristics. They use their compression
and reconstruction capabilities to their advantage when it comes to noise reduction. The receiver
dynamically learns and adjusts to the statistical characteristics of the received noisy signals by
substituting an autoencoder for the correlation process. This offers a number of benefits, including
enhanced BER, dynamic noise reduction, non-linear processing, and feature extraction.

2.4.3 Signal sampling and processing

The transmitted signal is inherently continuous, whereas deep learning models operate on discrete-
time representations. To bridge this gap, a systematic sampling process is employed to convert into
a discrete form suitable for processing by deep learning architectures. The choice of sampling rate
plays a crucial role in ensuring that sufficient signal information is retained while avoiding aliasing
effects. In this study, the continuous signal is sampled at a predefined rate of N=49 to generate
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49 discrete samples per symbol. This sampling rate is selected to balance computational efficiency
and accuracy, ensuring that the essential features of the transmitted waveform are preserved. The
Raised cosine pulse shaping function used for modulation influences the spectral and temporal
characteristics of the sampled signal.

For the deep learning-based equalizationmethods, different sampling and transformation techniques
are applied depending on the autoencoder architecture:

• Linear Autoencoder and LSTM Autoencoder: The sampled waveform is processed sequen-
tially with 49 samples per bit used as input to the models. These models operate on one-
dimensional time-series representations of the received signal.

• CNN Autoencoder: The 49 samples per bit are reshaped into a 7 X 7 2D representation before
being fed into the convolutional neural network. This transformation allows the CNN to
extract spatial features from the received signal.

In this study, we assume ideal symbol timing and carrier phase synchronization to isolate the impact
of channel equalization techniques on the BER performance. This assumption is commonly used
in deep learning-based equalization studies to focus on signal reconstruction without additional dis-
tortions from synchronization errors.Future work could explore integrating synchronization mech-
anisms within the deep learning model itself, allowing for joint equalization and synchronization
optimization.

2.4.4 Model architectures, training and testing process

Data is generated by simulating noisy signals using the AWGN channel model:

• Noise variance, 𝜎2 is varied to achieve SNR levels from -20 dB to 20 dB.

• Original transmitted bits, 𝑏𝑖 are mapped to modulated signals, 𝑥(𝑡) using NRZ-BPSK modu-
lation.

• Noisy signals, 𝑟 (𝑡) are obtained by adding Gaussian noise, 𝑛(𝑡) to 𝑥(𝑡) .

A non-overlapping sliding window of N’ samples is taken into consideration for each sequentially
received signal, 𝑟 (𝑡). These samples correspond to a single transmitted bit. N’ features(with noise)
per bit are taken as input to our model. The sliding window extracts features from the received
signal, forming the input for the autoencoders. These features capture the characteristics of the
received noisy signal. The received noisy data and the clean signal( N’ features without noise
per bit)are stored in a CSV file. The clean signal serves as the target for supervised learning,
enabling the model to learn the mapping from noisy to clean signals. Data is normalized using
Min-Max Scaling to scale features to improve the stability and convergence of training, ensuring
the model handles features effectively. To address the challenges of mitigating additive white
Gaussian noise in communication signals, three distinct autoencoder architectures were explored
are Linear Autoencoder, LSTM Autoencoder, and Convolutional Autoencoder (Conv2D). Every
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architecture is customised to fit certain noise profiles and data properties. Because of its computa-
tional efficiency and flat vector input architecture, the Linear Autoencoder is appropriate for low-
dimensional structured data. Time-series signals benefit from the LSTM Autoencoder’s capacity to
capture temporal dependencies, which makes it highly effective in processing sequential data. The
Convolutional Autoencoder shows its efficacy in handling image-like or spatial data representations
by using convolutional layers to extract spatial patterns. The TABLE 1, 2, 3 below summarizes the
architectural components like encoder,latent and decoder layers, input-output formats, activation
functions and strenghts of these three autoencoder types.

Table 1: Linear Autoencoder Architecture

Feature Description
Input Flat vector of size input_size (N’=49)Noisy signal
Encoder Layers Fully connected (Linear) layers:

- Layer 1: input_size→ 128
- Layer 2: 128→ 64
- Layer 3: 64→ 12

Latent Space 12-dimensional vector
Decoder Layers Fully connected (Linear) layers:

- Layer 1: 12→ 64
- Layer 2: 64→ 128
- Layer 3: 128→ input_size

Activation Functions ReLU, Sigmoid
Output Flat vector of size input_size(N”=49) Denoised Signal
Strengths Simple and computationally efficient

Table 2: LSTM Autoencoder Architecture

Feature Description
Input Sequence of vectors (time steps × input features=1× N’=49)
Encoder Layers input_size=49, hidden_size=64, latent_size=32

LSTM layers:
- LSTM Layer 1: input_size → hidden_size
- LSTM Layer 2: hidden_size→ hidden_size
- Fully Connected: hidden_size→ latent_size

Latent Space Latent vector of size latent_size
Decoder Layers Fully connected + LSTM layers:

- Fully Connected: latent_size→ hidden_size
- LSTM Layer 1: hidden_size→ hidden_size
- LSTM Layer 2: hidden_size→ hidden_size
- Fully Connected: hidden_size→ input_size

Activation Functions ReLU, Sigmoid
Output Reconstructed sequence of vectors
Strengths Handles sequential data effectively

The encoder and decoder layer symmetry ensures that the network has balanced complexity for
encoding and decoding. The fully connected linear layers in the encoder part of the linear autoen-
coder, with progressively decreasing dimensions, assist in learning complex patterns in the noisy
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Table 3: Convolutional Autoencoder (Conv2D) Architecture

Feature Description
Input 2D array (49 features converted to 7 × 7 feature map for Conv2D

processing)
Encoder Layers Convolutional layers:

- Conv2D Layer 1: 1→ 128 filters
- Conv2D Layer 2: 128→ 64 filters
- Conv2D Layer 3: 64→ 16 filters

Latent Space 16-channel feature map, downsampled by Conv2D
Decoder Layers Transposed Convolutional layers:

- Transposed Conv2D Layer 1: 16→ 64 filters
- Transposed Conv2D Layer 2: 64→ 128 filters
- Transposed Conv2D Layer 3: 128→ 1 filter

Activation Functions ReLU, Sigmoid
Output Reconstructed 2D array (7×7)
Strengths Handles spatial data effectively

input. They compress input features to create a low-dimensional latent space, which forces the
network to focus on the most salient features, effectively discarding noise. Then the progressively
increasing decoder layers expand intermediate features and output the reconstructed denoised signal.
When it comes to LSTM autoencoders, the combination of LSTM layers and fully connected layers
enables nonlinearmapping, which is crucial for denoising tasks. The LSTM layers excel at modeling
time-dependent patterns in noisy signals. In a convolutional autoencoder, the process begins with
preprocessing the noisy signal into a 2D format. The CNN Autoencoder architecture consists of an
encoder with three convolutional layers, using kernel sizes of 3 X 3, followed by a downsampling
operation with a stride of 2. The decoder mirrors this structure using transposed convolutional layers
to reconstruct the signal. The encoder employs 128, 64, and 16 channels in its three convolutional
layers, respectively, while the decoder symmetrically uses 16, 64, and 128 channels before the final
reconstruction layer. The number of hidden units in the fully connected layers of the Linear and
LSTMAutoencoders is set to 128, 64, and 12, with a latent dimension of 12 for feature compression.
The use of ReLU activation [32], in the encoder and decoder allows the network to model non-
linear relationships in the data.Sigmoid activation [32], in the output ensures the reconstructed signal
remains within the normalized range of the input data.

In order to balance gradient stability and computing efficiency during training, all models adopt a
standard batch size. With a learning rate of 0.0001, the Adam optimiser is used by the Linear and
LSTM Autoencoders, which take advantage of its adaptive gradient updates to manage a variety of
data complexity. With the same optimiser, the Convolutional Autoencoder employs a little higher
learning rate of 0.001, which frequently converges more quickly because of its localised feature
extraction. As a reflection of their architectural requirements, each model is trained over a varying
number of epochs. We adjust these hyperparameters based on the loss computation, aiming to
balance convergence speed, computational overhead, and model capacity.

The objective of training is to minimize the Mean Squared Error(MSE) [27, 33], loss thus ensuring
the predicted output closely resembles the clean target signal. The loss function used for all three
autoencoders is MSE, which measures the average squared difference between the predicted output
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and the original signal. A thorough comparison of the MSE calculation for each architecture,
including the input and output shapes and the associated mathematical formula, is given in the
TABLE 4.

Table 4: Comparison of Loss Calculations

Autoencoder Input
Shape

Output
Shape MSE Formula

Linear 49 49 𝑀𝑆𝐸𝐿𝑖𝑛𝑒𝑎𝑟 = 1
49

∑49
𝑗=1

(
𝑦 𝑗 − 𝑦 𝑗

)2
where:
𝑦 𝑗 : The 𝑗-th element of the original data.
𝑦 𝑗 : The 𝑗-th element of the reconstructed data.

LSTM 1 × 49 1 × 49 𝑀𝑆𝐸𝐿𝑆𝑇𝑀 = 1
49

∑49
𝑘=1 (𝑦𝑘 − 𝑦𝑘)2

where:
𝑦𝑘 : The 𝑘-th element of the original data.
𝑦𝑘 : The 𝑘-th element of the reconstructed data.

Convolutional 1 × 7 × 7 1 × 7 × 7 𝑀𝑆𝐸𝐶𝑜𝑛𝑣 = 1
49

∑7
𝑖=1

∑7
𝑗=1

(
𝑦𝑖, 𝑗 − 𝑦𝑖, 𝑗

)2
where:
𝑦𝑖, 𝑗 : The sample value at position (𝑖, 𝑗) in the original data.
𝑦𝑖, 𝑗 : The sample value at position (𝑖, 𝑗) in the reconstructed
data.

2.4.5 Testing and prediction pipeline

During the testing phase, as the sequential received signal, 𝑟 (𝑡) arrives, it is first processed by the
trained autoencoders. Every 49-sample segment from 𝑟 (𝑡) is extracted out and passed through the
chosen autoencoder (convolutional, LSTM, or linear). The autoencoder reconstructs the signal,
converting the noisy 49 samples into denoised 49 samples, 𝑥(𝑡) by leveraging the features it learned
during training to mitigate AWGN channel noise. The denoised segments are then passed to the
trained deep learning classifiers, which map these segments to their corresponding binary value,
𝑏 (𝑖) (0 or 1) . These classifiers, which may be LSTM-based or Convolutional Neural Networks, are
designed to decode the temporal or spatial patterns present in the denoised signal.

The classification process applies a thresholding mechanism to the predicted probabilities for each
bit:

𝑏𝑖 =

{
1, if 𝑃(𝑟 = 1 | 𝑋; 𝜃) ≥ 0,
0, otherwise.

(10)

where,

• 𝑃(𝑟 = 1 | 𝑋; 𝜃): The probability of the bit being 1, computed by the classifier.

• X: Denoised 49-sample feature vector.

• 𝜃: Learned parameters of the classifier
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This pipeline ensures that the signal undergoes significant noise reduction before classification,
leading to enhanced accuracy in bit prediction. By mapping the denoised segments to binary values,
the system achieves robust decoding even in high-noise environments, significantly improving the
overall bit error rate compared to traditional approaches.

3. RESULTS AND DISCUSSION

An open-source, data-intensive HPCC computing system with dual Intel Xeon E5-2640 processors
and improved computation capability fromNVIDIATesla K20MGPUswas used for the data gener-
ation and training phase. In the experiments, neural networks were trained using 80% of the dataset,
with the remaining 20% being used for validation [10]. The trained autoencoder models were saved
in .pth format, commonly used in PyTorch for preservingmodel states andweights. Similarly to this,
the deep learning classifiers were stored in the HDF5 format utilizing a hierarchical data structure,
which allowed for the safe and effective handling and storage of test data using Python’s NumPy
module. Most importantly, the autoencoders were trained on the same training dataset that was
previously used for deep learning classifiers, but the testing was done on a completely different
dataset. The results show that the system’s BER performance has been significantly improved with
the addition of autoencoders.
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Figure 3: BER vs SNR comparison for receiver configurations with and without Linear
Autoencoders

In this section, we present the performance evaluation of the proposed deep learning-based re-
ceiver models compared to the conventional correlation-based receiver and the theoretical BER
performance of BPSK over an AWGN channel. The results are analyzed in terms of the Bit Error
Rate (BER) versus Signal-to-Noise Ratio (SNR) for different models, as shown in FIGURES 3,
4, and 5. The theoretical BER performance of BPSK serves as a benchmark for assessing the
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efficiency of the designed deep learning-based receivers. The conventional receiver closely follows
the theoretical curve at moderate-to-high SNR levels but exhibits a degradation in performance at
lower SNRs. This observation aligns with the expected behavior of correlation-based detection
under noisy conditions.
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Figure 4: BER vs SNR comparison for receiver configurations with and without LSTM
Autoencoders

The proposed machine learning models, including the LSTM classifier, the 2D-CNN classifier and
the architectures based on auto-encoders, demonstrate significant improvements in BER perfor-
mance over the conventional receiver. The 2D-CNN classifier shows notable robustness, achiev-
ing a better BER at lower SNRs compared to the LSTM classifier. Among the models based
on autoencoders, the hybrid approaches integrating convolutional and recurrent architectures out-
perform their standalone counterparts, indicating the benefit of feature extraction combined with
sequence learning. The FIGURE 3, compares the results obtained with and without the integration
of linear autoencoders, demonstrating the performance of the Bit Error Rate (BER) of a BPSK
communication system across a range of SNR. The standalone deep learning classifiers, such as
2D-CNN and LSTM, show larger BER values in the absence of autoencoders, especially in low-
SNR regions where noise predominates. However, BER is greatly decreased across all SNR ranges
by integrating autoencoders. In situations with moderate to high SNR, the Linear Autoencoder
efficiently lowers BER despite being computationally simpler. These findings demonstrate how
well linear autoencoders mitigate noise when used in conjunction with deep learning classifiers,
bringing BER performance closer to the theoretical standard.

The plot FIGURE 4, evaluates the receiver configurations with and without the inclusion of the
LSTM Autoencoder. Compared to the performance of a Linear Autoencoder, the results highlight
the superior capabilities of the LSTM autoencoder, particularly in mitigating sequential noise and
improving decoding accuracy across a wide range of SNR conditions. Both classifiers alone struggle

3560



https://www.oajaiml.com/ | March 2025 Varsha PS and Hari VS

−15 −10 −5 0 5 10 15
SNR (dB)

10−4

10−3

10−2

10−1
Bi
t E

rr 
r R

at
e 
(B
ER

)

The retical 
C nventi nal
2D-CNN Classifier  
LSTM Classifier  
C nv luti nal Aut enc der+LSTM Classifier
C nv luti nal Aut enc der+2D-CNN Classifier

Figure 5: BER vs SNR comparison for receiver configurations with and without Convolutional
Autoencoders

in low-SNR regions due to the lack of effective denoising mechanisms, resulting in higher BER
values.

When the LSTM Autoencoder is integrated into the pipeline , the BER is significantly reduced
across all SNR levels. This improvement is most evident in low- and mid-SNR regions, where the
LSTM Autoencoder excels in leveraging its sequential learning capabilities to model and mitigate
temporal noise patterns. By reconstructing cleaner signal representations before passing them to the
classifiers, the LSTM Autoencoder enables the system to achieve BER performance closer to the
theoretical limit.

The FIGURE 5, illustrates the Bit Error Rate (BER) performance of a BPSK communication sys-
tem across various Signal-to-Noise Ratios (SNR), with and without the integration of the 2D-
Convolutional Autoencoder. With the inclusion of the 2D-Convolutional Autoencoder, there is
a substantial reduction in BER across all SNR ranges. The most notable improvements occur in
high-SNR regions, where the 2D-Convolutional Autoencoder effectively extracts spatial features
from the received signals, enabling better noise suppression. Its ability to handle structured or
spatially distributed noise makes it particularly effective in scenarios where the received signals
have complex spatial patterns.

The enhanced learning and generalization capabilities of neural networks in differentiating between
noise and signal are the reason for the abrupt drop in BER for deep learning-based models at high
SNR. The model more successfully learns the underlying signal structure and reduces noise as SNR
rises. The decision border becomes well defined at high SNRs, enabling nearly flawless classi-
fication with few bit mistakes. Because deep learning models employ sigmoid-based or softmax

3561



https://www.oajaiml.com/ | March 2025 Varsha PS and Hari VS

decision thresholds, the probability of correctly classifying a bit increases significantly, leading to
an abrupt drop in BER as misclassifications.

4. CONCLUSIONS

This work offers a transformative advancement in communication receivers, particularly in chal-
lenging noise environments, by integrating autoencoders with deep learning classifiers. We have
evaluated the distinct advantages of linear, LSTM, and convolutional autoencoders and as well
as their capacity for signal denoising. The findings demonstrate that all models significantly im-
prove Bit Error Rate performance across a broad range of Signal-to-Noise Ratios. These findings
demonstrate the substantial improvements achieved over conventional receivers, particularly un-
der additive white Gaussian noise. This demonstrates how adaptably deep learning and adaptive
preprocessing layers can be combined to create reliable, noise resilient communication systems.

The practical viability of this methodology further enhances its appeal. The availability of open-
source tools for real-time signal processing and development kits for software-defined radios (SDRs)
makes a physical implementation of this system possible. This makes the suggested layout a useful,
approachable, and scalable solution for contemporary communication systems in addition to being a
theoretical improvement. Looking ahead, future research could explore the incorporation of sophis-
ticated designs like Transformer-based models or attention techniques. Multi-modal approaches
that incorporate diverse signal characteristics–such as phase, amplitude, and frequency–present
exciting opportunities for adaptation in complex and dynamic channel environments. Additionally,
optimizing the system for deployment on resource-constrained devices while enabling real-time
adaptability could pave the way for intelligent, energy-efficient receivers. These future explorations
promise to redefine the boundaries of mission-critical, adaptive, and efficient communication tech-
nologies.adaptive, and efficient communication technologies.
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